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A B S T R A C T   

Transcriptomics, which encompasses assessments of alternative splicing and alternative polyadenylation, iden-
tification of fusion transcripts, explorations of noncoding RNAs, transcript annotation, and discovery of novel 
transcripts, is a valuable tool for understanding cancer mechanisms and identifying biomarkers. Recent advances 
in high-throughput technologies have enabled large-scale gene expression profiling. Importantly, RNA expression 
profiling of tumor tissue has been successfully used to determine clinically actionable molecular alterations. The 
WINTHER precision medicine clinical trial was the first prospective trial in diverse solid malignancies that 
assessed both genomics and transcriptomics to match treatments to specific molecular alterations. The use of 
transcriptome analysis in WINTHER and other trials increased the number of targetable -omic changes compared 
to genomic profiling alone. Other applications of transcriptomics involve the evaluation of tumor and circulating 
noncoding RNAs as predictive and prognostic biomarkers, the improvement of risk stratification by the use of 
prognostic and predictive multigene assays, the identification of fusion transcripts that drive tumors, and an 
improved understanding of the impact of DNA changes as some genomic alterations are silenced at the RNA 
level. Finally, RNA sequencing and gene expression analysis have been incorporated into clinical trials to identify 
markers predicting response to immunotherapy. Many issues regarding the complexity of the analysis, its 
reproducibility and variability, and the interpretation of the results still need to be addressed. The integration of 
transcriptomics with genomics, proteomics, epigenetics, and tumor immune profiling will improve biomarker 
discovery and our understanding of disease mechanisms and, thereby, accelerate the implementation of precision 
oncology.   

1. Background 

Recent advances in technology have improved our understanding of 
carcinogenesis and led to the discovery of novel therapeutic targets. 
Precision oncology combines data from tumor genomic profiling, cell- 
free DNA assays, proteomic and immune profile analyses, and assess-
ments of other markers to individualize treatment according to unique 
patient and tumor characteristics [1,2]. Artificial intelligence and 
innovative clinical trial designs, including adaptive and N-of-1 trials, 

hold promise to accelerate the collection, analysis, and application of 
data on predictive biomarkers and novel targeted agents [3,4]. Until 
recently, precision oncology focused mainly on genomic profiling of 
tumors [5,6]. Advances in next-generation sequencing (NGS) technolo-
gies have enabled the time- and cost-efficient incorporation of genomics 
into daily clinical practice. Several precision oncology trials have 
demonstrated the clinical significance of genomics in identifying mo-
lecular alterations that are successfully targeted by novel treatments [3, 
4,6–9]. Comprehensive gene panels are currently being used to identify 
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molecular therapeutic targets and prognostic and predictive biomarkers, 
and prospective clinical trials are assessing the value of molecular 
testing in treatment selection across tumor types [10–19]. 

Despite this significant progress in the implementation of precision 
oncology, several challenges need to be addressed in clinical research 
and practice. First, it is critical to enhance our knowledge of tumor 
biology, the mechanisms of carcinogenesis, and driver alterations to 
improve our ability to identify robust prognostic and predictive bio-
markers. Additionally, to date, only a few molecular alterations have 
been successfully targeted by novel agents [20–23]. Many of these al-
terations are rare, and a large number of patients need to be screened to 
identify a single potential therapeutic target [24]. Indeed, the propor-
tion of patients who are matched to therapy in precision oncology trials 
generally ranges from 5% to 50 % and often depends on whether the 
study is conducted in a specialized clinic with access to novel agents, 
off-label drug use, timely molecular profiling, and the expertise of 
clinical trial leaders in genomics [3–7,24–31]. Therefore, our under-
standing of cancer complexity dictates that additional precision 
oncology methodologies need to be incorporated to enhance 
patient-treatment matching and prevent the development of treatment 
resistance. 

