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a b s t r a c t

Automated image analysis and artificial intelligence (AI) are becoming increasingly common in digital
pathology software. While various proprietary pathology systems exist, there are no fully vendor-
agnostic integration approaches for AI apps. This makes it difficult for vendors of AI solutions to
integrate their products into the multitude of non-standard software systems in pathology.

The EMPAIA Consortium is developing an open and decentralized platform allowing AI-based apps
of different vendors to be integrated with existing clinical IT infrastructures. For this purpose, we
defined, analyzed, and prioritized relevant use cases and identified requirements for an open platform
to support these use cases. We then designed the platform architecture described here to meet these
requirements based on web technologies.

For all platform services open source reference implementations are available, that are used by
developers of AI apps as an integration target. Developers of compatible clinical systems can either
use and integrate components of the reference implementation or directly implement the interfaces
as per specification, allowing apps to run in their clinical environment. Pathology laboratories can
use both on-premises and cloud deployments of the platform. Apps can be obtained via a central
marketplace so that pathologists can use them in their daily workflow.

An adoption of this platform will enable interoperability among different existing digital pathology
software systems. This reduces integration efforts for software vendors, while users will benefit from
a wider variety of tools and a quicker availability of new and innovative methods. Ultimately, the
platform will reduce barriers to market entry for AI vendors and provide pathologists with access to
advanced AI tools.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the advance of digitization in pathology, new oppor-
unities for automated analysis and applications using artificial
ntelligence (AI) are emerging. Image analysis approaches, such as
onvolutional Neural Networks, have greatly improved in recent
ears, many studies report successfully using AI in computational
athology [1–7], some approaches have been implemented as
roducts for routine use [8,9]. These methods could supplement
he pathologist’s toolbox, e.g., to quickly quantify tumor cells
nd to reduce the amount of tedious and repetitive tasks for
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humans. This becomes increasingly important due to the in-
creasing shortage of pathologists worldwide [10]. For small and
medium-sized companies specializing in AI and image processing,
it can be challenging to integrate their applications into a mul-
titude of different and mostly non-standardized hardware and
software systems currently present in the heterogeneous digital
pathology landscape [11]. These systems include WSI scanners
producing vendor-specific image formats, Image Management
Systems (IMS), Vendor Neutral Archives (VNA), DICOM Picture
Archiving and Communication Systems (PACS), Anatomic Pathol-
ogy Laboratory Information Systems (APLIS), and digital pathol-
ogy workstations providing local data processing capabilities, as

well as a user interface (UI) for pathologists.
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The EMPAIA Consortium (EcosysteM for Pathology Diagnostics
ith AI Assistance) aims to reduce the barriers to market en-
ry for AI vendors into the clinical routine of histopathological
iagnostics by providing vendor-neutral API specifications. The
pecifications allow for a clear separation of concerns in digital
athology infrastructures and therefore enable the integration
f apps in existing pathology systems via API adapters. EMPAIA
latform services are integrated into existing local clinical infras-
ructures in a decentralized way, with the option for cloud-based
ervice hosting per organization. A global app marketplace is
sed for distribution and provides marketing and billing capabil-
ties for application vendors, with the long-term goal to foster a
elf-sustaining ecosystem.

.1. State of the art

The EMPAIA Consortium is partnering with pathology labora-
ories, clinics, and university hospitals, to evaluate the current
tate of digital pathology. In 2021 the centers have answered
uestionnaires about the hardware and software components
eployed in their routine workflows. The results shown in Table 1
ave been provided by one Austrian and nine German centers,
herefore representing a small portion of the global market. Al-
hough the number of participating centers is limited, the data
lready shows a strong fragmentation of the system landscape.
n total, eight different APLIS, six different IMS/VNA/PACS, and 17
ifferent WSI scanner models have been used at that time. In to-
al, these components are provided by 19 different vendors. Each
enter is using an APLIS and at least one scanner WSI scanner
odel, but one center does not use a dedicated IMS/VNA/PACS
oftware and instead uses a network attached storage to store
SI files. While D-Icom IS-P (Imassense Deutschland GmbH) is a

ombined APLIS+PACS solution, in all other cases the APLIS and
MS/VNA/PACS components are developed by separate vendors.
n order to provide an improved user experience and workflow
or pathologists, some vendors cooperate by creating one-to-one
roprietary integrations between their systems. The IntelliSite
athologist Solution (Koninklijke Philips N.V.) [12], pathoZoom
igitalLab (Smart In Media AG) [13] and Digital Slide Suite (VM-
cope GmbH) [14] integrate AI/advanced image analysis models
n the IMS that are being applied in the centers for routine
iagnostics. These IMS either integrate their own AI solutions
r cooperate with an external AI vendor to realize a proprietary
ntegration. In total only four centers use AI/advanced image
nalysis applications in the clinical routine, developed by at most
wo different AI vendors per center.

.2. Related work

In the pathology landscape, various vendor-neutral and ven-
or-specific options for integrating apps exist. Zeiss offers two
olutions: Zeiss Zen [15] integrates with Zeiss microscopes and
llows image processing via scripting and macros. The results can
e examined directly in a viewer software. Zeiss Apeer [16] is
cloud-based digital image processing platform with a focus on
esearch use cases. Compatible processing modules are packaged
s container images. Module specifications describe inputs and
utputs, allowing the modules to be combined as workflows.
ith HALO [17] and HALO AI [18], Indica Labs offers a research-

ocused platform that enables data access via GraphQL queries or
Python SDK. The Sectra Digital Pathology Module [19] provides
vendor-neutral API to integrate apps, again aiming for routine
linical use. Cytomine [20] is a server-based system that allows
or remote image inspection, analysis, and collaboration. Apps are
ackaged in container images and run as jobs, communicating

ia the Cytomine HTTP API. The open DICOM standard, originally

210
developed for radiology imaging, has been extended to support
WSIs [21,22]. In addition, WSI access via DICOMweb is currently
being developed [23,24], but is not yet sufficiently stable for
general use. Basic support for DICOMWSI files is already available
in the EMPAIA platform (Section 2.2.2), but offering a DICOMweb
interface is an ongoing research topic.

Moreover, new commercial cloud-based platforms for digital
pathology have been announced, namely the Sectra Amplifier
Marketplace [25] and the Roche Digital Pathology Open Environ-
ment [26]. Similar platforms for AI integration also exist in the
domain of radiology (e.g., [27]).

1.3. Contribution

The hypothesis for the present article is that it is possible to
design an open and modular architecture of a digital pathology
platform for routine use. Openness here means enabling interop-
erability among existing digital pathology infrastructure systems,
as well as between such systems and image analysis apps, in
particular interoperability between systems by different vendors.
The EMPAIA Consortium defines a reference architecture and
specifies APIs in close collaboration with hardware and software
vendors, that participate in the ecosystem. The open-source ref-
erence implementation by itself is not a certified medical device
software and does not replace the existing software solutions
available in the market. While the AI platforms mentioned in
Section 1.2 allow different AI vendors to integrate their applica-
tions, these integrations are always platform specific. In contrast,
EMPAIA aims to standardize an integration path for AI vendors,
to be compatible with many existing AI platforms and pathology
software systems at once. This many-to-many relation has the
potential to act as a multiplier to accelerate the adoption of AI
in pathology. An up-to-date list of industry partners is available
on the project website [28].

The project is currently focusing on routine diagnostics, help-
ing industry partners to overcome barriers to market entry in
terms of technical integration, validation, and certification. Once
the adoption in clinics has increased, research use-cases will
benefit as well. For example, AI developers will be able to provide
their research-grade applications via the marketplace, allowing
pathologists to easily evaluate the latest academic achievements.
Such an integration could also lower the barriers to conduct
multi-centric studies, where AI solutions are applied in a clinical
environment on local data sets, without the need to transfer data
to the researchers.