Transcriptomic analyses have been included in precision oncology 
trials only recently and infrequently (Table 1) [7,32–34]. Tran-
scriptomics refers to the study of all the RNA transcripts in a cell pop-
ulation, typically by using high-throughput technologies, namely 
microarrays and RNA sequencing (RNA-seq) [35]. In contrast to analysis 
of DNA sequencing data, the assessment of RNA status and measurement 
of transcripts can correlate gene expression with biologic activity and 
cellular status (Table 2) [32–34,36–64]. Gene expression, in turn, is 
influenced by genetic and epigenetic factors, such as DNA methylation 
and histone modifications. Early results of clinical trials suggest that 
transcriptomic analysis can increase the number of patients matched to 
drugs [7]. Therefore, transcriptomics is a potentially valuable, though 
underused, technique for unraveling the underlying mechanisms of 
cancer and moving towards the implementation of precision oncology. 

2. History 

Early methods to assess gene expression included Northern blotting, 
reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), 
and sequencing of short nucleotide arrays (expressed sequence tags) that 
were generated from complementary DNAs (cDNAs). However, these 
methods were developed to evaluate limited numbers of transcripts and 
are inadequate for comprehensive RNA profiling. Subsequently, serial 

analysis of gene expression [65] and DNA microarrays enabled the 
analysis of large-scale gene expression arrays [57,66–68]. With micro-
arrays, investigators can quickly assess the expression levels of thou-
sands of genes simultaneously. Comprehensive profiling of tumor 
samples, normal tissues, and cancer cell lines yielded a large volume of 
transcriptomic data. Dedicated databases were developed to store gene 
expression datasets that were made publicly available to allow their use 
by other investigators [69,70]. Examples of the implementation of gene 
expression analysis in clinical practice include the commercially avail-
able MammaPrint and Oncotype DX assays, which are used to assess 
prognosis and/or select treatment in patients with breast cancer [51,71]. 

3. Transcriptome biology 

3.1. Dynamic nature of the transcriptome 

In multicellular organisms, the same genes, and thus the same 
genome, are found in almost every cell. Not every gene is transcrip-
tionally active in every cell, however, and different patterns of gene 
expression appear in different types of cells. In addition, multiple RNA 
variants can be produced by a single gene owing to alternative splicing, 
RNA editing, or alternative transcription initiation and termination 
sites. The total transcriptional activity, that is, the full range of RNA 
molecules expressed, is reflected in the transcriptome of an organism. 
The transcriptome can be represented as the percentage of the genetic 
code that is transcribed into RNA molecules, which is estimated to be 
less than 5% of the genome in humans [72]. In contrast to the genome, 
the transcriptome changes in response to cellular cues. Indeed, an or-
ganism’s transcriptome varies dynamically depending on many factors, 
including environmental conditions and developmental stage. 

3.2. Epitranscriptomics 

Epitranscriptomics, also known as RNA epigenetics, describes the 
diverse posttranscriptional modifications occurring in cellular RNA. 
This dynamic processing occurs during RNA maturation under the 
regulation of RNA-binding proteins. To date, more than 150 types of 
RNA modifications have been identified, including RNA methylation 
and editing [73]. While the exact role of these modifications is still 
under investigation, studies have shown that it extends from maintain-
ing the structure of RNA to regulating critical cell systems and that 
disruptions in RNA processing are associated with various diseases, 
including cancer [74,75]. Research focusing on specific modifications 
has revealed associations between deregulation of RNA processing and 

Table 1 
Examples of precision medicine trials using transcriptome analysis: Design and outcomes.  