This manuscript is based on a previous publication presented
at the Workshop on Clusters, Clouds and Grids for Life Sciences –
CCGrid Life 2022 [29], but extending on how requirements were
derived and elaborating on clinical integration approaches. We
identify key use cases and requirements for AI-enabled software
platforms in pathology, describe the design decisions and the
resulting architecture of the platform, and how the platform
meets the requirements. Extensive API descriptions are not in the
scope of this manuscript. However, a previous publication [30]
covers the App API specification for image processing and AI
applications, comprising an app description format, an HTTP API,
container technologies for the deployment, and an open source
app test suite (see Section 2.5). Further APIs for the decoupling
of web-based UIs in the frontend and the connection to storage,
compute, and information systems in the backend are in active
development. Up-to-date API specifications in the form of Open-
API [31] documents and text descriptions, as well as development
tutorials, are available in a public documentation [32].
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Table 1
Software and hardware components deployed in one Austrian and nine German pathology centers (university hospitals, clinics, and pathology laboratories of different
sizes). Vendors are sorted alphabetically and components are grouped by APLIS, IMS/VNA/PACS and WSI Scanner models. Data has been reported by the centers in
a 2021 questionnaire initiated by the EMPAIA Consortium, illustrating the heterogeneous landscape of systems.
Vendor APLIS IMS/VNA/PACS Scanner

Basys Data GmbH PathoWin+
dc-systeme Informatik GmbH dc-Pathos
F. Hoffmann-La Roche Ltd. VENTANA DP200, VENTANA iScan HT Brightfield, VENTANA

iScan Coreo Au
Grundium Ltd. OCUS
Hamamatsu Photonics K.K. NanoZoomer 2.0-HT
ifms GmbH PathoPro
Imassense Deutschland GmbH D-Icom IS-P D-Icom IS-P
Koninklijke Philips N.V. IntelliSite Pathologist Solution Ultra Fast Scanner
Leica Biosystems Nussloch GmbH Aperio eSlide Manager Aperio AT2, Aperio Versa 200, Aperio GT450
NEXUS/AG NEXUS PATHOLOGIE
NEXUS/Paschmann GmbH PAS.NET
NEXUS/SWISSLAB GmbH SWISSLAB
Objective Imaging Ltd. Glissando Desktop Scanner
PerkinElmer Inc., Akoya Biosciences
Inc.

Vectra 3.0

PROGRAMMIERFABRIK GmbH PAS Xanthos
Sakura Finetek Europe B.V. VisionTek Live
Smart In Media AG PathoZoom digitalLab
VMscope GmbH Digital Slide Suite
3DHISTECH Ltd. SlideCenter (former

CaseCenter)
P1000, P250, Pannoramic MIDI, Pannoramic SCAN II, DESK
II DW
1.4. Use cases and requirements

We conducted a use case and requirements analysis for AI-
ased pathology software platforms. The EMPAIA Consortium
nitially identified a total of 27 use cases in discussion rounds and
orkshops. From these original use cases, the 8 most important
ey use cases have been selected as a basis for the development
ork and were specified in detail using Business Process Model
nd Notation (BPMN) and component diagrams. The full list of
riginal use cases is available in Appendix A. The key use cases
ave been further aggregated and prioritized, resulting in the
use cases presented in this manuscript. While the use cases
ere focused on the initial release of the EMPAIA platform, we
ave already considered a broader vision in the requirements
nalysis, including regulatory and economic aspects as well as
xisting software and hardware vendors. Hence, we prioritized
equirements in what should already be available in a first version
f the platform and what should be implemented later. Spe-
ific requirements for image processing and AI apps have been
ddressed before [30] and are not covered in this manuscript.
The following critical use cases were identified:

• Use case 1: Pathologists using apps via the Workbench
Client web UI (Section 2.2.3)

• Use case 2: Registering users and organizations via the Por-
tal web UI (Section 2.2.1)

• Use case 3: Displaying apps available in the marketplace via
the Portal web UI

Furthermore, the following general requirements were identi-
ied:

1: Central marketplace and user management.

• authentication and authorization (auth)
• visibility of apps
• quality control of apps, e.g., based on clinical validation
• allow for later implementation of accounting services (app

usage, billing, telemetry) to commercialize the platform and
build a self-sustaining ecosystem

2: Public API specifications.

• allow software vendors to take part in the platform eco-

system by following these specifications
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• allow software vendors to be part of the API specification
process

• cross-vendor software compatibility

R3: Open core platform.

• provide open source reference implementations of the core
infrastructure services

• allow software vendors to test their own API implementa-
tions against existing reference implementations

• allow software vendors to use and build upon existing soft-
ware components

R4: Distributed core platform.

• one service stack per pathology laboratory
• data separation between laboratories
• deployment on-premises, in a cloud, or across both (control

over data storage and processing locations)
• integration into the local system via API implementation

or API adapters (e.g., APLIS, PACS, VNA, Digital Pathology
Workstations)

R5: Extensibility.

• first, focus on common features used by most apps
• extend with more specialized features later

R6: Web-based systems.

• accessible via modern browsers (no installation or update
required on workstations)

• compatible with IT security restrictions in clinic networks
• well-known software engineering approach accepted by de-

velopers

R7: Testability.

• provide app test suite for app developers
• provide extensive platform tests for service integration test-

ing

R8: Traceability.

• all data entities and app runs have unique IDs
• precise documentation of algorithm version and data inputs
that produced certain outputs
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R9: Visual diagnostic workflow.

• users can mark regions of interest for processing
• algorithms can return various geometric annotations (e.g.,

polygons, points) on histological images
• provide flexible class namespaces to classify annotations

(e.g., tumor cell, non-tumor cell)

R10: Automation.

• later support automated pre-processing of long-running
computations, i.e., trigger apps as soon as a new WSI has
been produced

• later also support automated quality assurance (e.g., image
sharpness analysis)

R11: Legal and regulatory concerns.

• provide data separation and access restrictions
• provide anonymization/pseudonymization capabilities for

research use cases
• later support regulatory approval of apps and platform inte-

grations

2. Methods

This section describes the core technologies used in the plat-
orm, as well as the platform architecture with respect to the
equirements defined in Section 1.4. Furthermore, the platform’s
uthentication mechanisms and the EMPAIA App Test Suite are
xplained.

.1. Core technologies

The following subsections summarize the core technologies
sed for the platform’s reference implementation. Alternative
latform implementations by third-party software vendors can
pt for a different technology stack. Only the use of OAuth2 [33]
or authentication and authorization is a fixed requirement en-
orced by a global auth service. In this manuscript, we use the
erm auth to refer to authentication and authorization at the
ame time when a clear distinction is not required in the given
ontext. The open source reference implementation can also be
sed independently of the global infrastructure for development
nd testing purposes.