Year 
First/Last 
authors 

Trial name Trial type No. of pts 
consented 

Proportion of 
pts. matched 

Biomarker(s) Outcome Institute(s) Comments 

2019 [7] 
Rodon/ 
Kurzrock 

WINTHER Prospective, 
navigational 

303 35 % NGS, 
transcriptomics 

Higher matching scores 
correlated with longer 
PFS (P = 0.005) and OS 
(P = 0.03) 

5 countries 
(Spain, Israel, 
France, 
Canada, USA) 

First trial in solid 
tumors to include 
transcriptomics 

2018 [32] 
Weidenbusch/ 
Burdach 

PROVABES Prospective 20 45% Gene expression 
profiling 

Matched treatment was 
associated with 
improved OS (P =
0.001) and PFS (P =
0.0011) 

Germany Refractory 
pediatric sarcomas 

2016 [33] 
Worst/ 
Fleischhack 

INFORM Prospective 57 18% Whole-exome, 
RNA sequencing 

Feasibility of use of 
comprehensive 
molecular analysis to 
guide treatment 

20 centers, 
Germany 

Pediatric solid and 
hematologic 
malignancies 

2016 [34] 
Oberg/ 
Kung 

PIPseq Retrospective 
review of 
prospectively 
recruited pts 

101 16% Whole-exome, 
RNA sequencing 

Potentially targetable 
genomic alterations 
were identified in 38/ 
101 (38%) pts 

Columbia 
University 
Medical 
Center, USA 

Pediatric solid and 
hematologic 
malignancies 

Abbreviations: NGS = next-generation sequencing, PFS = progression-free survival, OS = overall survival, pts = patients. 
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cancer progression, aggressive tumor behavior, and deregulated cellular 
processes [76,77]. Given the oncogenic nature of these modifications, 
their regulators could be targeted for novel therapies. 

3.3. Functional uses of transcriptomics  

3.4. Identification of therapeutic targets 

Transcriptomic data have been incorporated into many different 
tumor molecular profiles to increase the number of targetable molecular 
alterations and provide additional therapeutic options to patients with 
advanced cancer [7,32–34,78,79]. In one study, gene expression 
profiling of longitudinally collected primary breast tumors and meta-
static lesions identified several highly targetable genes [78]. Adminis-
tration of therapeutic agents against these alterations in patient-derived 
xenograft models led to a statistically significant antitumor response vs. 

controls. In another study of 1049 children and young adults with de 
novo acute megakaryocytic leukemia, RNA-seq revealed druggable tar-
gets[79]. Importantly, in our WINTHER precision medicine clinical trial, 
which prospectively assessed both genomics and transcriptomics in 
diverse solid malignancies, the use of transcriptomic analysis increased 
the number of targetable -omic changes by a third over NGS [7]. 

3.5. Detection of gene fusions 

Conventional cytogenetic analyses, including fluorescence in situ 
hybridization and RT-qPCR, have been widely used for fusion gene 
detection. However, these methods are designed to discern the presence 
of specific known gene fusions, not identify novel ones. Newer tech-
niques and algorithms have been developed for the performance of 
wide-scale RNA-seq to detect novel gene fusions [38–40]. 

3.6. MicroRNA sequencing 

Transcription is the process by which individual genes are copied 
into RNA molecules to build the transcriptome. The translation of these 
RNA molecules into proteins constructs the proteome. The RNA content 
of a cell includes coding and noncoding RNA. The coding RNA, which 
makes up the transcriptome, consists of messenger RNAs (mRNAs). The 
noncoding RNAs primarily include ribosomal RNAs (rRNAs), which are 
components of ribosomes (the structures on which protein synthesis 
takes place), and transfer RNAs (tRNAs), which are small molecules that 
are involved in protein synthesis by carrying amino acids to the ribo-
some and ensuring that they are linked together in the order specified by 
the nucleotide sequence of the mRNA that is being translated into a 
protein. In addition to rRNAs and tRNAs, short regulatory non-coding 
RNAs, including piwi-associated RNAs, endogenous short-interfering 
RNAs, and microRNAs (Fig. 1), have received significant attention due 
to their role as regulators of gene expression. 