.1.1. Whole slide images
WSIs are high-resolution scans of histopathological tissue

amples. Slide scanners of various vendors use their own pro-
rietary file formats [34] that store not only the full-resolution
mage but also a pyramidal structure of pre-computed downsam-
led versions of the image. These image layers are usually stored
n a tile-based fashion allowing WSI viewing software to access
certain field of view at a particular resolution in a fast and
emory-efficient way. For example, the desktop viewing soft-
are QuPath [35] uses software libraries such as OpenSlide [36]
s an abstraction over different WSI file formats, retrieving image
ata by coordinates and resolution level. Web-based viewers do
ot directly access the file data but instead call a web API, where
he server implements the file access via external image libraries.
uch an API provides endpoints to obtain image metadata and
ndividual regions or tiles required to cover a desired resolution
nd viewport.
The Digital Imaging and Communications in Medicine (DICOM)

upplement 145 has been published in 2010 [22], specifying
he usage of the DICOM standard for WSI data. Since then,
he adoption of DICOM in digital pathology has slowly been

ncreasing while proprietary formats are still most prevalent in
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routine usage [37]. The Big Picture project of the innovative
medicines initiative (IMI) is improving the tooling around DICOM
WSI [38,39], including open source Python packages for con-
version and accessibility. The open source wsidicomizer [39] is
able to convert many proprietary WSI formats to DICOM, while
wsidicom [38] allows programmers to obtain WSI image tiles
from a DICOM file. Therefore the library provides an API that is
comparable to OpenSlide Python and abstracts away the com-
plexity of the DICOM standard. Furthermore, WSI support is
being added to the HTTP-based DICOMweb protocol [37], with an
early functional implementation in the Google Cloud Healthcare
API [40].

2.1.2. Software and tools
The decentralized service architecture introduced in the pres-

ent manuscript is mainly developed using Python 3.8 with the
modern HTTP API framework FastAPI [41]. FastAPI enables the
asynchronous processing of incoming HTTP requests via Python’s
asyncio implementation. Multiple FastAPI worker processes can
be started via the Asynchronous Server Gateway Interface (ASGI)
[42] implementation Uvicorn [43] to fully leverage the available
compute resources. Service-to-service communication is imple-
mented with the Python library aiohttp [44], enabling asyn-
chronous web requests and can be used in an asynchronous
FastAPI request handler. It also allows the implementation of
proxy routes, where the HTTP request content of one service
is streamed through another service. This is especially useful
when building multiple API layers to provide differing levels of
abstraction and authorization.

Services are bundled using Docker container images. Docker
supports the Open Container Initiative (OCI) [45] image speci-
fication, such that the container runtime is exchangeable. Test
and production environments are deployed on Linux servers
using docker-compose [46], although docker-compose could be
replaced with a more powerful orchestration framework (e.g.,
Kubernetes [47]) as soon as the need arises. Docker also allows
for developer deployments on a local Linux, Windows, or Mac
machine.

2.1.3. OpenAPI
The OpenAPI specification [31], formerly known as Swagger,

has become the industry standard for documenting web APIs [48].
OpenAPI allows for static definitions of API endpoints, their URL
and query parameters, expected HTTP response codes, error mes-
sages, as well as models of JSON documents sent in the HTTP
message body. The documentation itself is stored in a JSON file
that can be parsed to generate a documentation page. In addition,
the OpenAPI definition can be interpreted by software libraries
to auto-generate client code [49]. FastAPI has built-in support for
OpenAPI, enabling access to the API documentation at runtime.

2.1.4. OAuth2
OAuth2 [33] is a standardized protocol for authentication

(confirming identity of a client) and authorization (confirming
client access permission for specific resources) in software sys-
tems. Implementing an OAuth2 mechanism in a web-based ser-
vice platform must cover two major steps. First, a client must
retrieve an access token from an auth provider (service) using
one of many OAuth2 flows. Second, a client must include the
token in HTTP requests to a service endpoint such that the service
endpoint can validate the token to grant or deny access to the
resource.
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Fig. 1. Platform Architecture: Global Services for central user-/organization-management, authentication, and app distribution are rendered in purple. Decentralized
Platform Services for pathology laboratories are rendered in yellow. Solid arrows denote the direction of HTTP API requests.
2.2. Service architecture

The software service architecture of the envisioned platform
was designed to satisfy the requirements defined in Section 1.4.
It also satisfies the three key use cases, with extensibility for
future use cases already in mind. An overview of the architecture
is shown in Fig. 1. The global infrastructure (purple) is hosted
in the EMPAIA cloud and exists exactly once. The distributed
infrastructure (yellow) is hosted once for each clinic/laboratory,
either on-premises, in the cloud, or partly on-premises and partly
in the cloud (Section 3.4). The distributed platform services are
categorized as storage, compute and core services. All of these
logical units communicate via HTTP APIs that serve as an abstrac-
tion layer and enable compatibility between units. The following
sections describe the individual units of the platform architecture
in the context of their APIs.

2.2.1. Global API
The Global API is comprised of Auth and Marketplace services.

The Auth Service provides a global organization, user and role
management. Each organization has admins and unprivileged
members that gain access to decentralized services through a
centralized OAuth2 mechanism. The marketplace hosts apps and
app metadata. The EMPAIA Portal is a central Web UI that gives
access to the user, organization and app management. In ad-
dition, it provides a public storefront where available apps are
presented. These components implement the complete behavior
of use cases 2 and 3 and fulfill the requirements R1 and R6.
The global services are self-contained and do not depend on the
distributed services of the platform.

2.2.2. Medical data API
The Medical Data API functions as an abstraction layer for

storage systems and is provided by the Medical Data Service
213
as a reference implementation. The API gives access to clinical
metadata (e.g., cases and WSI metadata), WSIs in the form of
image tiles and regions cropped from the requested WSI image
level, geometric annotations with coordinates on the image data
(e.g., polygons; R9), primitive data (e.g., floating-point score of
an app result), collections for grouping data elements and jobs
containing references to input and output data of an app exe-
cution. A job is a first-class data structure stored alongside the
medical data, such that it is always known which app version
has produced output data based on specific input data. Data
entities that serve as job inputs or outputs become immutable
to ensure traceability (R8). All data entities, including jobs, are
referenced by unique IDs. Therefore it is possible to reuse the
data across multiple jobs and also to query input and output
data by their associated job ID. The Medical Data Service itself
is implemented as an HTTP API layer that relays requests to
an underlying microservice architecture (not shown in Fig. 1)
and satisfies the requirements R2, R3, R4, and R6. The Medical
Data API specification only covers API endpoints required by core
components, namely the Workbench Service and the App Service.
The API explicitly does not cover how clinical data is transferred
into the platform because this can be implemented in many
different ways, depending on the clinical infrastructure. Integra-
tion approaches with clinical software systems are described in
Section 3.5.

2.2.3. Workbench API
The Workbench Service is part of the core infrastructure, and

there exists one service instance per organization. The Work-
bench Service has two main purposes, first to provide the Work-
bench API for the Workbench Client, a web UI reference
implementation for pathologists shown in Fig. 2; and second to
aggregate and transmit data between services that do not have
direct connections due to system architecture considerations. The
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Fig. 2. Workbench Client: A browser-based web UI for pathologists, that enables the usage of EMPAIA compliant image processing apps. The screenshot shows
annotations on a WSI that are the result of a successful job.
Workbench Client triggers the execution of a new job via the
Workbench Service, which connects to the Medical Data API and
the Job Execution API to synchronize the current states of running
jobs. The process flow of use case 1 that is controlled by the
Workbench Service is described in Section 3.1. In addition, the
Workbench Client contains a viewer for pathological image data
and geometric annotations that can be utilized for classification
(e.g., as tumor or non-tumor). Classified geometric annotations
produced by an app are intended to explain more abstract results
(R9), such as a calculated tumor/non-tumor ratio, and provide
pathologists with the necessary insights to evaluate and trust the
output.