3.7. Regulation by microRNAs 

Over the past decade, several studies have focused on revealing the 
microRNA (miRNA) repertoire [80–83]. These small non-protein-coding 
RNA molecules (18–25 nucleotides) are capable of controlling gene 
expression by binding to mRNA targets, thus interfering in the final 
protein output. MiRNAs have been recognized as major regulators of 
biological features including proliferation [84,85], migration [86], and 
apoptosis [87]. MiRNA profiling has been successfully used to molecu-
larly classify tumors [88,89], to assess the prognosis of patients with 
different tumor types [90–92], and to predict the development of 
resistance to treatments [93–95]. MiRNAs and miRNA mimics are 
currently being evaluated in clinical trials as therapeutic agents 
(NCT02369198, NCT01829971, NCT02580552). Intriguing data have 
emerged from the study of circulating miRNAs. Studies show that 
miRNAs, encapsulated in exosomes, are released from cells and can be 
detected in biological fluids [96,97]. The noninvasive assessment of 
circulating miRNAs is an appealing approach for disease monitoring and 
diagnosis. Several studies are investigating the role of circulating miR-
NAs as cancer diagnostic and prognostic biomarkers [98]. 

3.8. Noncoding RNA sequencing 

In addition to miRNAs, gene expression profiling can reveal other 
molecular elements, including other noncoding RNAs. Noncoding RNAs 
are transcribed from non-protein-coding regions of the genome and have 
a wide range of regulatory functions [99,100]. Depending on their 
transcript size, they are categorized as small (< 200 bp) or long non-
coding RNAs (lncRNAs; > 200 bp, up to ~100 kb). Noncoding RNAs 
have been shown to play an important role in cancer, and noncoding 
RNA expression profiling has diagnostic, prognostic, and predictive 
value in patients with solid and hematologic malignancies [36,101]. 

Table 2 
Functional implications of transcriptomics.  

Implication Description Examples/References 

Identification of 
therapeutic targets 

Identify actionable 
molecular alterations 
using RNA-seq and 
navigate to therapy based 
on the result 

WINTHER trial [7,32,33, 
34] 

Detection of gene 
fusions 

Detect a hybrid gene 
formed from 2 different 
genes as a result of 
chromosomal 
rearrangements 

Targeted RNA-seq for 
fusion gene detection [37, 
38,39,40,41] 

Transcript annotation Discover novel transcripts Annotating genomes [42, 
43] 

Regulation by miRNA 
sequencing 

Explore the role of miRNA 
in mRNA regulation 

miRNA role in mechanisms 
of tumorigenesis and as 
prognostic and predictive 
biomarkers [44,45,46,47] 

Influence of noncoding 
RNA sequencing 

Explore the role of 
noncoding RNA molecules 
in mRNA regulation 

Noncoding RNA molecules 
as diagnostic, prognostic, 
and predictive biomarkers 
[36,48] 

Use of prognostic gene 
expression signatures 

Identify gene expression 
signatures used to assess 
patient prognosis 

Oncotype DX, [49,71] 
MammaPrint [50,51] 

Use of predictive gene 
expression signatures 

Identify gene expression 
signatures used to assess 
the benefit from 
treatments 

Oncotype DX [49,71] 

Identification of tissue 
of origin for cancer of 
unknown primary 
(CUP) 

Identify the primary 
tumor site using gene 
expression profiling 

Transcriptome-based 
prediction of primary 
tumor in patients with CUP 
[52,53,54,55,56] [120], 

Understanding of 
tumor heterogeneity 

Use gene expression 
profiling to identify 
intrinsic cancer subtypes 

Tumor classification into 
subtypes [57,58,59] 

Interrogation of 
biomarkers for 
immuno-oncology 

Use immune cell profiling 
to explore mechanisms of 
immune escape and 
identify immune cell 
phenotypes 

Transcriptomics in cancer 
immunotherapy [60,61, 
62] [157,158], 

Silencing of the 
transcriptome 

Understand genomic 
alterations that are 
silenced at the transcript 
level 

Identification of 
discrepancies between 
DNA molecular alterations 
and RNA expression and 
effect on therapeutic 
resistance [142] 
Silencing may also be 
exploitable for therapeutic 
purposes 