The automated pre- and post-processing of apps (R10) is an
dditional use case that will be covered in a future version of the
latform.
The ID Mapper Service maps platform internal IDs of cases and
SIs to local IDs of a pathology laboratory. This mapping allows

he platform to rely on pseudonyms that are only resolved via
he Workbench Client/Workbench Service when the user views
he data (R11). As long as the Workbench Service and ID Mapper
ervice are deployed on premises, it is possible to set up the
ata storage and processing in a cloud environment without the
eed to upload identifying patient data. Hence, WSI files may
eed to be anonymized/pseudonymized before uploading data to
cloud environment. Various deployment scenarios are evaluated
n Section 3.4.

.2.4. Compute API
The compute environment is managed by a Job Execution

ervice. This service executes apps from the platformmarketplace
ased on given job data. The app runs as a headless process in a
ontainer and is able to communicate with the App API. The Job
xecution Service itself never contacts the App API or any other
ore service, but only the global marketplace and authentication
ervices. In case a job failure is detected by the Job Execution
ervice, the Workbench Service fetches the status change using
polling strategy (R6). The Workbench Service then transfers
214
the status update to the Medical Data API. Depending on the
Job Execution Service implementation, the service can distribute
jobs in a cluster of compute nodes, including nodes with GPU
resources to accelerate image processing operations and AI apps
based on Artificial Neural Networks.

2.2.5. App API
The App Service is part of the core infrastructure and provides

an App API [30]. It is used by apps to query job input data, send
job output data, and to finalize a job. For successful API access,
the app requires job ID, job token, and App API URL environment
variables that the Job Execution Service initializes in the app
container on startup. The App API serves as an abstraction over
the Medical Data API with a limited (job-based) access scope.
There exists exactly one App Service instance per pathology labo-
ratory, and each instance always connects to exactly one Medical
Data API of the corresponding organization (R2, R4). Fig. B.5 in
Appendix B shows an exemplary HTTP request sequence of a very
simple AI app, using the App Service in the platform reference
implementation with the underlying Medical Data Service and its
microservices.

2.3. Authentication and authorization

The auth mechanisms are coordinated by a global auth service
(R1) that follows the OAuth2 standard (Section 2.1.4). A user
login is performed via a web client using the Authorization Code
Flow [33, Sec. 1.3.1]. Since services can be deployed in a dis-
tributed environment, potentially using untrustworthy networks,
a service-to-service auth is mandatory. Services that connect to
other services use a Client Credentials Flow [33, Sec. 1.3.4].

In an organization (e.g., pathology laboratory), it should not
be possible for every user to connect to every platform service
and for every service to connect to every other service. Therefore,
the platform uses an audience system, where users and services
explicitly get assigned audiences they may access (R11). These
audiences are encoded in JSON Web Tokens (JWT) [50] by the
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global auth service, such that a service receiving a request includ-
ing the token is able to check whether or not itself is mentioned
as audience. If not, the authorization to access the API is rejected.
Using the audience system, every service only needs to know
its own audience identifier that is provided to the services as
a configuration setting. The alternative approach, where each
service has a list of all clients allowed to send requests, would
be an error-prone configuration overhead that is not feasible for a
large, distributed service architecture. In addition to the described
intra-organization authorization, this audience system also covers
inter-organization authorization, where user/service access from
one organization to another organization is blocked by default
but could be enabled for research or study collaboration purposes.
Another possible scenario could be an organization hosting only a
Job Execution Service providing compute capabilities for smaller
pathology laboratories or even clinics. A namespace structure is
used to assign a unique audience identifier to each service of each
organization.

The Medical Data Service and App Service provide a separate
uth system for the App API. When a job is started, the Work-
ench Service retrieves a JWT created and signed by the Medical
ata Service. This token is handed to the Job Execution Service
longside the remaining job data. The Job Execution Service then
ands the token to the actual app that processes the job in
he compute cluster. The app uses the token to connect to the
pp Service that in turn can validate the token using the public
ey of the Medical Data Service. This token contains the jobs
D, such that authorization is only granted to retrieve the job
nput data and to write appropriate output data that is expected
rom the app based on its app description [30]. This job-based
oken mechanism cannot be provided by the global auth service
ecause it does not have any connection to the Medical Data
ervice deployed for the various organizations. In the future, this
pproach could be extended to further restrict resource access
or users and services, for example, only allowing pathologists to
ccess a subset of cases stored in the Medical Data Service of their
rganization.

.4. Service development

The EMPAIA platform provides web API specifications (R2, R6)
hat can be implemented and/or consumed by third-party pathol-
gy software vendors. In order to properly design and test these
PIs, the consortium also provides a reference implementation
f web services and clients (R3). This is necessary because API
pecification tools like OpenAPI (Section 2.1.3) can only document
tatic definitions of routes, parameters, and models but do not
eflect dynamic API behavior implicitly defined by the backend
ode. Furthermore, third-party implementers might want to pro-
ram a client and test it against an existing server or might
ant to implement an API server and check whether or not it

s compatible with a reference client (R7). APIs are versioned
o allow for extensions (R5) and even breaking changes in the
uture. Old API versions can co-exist with new versions while
eing deprecated for new apps, clients and other services.

.5. App development

App developers need a way to develop and test their app
efore uploading it into the marketplace (R7). For this purpose,
he EMPAIA App Test Suite (EATS) [51] can be used on a local
omputer. The EATS is open source and contains all relevant
latform services required to run an app (R4). It provides a com-
andline interface to start/stop services, register docker images
s apps, register/run jobs, and export data from the services to

SON files. It also contains a web client to examine WSIs and
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input/output annotations in a viewer. The EATS is entirely self-
contained, without a connection to global services. Therefore,
user and service-to-service auth is turned off, but the job token
auth provided by the Medical Data Service and App Service (both
contained in the EATS) is turned on, as it is relevant to an app
and must be testable.

2.6. App catalog

Five software vendors have already adapted a total of ten apps
to the EMPAIA App Interface [30]. All apps use image processing
and AI technologies to process user-selected regions of interest
in a WSI. Analyses are available for H&E stains, immunohisto-
chemistry (IHC) and fluorescence in situ hybridization (FISH). The
current app catalog contains two apps based on H&E stains from
non-small cell lung cancer (NSCLC) tissue. For IHC, there are two
apps for the analysis of Ki-67-IHC from breast cancer tissue, two
apps for HER2-IHC also from breast cancer, and one app each
analyzing IHC for ER, PR, and P53 in breast cancer. One app that
is based on FISH is available for the detection of HER2/neu gene
amplification in breast and stomach carcinomas. The integrations
of additional apps are under active development.

3. Results

The distributed platform services, the Workbench Client
(Section 2.2.3), and the EATS (Section 2.5) are open source and
can be accessed on gitlab.com [52]. The following sections de-
scribe how the initial use cases (Section 1.4) have been im-
plemented. In addition, data throughput performance tests are
reported (Appendix C.2).

3.1. Use case 1: pathologists using apps

Use case 1 (Section 1.4) describes the examination of a pathol-
ogy case aided by image processing apps. Such an examination
is conducted by pathologists via a graphical UI. The Workbench
Client is a reference implementation provided by the EMPAIA
Consortium to demonstrate how this use case can be imple-
mented. Software vendors can integrate similar functionality into
existing pathology software based on the Workbench API as it is
defined by the platform.

When pathologists open the Workbench Client in the browser,
they are forwarded to a login page. The users enter their login
credentials and are redirected back to the Workbench Client. The
authentication process is the only client interaction with an API
that is not proxied by the Workbench Service (Section 2.2.3).
After a successful login, the user is prompted with a list of cases
for selection. For this purpose, the Workbench Service fetches
the case data from the Medical Data Service (Section 2.2.2) and
aggregates additional data about slides, examinations and jobs
of the case. As soon as a case is selected, the pathologists can
start browsing the case-related data. This mainly includes WSI
(Section 2.1.1) and user-created geometric annotations located on
these slides. The slide data includes metadata, image tiles, as well
as overview, macro, and label images.