Interrogation of 
expression levels 

Understand differences 
between amplified and 
expressed genes 

Gene amplification is not 
always associated with 
increased gene expression 
[64]  
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Recent studies show that circulating noncoding RNA levels in body 
fluids (eg, serum, urine) differ between individuals with and without 
cancer [101–104]. These data suggest that noncoding RNAs could be 
used as diagnostic biomarkers in cancer screening. Other investigators 
have shown that profiling of noncoding RNAs has prognostic utility in 
patients with cancer [36,101]. Finally, studies are currently evaluating 
the role of circulating noncoding RNAs in predicting response or resis-
tance to various treatments. Preliminary data suggest that this approach 
might provide useful insights with which to identify patients who are 
likely to have a response to therapy [105–108]. The clinical appeal of 
the use of noncoding RNAs and miRNAs as biomarkers is that they can 
be obtained noninvasively via liquid biopsies. However, the clinical 
utility of these approaches has yet to be prospectively defined and 
validated. 

3.9. Prognostic gene expression signatures 

Several studies have evaluated the presence of prognostic bio-
markers through transcriptomic analysis. Gene expression signatures are 
alterations in the expression of single genes or sets of genes with a 
validated association with disease prognosis, therapeutic benefit, or 
cancer diagnosis. Despite recent technological advances, robust molec-
ular prognostic biomarkers are still lacking in clinical practice. As a 
result, there is a great need to improve risk assessment in patients with 
cancer in order to identify patients at high risk of recurrence or death. 
When identified, these patients might be treated more aggressively or 
with different therapeutic strategies. 

To improve risk stratification, prognostic multigene assays have been 
developed and validated in lung [109], breast [51,57,110], colon [111, 
112], and other tumor types [113–117]. These gene expression signa-
tures provide prognostic information independently of clinicopathologic 
features and have been shown to improve the stratification of patients 
based on risk of recurrence. However, only a few, such as Oncotype DX 
in breast cancer, are recommended in international patient management 
guidelines for use in clinical practice to predict whether a patient is 
likely to have a recurrence of the disease [71]. Future studies might 
reveal the prognostic value of additional gene expression signatures in 
different tumor types. 

3.10. Predictive gene expression signatures 

Other studies have employed transcriptome analysis to identify gene 
expression signatures that can predict response to specific cancer ther-
apies [118,119]. However, only a small number of predictive signatures 
have been validated in prospective randomized clinical trials. Therefore, 
only a few gene expression signatures with verified clinical validity are 
used in daily practice. For instance, the validated predictive model 
Oncotype DX is often used in patients with hormone-receptor–positive, 
human epidermal growth factor receptor type 2–negative, early-stage 
breast cancer to predict benefit from adjuvant chemotherapy [71]. It 
is critical that these signatures are robust, highly reproducible, and 
validated in diverse populations beyond the tightly controlled envi-
ronment of clinical trials. 

3.11. Classification of cancer of unknown primary 

Transcriptomics holds promise as an additional tool for the accurate 
classification of cancer of unknown primary (CUP). Several investigators 
have explored gene expression profiles and revealed biomarkers indic-
ative of the origin of the tumor in patients with CUP [52–56,120]. In one 
study, transcriptome analysis of 16 674 tumors corresponding to 22 
tumor types revealed a 154-gene expression signature that aided the 
identification of tumor origin [120]. Independent validation of the 
signature was successfully performed using 9626 primary tumors. In 
another study, a cancer type classifier was developed using gene 
expression data from more than 10 000 tissue samples from 30 tumor 
types [56]. The accuracy of the classifier was high (77 %–88 %) and 
varied according to the primary tumor type, the purity of the tumor 
sample, and the site of tumor tissue (primary or metastatic). Finally, 
computational algorithms have been employed to mine RNA expression 
datasets and identify diagnostic classifiers [55]. Gene expression 
profiling can be incorporated into diagnostic algorithms for patients 
with CUP to increase rates of accurate classification and improve un-
derstanding of patients’ prognoses. However, in randomized trials, 
treating CUP according to tissue-of-origin signatures did not effectively 
improve outcomes [121,122]. 