To use image processing apps, the pathologists must select an
existing examination or create a new one if no open examination
exists for this case. Multiple examinations per case can exist,
but there should only be a single open examination at a time.
In the future, clinical reports could be generated as soon as an
examination is closed, summarizing the results obtained from
apps.

Apps obtained from the marketplace must be explicitly as-
signed to an open examination before they can be used. For this
purpose, the Workbench Service fetches app metadata from the
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global marketplace API and stores the assignment of an app to an
examination in the Medical Data Service. The user can then start
a new job for this app. In the current version of the Workbench
Client, the job parameterization is limited to the selection of a
single WSI from the case and drawing/selecting one or more
regions of interest on the selected WSI to be analyzed. In a
future version of the Workbench Client, apps will ship custom
UI elements that allow for a more sophisticated job parameter-
ization. The job is then stored in the Medical Data Service, and
the Workbench Service sends the job data to the Job Execution
Service (Section 2.2.4) for processing. The Workbench Service
regularly updates the job status in the Medical Data Service as
reported by the Job Execution Service. As soon as a job is finished,
the user can view the results that were written to the Medical
Data Service through the App Service. Again, the result view in
the current Workbench Client version is very generic, although
custom visualization will be possible in the future via app UI
integrations.

Pathologists can add multiple apps to an examination and run
ultiple jobs per app. An examination can be closed as soon as
ll jobs in the examination are finished.

.2. Use case 2: registering organizations and users

Users can register on the platform on their own behalf via
he EMPAIA Portal. By default, users do not have access to any
rganizational resources. A user can join an existing organization
r create a new organization.
Users can create their own organization using the EMPAIA

ortal. A new organization must be approved by an EMPAIA
dministrator to finalize the creation. Only approved organiza-
ions show up on the public organization overview page of the
ortal. The user who created the organization by default is an
rganization administrator who can approve requests from other
sers to join the organization. Organizations can be assigned
ifferent organization types, including AI Consumer and AI Ven-
or. An AI Consumer organization can request the deployment
f the EMPAIA platform services via the EMPAIA support. The
eployment of an organization-specific software stack is not an
utomated process because many different integration scenarios
xist (Section 3.4).

.3. Use case 3: displaying available apps

Apps are displayed and described on a public marketplace
age in the EMPAIA Portal. Each app is associated with an AI Ven-
or organization. In future versions of the platform, organizations
ill be able to upload and manage their own apps. For the initial
elease of the platform, apps are integrated into the marketplace
y platform administrators. In the Portal, apps can be filtered by
etadata tags that refer to the type of analysis performed with
ach app (e.g., tissue type, stain, and indication). These apps will
lso show up in the Workbench Client for pathologists to use in
n examination. In the future, the apps listed in the Workbench
lient will be limited to the ones previously licensed by the AI
onsumer organization via the Portal.

.4. Deployment

The platform architecture described in Section 2.2 supports
ifferent deployment scenarios, where services can be deployed
n-premises, in a cloud environment, or in a mixture of both.
ig. 3 depicts four different scenarios where the Pathology Lab-
ratories 1 to 3 can be pathology institutes of larger clinics/
niversity hospitals or individual pathology laboratories. Depend-
ng on the size and resources of an institute, it might be possible
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to host everything on-premises, while others might want to use
cloud resources.

Pathology Laboratory 1 (yellow) deploys all decentralized plat-
form services on-premises. This even includes a compute cluster
controlled by a Job Execution Service instance. Only user/service-
to-service auth and the app marketplace are provided by global
services. In this scenario, medical data is kept locally, even for the
compute intensive processing of AI apps. It requires appropriate
server resources to be available in an institution, but also provides
the best protection of medical data, in comparison with the
following deployments.

Pathology Laboratory 2 (blue) uses an App Service and Medical
Data Services deployed on cloud servers outside the protected
network of the institution. The medical data is transmitted to
the cloud beforehand, such that the cloud compute cluster has
fast access to the data at the time of processing. For data privacy
reasons, the data is anonymized before uploading it to the cloud
(R11). Since the Workbench Service and ID Mapper Service are
deployed on premises, the mappings to local case and slide IDs
that could be classified as identifying information never leave
the originating institution. This scenario allows an institution to
leverage remote storage and compute resources, while largely
maintaining data privacy due to data anonymization. The appli-
cability of this deployment strategy depends on regulatory and
legal requirements.

Pathology Laboratory 3 (green) has a full cloud deployment,
such that no local resources are used. This scenario is not feasible
for clinical use because storing non-anonymized case mappings
and slide mappings in a cloud is a privacy issue. On the other
hand, this scenario is very useful for research purposes using
already anonymized data. Also, the initial release of the platform,
used for evaluation purposes only, follows this scenario. It allows
the platform engineers to deploy the services in a controlled
environment to simplify debugging and avoid the variety of local
infrastructures.

Independent of the deployment scenario, platform services
should not share compute resources with apps for several rea-
sons: (1) Web services and apps differ greatly in their hardware
requirements and load profile. Apps produce high bursts in CPU
or GPU load but do not need storage capacities because they send
their results to the Medical Data Service. (2) A high computational
load produced by apps might have a negative effect on the avail-
ability or responsiveness of services. (3) The Job Execution Service
can be extended to utilize multiple scheduling and orchestration
frameworks in the future. For example, the Job Execution Service
might schedule apps in a high-performance SLURM or Kuber-
netes cluster, while platform services (including the Job Execution
Service itself) are orchestrated using docker-compose.

3.5. Integration

The EMPAIA platform architecture is designed in a way that
allows parts of the platform to be interchangeable and imple-
mented by different third-party software vendors. For example,
as shown in Fig. 1, a third-party compute cluster provider can
implement the EMPAIA Compute API in a compatible way to ac-
cept job execution requests from an existing Workbench Service
implementation. Furthermore, the modular design of the EMPAIA
platform reference implementation allows a gradual integration
into clinical software and hardware infrastructures. While the
reference implementation itself is not meant to be certified on
its own as medical device software, it might be beneficial for
a software vendor to reuse certain open source components:
either to be used temporarily until a proprietary implementation
is available, or to be permanently integrated into their software
product and certified for clinical use.
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Fig. 3. Deployment: Decentralized platform services are deployed per pathology laboratory. Different scenarios are depicted for each laboratory, ranging from lab. 1
(yellow) with a complete local deployment, to lab. 3 (green) with a complete cloud deployment. Lab. 2 (blue) shows a mixed deployment. Arrows denote the direction
of HTTP API requests.
In order to make the adoption of the platform reference im-
lementation as easy as possible, the Medical Data Service has
een implemented as an HTTP API layer (Section 2.2.2) in front
f microservices that store and serve different data types. This
eparation is considered a technical detail of the reference imple-
entation and is not part of the platform design. Namely these
icroservices are the Clinical Data Service, the WSI Service, the
nnotation Service, the Job Service and the Examination Service.
he Clinical Data Service stores case data and clinical metadata
bout the WSIs contained in a case. The WSI Service serves the
ctual image tiles of a WSI and provides technical metadata, such
s the resolution and extent of each image layer. The Annotation
ervice stores geometric annotations and their pixel coordinates
n a WSI, as well as primitive data types like numerical scores.
ll data types can be contained in data collections. Data ele-
ents and collections can have references to other elements
nd collections in order to create a semantic structure. Every
lement and collection used as a job input or created by a job
s an output is being locked and becomes immutable. A flexible
uery system allows data to be fetched by data types, references,
obs, annotation coordinates (viewport) and more. The Job Service
tores job objects, that link the ID of a certain app version and the
Ds of input data to the IDs of the generated output data, which
s crucial for traceability and reproducibility of processing results.
he Examination Service stores examination objects, which link
he IDs of apps used in a certain examination to the case ID and
he corresponding job IDs.
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As described in Section 3.4, the platform architecture allows
services to be deployed on premises in clinical infrastructures
(see pathology lab. 1 in Fig. 3). Based on this deployment scenario,
Fig. 4 demonstrates a shallow integration approach with local
systems, that can be used as a stepping stone to integrate the
platform more deeply at a later point in time. A software vendor
can, e.g., decide to use the Medical Data Service implementation,
replace the Clinical Data Service and WSI Service with adapter
implementations and use the Examination Service, Annotation
Service, and Job Service as provided by the EMPAIA platform
reference implementation. The Clinical Data Adapter can trans-
late a request for fetching metadata of a clinical case into calls
to a local APLIS, either using proprietary APIs or standardized
HL7/FHIR APIs. The WSI Adapter can translate requests for fetch-
ing WSI image tiles to a proprietary IMS, to a VNA, or to a PACS.
Since all adapter requests are translated just in time, there is
no need to copy data from existing clinical software systems
into the EMPAIA platform services. In the described scenario, the
Examination Service, Annotation Service, and Job Service are not
replaced by an adapter, because exact equivalents are most likely
not yet present in the existing clinical systems. Fig. 4 also shows
a third-party Pathology Workstation software that connects to
the Workbench API and therefore replaces the Workbench Client
reference implementation. The workstation provides a graphical
user interface for pathologists to browse patient data, cases, and
slides. Connecting to the Workbench API allows the software to
run AI apps and display the processing results, leveraging the full
potential of the platform.
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Fig. 4. Platform Integration: Third-party clinical storage systems are integrated via API adapters replacing Medical Data microservices. A third-party user interface
(UI) for pathologists integrates with the Workbench API to access AI app functionality. Solid arrows denote the direction of HTTP API requests.
A deeper integration between the clinical systems and the
MPAIA platform implies that the storage systems directly imple-
ent the Medical Data API including support for examinations,
nnotations, and jobs, thereby eliminating the need for a sepa-
ate API layer and adapters. Additionally, third-party vendors can
eplace the EMPAIA core services by implementing the Work-
ench and App APIs and can replace the Job Execution Service
y implementing the Compute API. Due to the modular design,
nteroperability between the different parts of the architecture
s ensured, even if these components are provided by different
arties.
As described in Section 2.1.1, the slide scanners currently used

n the routine of digital pathology produce proprietary image
ormats. Even though the DICOM standard for WSI data has
een published more then a decade ago [22], the adoption by
linical hardware and software vendors has not made significant
rogress yet. For this reason the HTTP endpoints of the WSI Ser-
ice have been designed as an abstraction over all existing image
ormats, including DICOM WSI. The WSI Service implements a
lugin interface, that allows the usage of various WSI software
ibraries, like OpenSlide [36], to open and read image tiles from
he corresponding formats. While the WSI Service is published
nder the MIT license, the plugin system also allows proprietary
lugins to be implemented. For example, the isyntax image for-
at can only be opened using the Philips Pathology SDK [53].
he SDK can be downloaded for free, but is not licensed under
pen source conditions and therefore cannot be redistributed.
he WSI Services’ isyntax plugin allows developers to download
he SDK under the terms of Philips from the official website and
uild the plugin locally. The DICOM plugin of the WSI Service
s based on wsidicom (Section 2.1.1), a library that provides a
218
high abstraction over the DICOM standard. For example, DICOM
image regions are usually addressed via coordinates in metric
units, e.g., (x, y) position on the physical slide in millimeters. The
wsidicom library on the other hand allows access to the image
regions via pixel coordinates and therefore behaves very similar
to OpenSlide and other WSI libraries. Implementing a WSI Service
compatible plugin based on this library was trivial and serves as a
proof of concept that other DICOM sources like DICOMweb can be
integrated via a plugin or an adapter as described in Section 3.5.

3.6. Evaluation of data throughput performance when accessing im-
age data

One important characteristic of both interactive and batch use
of a digital pathology platform is data throughput performance.
A modular architecture, as presented here, might imply technical
overheads compared to a monolithic application when access-
ing image data or storing analysis results. In order to evaluate
the data throughput performance of accessing image data, tests
comparing different service setups and concurrency settings in
our reference implementation have been conducted and pre-
sented in [29]. Key results are summarized here, more detailed
information is provided in [29] and Appendix C.

In the described architecture, the Workbench Client requests
image tiles for viewing purposes in the browser, it connects to
the Workbench Service. The Workbench Service then forwards
the request to the Medical Data Service and streams the response
back to the client. In the same way, the App Service streams tile
requests from the Medical Data Service when an App requests
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them. For all connections from the client to the Workbench Ser-
vice and from the Workbench Service to the Medical Data Service,
OAuth2 authentication is enabled.

In the reference implementation, the Workbench Service use
he HTTP client aiohttp (Section 2.1.2) for its requests. The Med-
cal Data Service itself is only an API layer that connects to
ultiple microservices (Section 3.5). It also uses aiohttp to stream

he requested image tiles from the WSI Service, therefore gen-
rating additional overhead. The latter is not inherently part of
he platform architecture, but only part of the reference imple-
entation, third-party implementations could choose a different
pproach. The experiment for evaluating data throughput perfor-
ance when accessing image data involved requesting 500 image

iles. As a baseline, the WSI Service was timed directly when
equesting the 500 image tiles concurrently, resulting in a total
ean round trip time of 2.14 s. For the actual modular setting,

equesting the tiles via the Workbench, Medical Data, and WSI
ervices and streaming the tiles back, the total mean round trip
ime was 2.50 s, an increase of 17%.

. Discussion

The following sections summarize the presented achievement,
how current limitations of the platform and discuss the future
irections of the project.

.1. Achievements

The implementation status of the EMPAIA platform covers the
hree main use cases presented in this publication (Section 1.4).
he platform is designed to support flexible deployment scenarios
Section 3.4) that meet various regulatory and technical require-
ents. The EMPAIA Consortium collaborates with ten German
nd three international reference centers (hospitals and pathol-
gy laboratories). As of September 2022, reference centers have
ccess to cloud-based deployments. These deployments allow
athologist to upload research data to gain a first impression
f the platform. Five different third-party vendors have already
ntegrated ten AI apps into the platform, that are now available
o pathologists via the Workbench Client web UI. App developers
re actively using the EATS (Section 2.5) to test their apps and
rovide valuable feedback concerning API design, features, and
ugs via a dedicated mailing list.
For maximum compatibility, the EMPAIA platform is delib-

rately kept similar to existing free and commercial pathology
oftware systems (Section 1.2). Unlike many existing solutions,
he EMPAIA platform is not only intended for research applica-
ions, but also for clinical use. The EMPAIA platform is unique
n that it offers open interfaces to both different AI app ven-
ors and different pathology software system vendors. Another
nique feature is that open source reference implementations of
ll components required for a functional, standalone deployment
re provided.
Performance is an important aspect of the user experience.

elays in image and annotation rendering have a negative impact
n the acceptance of new tools. The results from Section 3.6 show
hat it is possible to implement the services of the multi-layered
PI architecture, using the chosen technology stack, with merely
7% loss of data throughput performance under realistic load
onditions when fetching image tiles. While there is potential
or further improvements, the performance characteristics are
cceptable for the current state of the platform reference imple-
entation and the early adoption phase. Although a usability test
as not yet been conducted, usability of the WSI viewer built into
he Workbench Client does not seem to be negatively affected in
ractice. Furthermore, Section 3.4 demonstrates the flexibility of
he architecture, such that the advantages outweigh the reduction
n performance.
219
4.2. Limitations

On the one hand, the EMPAIA App Interface clearly specifies
the integration of AI apps. On the other hand, the integration
of the platform into clinical systems is much more diverse and
a large variability of different systems has to be considered.
Section 3.5 describes how a combination of open source compo-
nents from the platform reference implementation and custom
software adapters can enable a quick shallow integration with
existing infrastructures. Although the integration approaches are
currently being discussed with third-party clinical system ven-
dors, a first practical implementation is still pending. Further-
more, the shallow integration approach is only a first step and a
full integration using only certified medical device software must
be achieved for unconditional routine usage of AI apps.

When defining APIs that are implemented and used by mul-
tiple parties, it is crucial to maintain compatibility even if new
features are added to the platform and errors are being fixed.
While each App uses a certain API version, systems might have
to provide different API versions for different Apps to connect.
A platform versioning strategy that allows APIs to evolve and
features to be added, while not imposing a huge burden on
system providers in terms of maintainability, is yet to be specified
and discussed with all stakeholders. In addition, API versioning
impacts the App validation and certification process that requires
certain stability guarantees.

Section 3.5 describes the implementation of DICOM WSI file
support. The WSI Service API endpoints are an abstraction layer
to retrieve image data and associated metadata from DICOM and
other proprietary WSI file formats, that are addressed as different
data sources using plugins in the service backend. The decision to
not directly serve DICOMweb endpoints is clearly justified by the
heterogeneous landscape, but begs the question how the EMPAIA
API can evolve, when DICOM finally becomes the norm. The
project closely tracks the standardization efforts and must find
suitable solutions to properly integrate DICOM into the EMPAIA
APIs in the future.

The evaluation of data throughput performance presented
here is limited to a reference implementation. Components of
third-party implementations might have smaller or larger over-
head due to streaming data through multiple API layers and might
implement the Medical Data Service differently, necessitating
dedicated performance measurements. Moreover, the evaluation
is limited to accessing image data, further benchmarking will be
needed: can image analysis apps store their output (e.g., large
number of annotations) sufficiently fast and is the overall usage
including running image analysis sufficiently fast, also under high
load conditions? Such performance analyses depend on the image
analysis apps and on the hardware setup (in particular network
speed between the involved servers) at the respective site using
the platform, and are beyond the scope of the present study.

4.3. Outlook

The development of the EMPAIA platform is still ongoing.
Additional use cases, that will be covered in later versions of
the platform, are the integration of a billing system, as well
as an app validation and certification process (R1 and R11 in
Section 1.4). Furthermore, the requirement to allow the automatic
pre-processing of WSIs from a scan pipeline is not fulfilled yet
(R10 in Section 1.4). Substantial gains in diagnostic efficiency
can be expected if analyses are already finished or image quality
issues have already been resolved when a pathologist first opens
a case for diagnosis. A corresponding concept that allows apps
to be used in different processing modes has been specified and
improved based on feedback provided by third-party vendors.
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The development process is currently ongoing and the feature
will be released as part of the EATS (see Section 2.5) soon.

The Workbench API is currently being revised to support ex-
ernal UI modules (App UI) that ship with apps to enable custom
nteractions for app parameterization and result visualization. Six
pp vendors are currently adapting their apps and web UIs to
ntegrate with this new API. All vendors will provide feedback
nd first prototypes until the end of the year. The results will
e part of a future publication dedicated to the Workbench API
nd App UI concepts. Furthermore, on-premises deployments
nd integration approaches are being discussed with reference
enters and clinical software vendors.
Satisfactory performance is only one aspect of an assessment

hether the presented platform architecture is suitable for rou-
ine use and enables interoperability of digital pathology infras-
ructure systems and image analysis apps. Like other desirable
roperties such as flexibility, modularity, openness, and scala-
ility, these aspects cannot be quantified in a meaningful way.
nstead, usability studies are planned once infrastructure systems
nd image analysis apps have been integrated. These studies will
nvolve different stakeholder groups (pathologists/end users, IT
echnicians at pathology labs, infrastructure system developers,
mage analysis app developers) in order to evaluate to what
xtent the EMPAIA platform lives up to required and desirable
roperties. Moreover, a comparison of user and developer expe-
ience to other platforms would be interesting, and should ideally
e performed by an independent group. An important aspect for
he acceptance of AI solutions in clinical use is the possibility for
athologists to get some insight into why an app has obtained a
ertain score for a given image [54]. Providing such explainability
f algorithmic results is mostly a task of the individual app, but
lso requires support by the platform: it is already possible to
isplay intermediate results, e.g., detected cells or tumor areas,
y storing and retrieving geometric annotations (requirement R9,
ection 1.4) via the Medical Data and Workbench APIs. Handling
f suitable data representations for, e.g., saliency maps or more
dvanced explainability approaches will be included in the future.
Obtaining regulatory approval is an important step for med-

cal software before it can be used in clinical routine [8]. App
alidation can only be successful if the underlying infrastruc-
ure is targeting the same quality standard. However, obtaining
egulatory approval is more than a technical challenge. There-
ore, the EMPAIA Consortium also aims to support vendors to
ollow best practices in medical device software development
nd documentation, with the initial validation and certification
f new solutions, as well as the mandatory post-market surveil-
ance for gathering clinical performance data and problem reports
55,56]. For this purpose, strict processes and supporting platform
omponents are yet to be defined.

. Conclusion

The EMPAIA Consortium aims to launch a sustainable ecosys-
em based on open and well-defined APIs connecting all rele-
ant stakeholders in the digital pathology landscape. We here
escribed the open and modular architecture of the EMPAIA
latform and how its components can be used for previously
dentified use cases and how an integration with clinical in-
rastructures can be achieved. The first implementation already
eets most of the identified requirements and will be evaluated
t different reference centers, while development is ongoing.
nce enough stakeholders use the platform, it can help accelerate
he adoption of image processing and AI solutions in routine
aboratory diagnostics.
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Appendix A. Full list of empaia platform use cases

The original use cases contained in Table A.2 refer to the use
cases presented in Section 1.4, where two original use cases have
been joined to use case 2 (Section 1.4).

Appendix B. HTTP request sequence of a simple AI app

Fig. B.5 shows an exemplary HTTP request sequence of a very
simple AI app, using the App Service in the platform reference
implementation with the underlying Medical Data Service and its
microservices. As soon as the app is initialized, it connects to the
App API. In this case it fetches a Region Of Interest (ROI), which
is a geometric annotation of type Rectangle, Polygon, or Circle. It
is specified by a pathologist using drawing tools in a client-side
WSI viewer. The ROI refers to the ID of the corresponding WSI,
that is also part of the job’s data input. The corresponding meta
data (e.g., pixel resolution) are fetched by the app. This simple
app detects the location of cells in the tissue and marks them in
the form of Point annotations with pixel coordinates in the WSI’s
coordinate system. All annotations are stored in a collection that
is created before the actual processing starts and new annotations
are added to the collection with every processing iteration. The
app only processes the image data located inside the ROI. In a
loop, the app fetches all image tiles located in the ROI one by
one. Each image tile is fetched via the API and processed by an
algorithm to calculate cell locations. The resulting annotation ob-
jects are added to the collection using API requests. Note that the
loop for fetching WSI tiles, processing the image data, and writing
output annotations could be implemented using concurrent data
IO while processing to reduce idle times. In the end, the job is
finalized, such that all created data elements are implicitly locked
to be immutable and the job status is updated. The app process
then terminates itself. All mentioned data types are also briefly
described in Section 2.2.2.
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Table A.2
Original use cases defined by the EMPAIA Consortium and selected key use cases. Key use cases, that are not marked as work in progress (WIP), have been aggregated
and are being presented in this publication.
Original use cases User groups Key use cases

Use App for diagnostics Pathologist Use case 1
Use App in research/education Researcher, tutor, student
Buy App Pathologist, lab. manager/director
Create/extend data set Pathologist
Conduct study (collect and evaluate data) Researcher, pharmacist
Train AI model Researcher, software engineer
Upload App to marketplace Researcher, software engineer WIP
Upload AppUI to marketplace Researcher, software engineer WIP
Update App in marketplace Researcher, software engineer
Update AppUI in marketplace Researcher, software engineer
Request clinical validation of an App Researcher, software engineer
Perform clinical validation of an App EMPAIA validator
Upload WSIs Medical technical assistant, automation pipeline
Register user account All users Use case 2
Register organization Lab./company manager Use case 2
Administration of users, data etc. EMPAIA administrator
Automatic preprocessing for diagnostics Automatic pipeline WIP
Creating an ad-hoc App with a generic AppUI Researcher, tutor, student
Publishing a research-grade App (for reference in publications) Researcher
Providing quality management services for clinical validation EMPAIA validator, external certifier
Beta testing and feedback from pathologist Company manager, software engineer
Billing and reimbursement Company manager
Display aggregated usage data Company manager WIP
Presentation of all Apps in the marketplace All users Use case 3
Testing App before buying Researcher, pathologist
Removing organization access/roles Lab. manager
Delete user account All users
Appendix C. Evaluation of data throughput performance when
accessing image data

C.1. Test setup

In order to evaluate the overhead added by multiple API layers
n the platform architecture, simple data throughput performance
ests were executed. For this purpose, a Python script was im-
lemented that requests 500 different image tiles from a single
SI (Mirax format) using the aiohttp library in a single process.
ach tile is 256 × 256 pixels in size, using the JPEG format with a
ean tile size of 20.91 KiB (min: 1.61 KiB, max: 43.11 KiB, total:
0.21 MiB). The time it takes to request all 500 tiles is measured
0 times (trials). The script is executed on a desktop computer
nd connects to the platform services deployed on a remote
irtual Machine (VM) with 16 CPU cores (Intel

®
Xeon

®
Gold 6154

PU @ 3.00 GHz) and 64 GB RAM. The network throughput from
he desktop to the VM was measured as 940 Mb/s (wget down-
oad of a 1GiB random binary file via HTTPS served by nginx).
he number of processes assigned to the FastAPI services in total
s always lower than the number of VM CPU cores during all
xperiments, such that the number of cores is not a limitation.
ll experiments use an nginx HTTPS reverse proxy in front of the
PI services. All services, except for the nginx reverse proxy, are
eployed with docker-compose.
In Experiment 1a, the 500 requests are executed concurrently,

nly limited by aiohttp’s default pool size of 100 connections.
irst, the requests are sent directly to the WSI Service for 20
rials, where the number of uvicorn workers (Section 2.1.2) is
imited to 1. Then the trials are repeated with 2, 3 and 4 worker
rocesses. In Experiment 1b, the requests are sent to the Medical
ata Service with 1, 2, 3, and 4 workers. The Medical Data Service
treams the data from the WSI Service running in the background
sing 4 workers. In Experiment 1c, the requests are sent to the
orkbench Service with 1, 2, 3, and 4 workers. The Workbench

ervice streams the data from the Medical Data Service using 4
orkers, which itself connects to the WSI Service with 4 workers.
221
These experiments demonstrate how the platform architecture
scales for parallel requests and how much overhead is added
by the API layers. Experiment 2 uses a setup of 4 Workbench
Service, 4 Medical Data Service and 4 WSI Service workers, but
enables the OAuth2 authentication for all connections from the
client to the Workbench Service and from the Workbench Service
to the Medical Data Service. Experiment 3 uses a setup of 1
Workbench Service, 1 Medical Data Service and 1 WSI Service
worker. In this case, a semaphore is used in aiohttp to limit the
number of requests sent by the client’s test script to one at a
time. By omitting the concurrency, it is possible to gain a better
understanding of the latency that is added by each API layer for
individual requests. Results are reported in Appendix C.2.

C.2. Test results

Fig. C.6 shows the results of experiments 1a, 1b, and 1c, where
the WSI Service, the Medical Data Service and the Workbench
Service were targeted by the test script, respectively. As described
in Appendix C.1, each service was run with 1, 2, 3, or 4 workers
to demonstrate the scaling. As demonstrated, the WSI Service
benefits heavily from a larger number of workers (w) to improve
the trial duration for loading 500 tiles (WSI Service, w = 1:
6.71 ± 0.16 s (trial mean ± standard deviation); WSI Service,
w = 4: 2.14 ± 0.10 s). This is explained by the fact that even
though the FastAPI service uses asynchronous service handlers,
the low-level image access functions of OpenSlide are blocking
(synchronous) while they are waiting for storage IO operations.
This could be improved in the future by developing a proper
async wrapper for the OpenSlide plug-in. The Medical Data Ser-
vice and Workbench Service experiments (1b and 1c) only show a
slight performance increase with multiple workers because they
already use the asynchronous http client library aiohttp that does
not block during network IO operations, to stream the image
tiles. The mean trial duration, 2.14 s, of targeting the WSI Service
(experiment 1a) with 4 workers is now used as a baseline for the
experiments 1b and 1c. Targeting the Medical Data Service with
4 workers adds an overhead of 6% (MDS, w = 4: 2.26 ± 0.08 s)
over the WSI Service. Targeting the Workbench Service, with the
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Fig. B.5. As soon as an app container is initialized, the app process is able to connect to the App Service using a token-based authentication. Job ID, job token and
App API URL are provided to the app container in the form of environment variables.
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Fig. C.6. Performance characteristics of web request round-trip times when
equesting image tiles, while targeting different API layers. Experiment 1a targets
he WSI Service (WSI) directly with a differing number of worker processes
nabled. Experiment 1b targets the Medical Data Service (MDS) as an abstraction
ayer over the WSI Service and experiment 1c targets the Workbench Service
WBS) as an additional abstraction layer over the Medical Data Service.

edical Data Service as a proxy between Workbench Service
nd WSI Service, adds a total overhead of 12% (WBS, w = 4:
.41 ± 0.08 s) over the WSI Service.
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Experiment 2 (not shown in Fig. C.6) again uses a setup with
workers for each of the services. In contrast to experiment

c, OAuth2 is enabled for client-to-service and service-to-service
uth. The total overhead added by this setup is 17% (Workbench
ervice with OAuth2, w = 4: 2.50 ± 0.07 s) over the WSI Service

with 4 workers.
Experiment 3 (not shown in Fig. C.6) is similar to the previous

setups but does not allow concurrent client requests in the test
script. When targeting the WSI Service with one request at a
time, each request round trip on average takes 21.49 ms (WSI
Service, w = 1: 21.49 ± 0.42 ms). Targeting the Medical Data
Service in the same way adds an overhead of 12% (Medical Data
Service, w = 1: 24.08 ± 0.53 ms). Targeting the Workbench
Service in total adds an overhead of 24% (Workbench Service,
w = 1: 26.74 ± 0.61 ms). Enabling OAuth2 in the platform adds
a total overhead of 31% (Workbench Service with OAuth2, w = 1:
28.07 ± 1.05 ms) over the WSI Service.
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