Fig. 1. Noncoding RNAs. The role of noncoding RNAs in cancer diagnosis, prognosis, prediction of response to cancer therapy and disease monitoring is currently 
under investigation. MicroRNAs (miRNAs) are noncoding RNAs that play an important role as regulators of gene expression. A primary miRNA transcript is cleaved 
by the microprocessor complex Drosha-DGCR8 in the nucleus. The resulting pre-miRNA is exported from the nucleus. In the cytoplasm, Dicer cleaves the pre-miRNA 
hairpin to its mature length. The mature miRNA is loaded into the RNA-induced silencing complex (RISC), where it guides RISC to silence target mRNA through 
mRNA degradation or translational repression. 
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3.12. Assessment of tumor heterogeneity 

Investigators exploring the intratumor heterogeneity of renal tumors 
(primary and corresponding metastatic sites) demonstrated that tumors 
are not only genomically but also transcriptomically heterogeneous 
[123]. Specifically, they showed that gene expression signatures sug-
gestive of good and poor prognoses can be identified within the same 
tumor. Others explored tumor heterogeneity between foci of multifocal 
or multicentric invasive lobular breast carcinoma and observed heter-
ogenous transcriptional profiles in expression analysis of 730 genes 
[124]. More recently, studies have incorporated single-cell RNA-seq 
methods to explore tumor heterogeneity in detail [59,125–127]. 

3.13. Prediction of response to immuno-oncology 

Despite unprecedented improvement in patient outcomes by the use 
of immune checkpoint inhibitors, mechanisms of resistance significantly 
limit the benefit from these treatments. Several genomic alterations are 
being evaluated as predictive biomarkers for immunotherapy 
[128–132]. 

In recent studies, RNA-seq and gene expression analysis have been 
incorporated to predict responsiveness to immunotherapy. In 1 study, 
analysis of the genome and transcriptome of melanoma tissue samples 
identified biomarkers that predicted response to anti-PD-1 therapy 
[133]. In addition, transcriptomic profiles suggested that innate tumor 
resistance to anti-PD-1 immunotherapy was associated with mesen-
chymal and inflammatory tumor phenotypes [133]. In a study of met-
astatic melanoma tumors, gene expression profiling showed that tumors 
with PTEN loss had lower expression of inflammation-related genes, 
suggesting that PTEN loss could be associated with resistance to 
immunotherapy [134]. Other studies identified gene expression profiles 
associated with response or resistance to immunotherapeutic agents 
[135,136]. Transcriptome analysis has also been used to study how the 
tumor microenvironment evolves after treatment with immunotherapy 
[137], as well as tumor immune heterogeneity136] and tumor immune 
classification [138]. 

3.14. Transcriptomic silencing 

Gene expression silencing is a mechanism of transcriptional regula-
tion in mammalian cells. It is mediated by RNA interference (RNAi), in 
which a small noncoding RNA associates with RNA-induced silencing 
complex and degrades target mRNAs [139]. Gene silencing is seen with 
exogenous (e.g., viral, bacterial) and endogenous (e.g., transgene, 
transposon) sequences. In addition, RNAi is involved in the regulation of 
gene expression and other biologic processes. Transcriptomic silencing 
is used in combination with gene expression profiling to identify novel 
biomarkers and therapeutic targets [140]. For instance, in 1 study of 
9873 prostate tissue samples, gene expression profiling revealed 295 
genes that had high mRNA expression in prostate cancer samples. An 
RNAi-based cell viability assay was incorporated to demonstrate the role 
of gene silencing in prostate cancer cell lines, and silencing of a candi-
date gene (ERGIC1) led to inhibition of ERG mRNA expression and 
decreased proliferation of ERG-positive prostate cancer cells [140]. 
These data suggested that ERG could be tested as a candidate drug 
target. 

RNAi-mediated gene silencing is an appealing approach for use in 
cancer treatment because it can silence oncogenes and other driver 
genes involved in cancer cell proliferation, the cell cycle, and tumor 
progression. In this vein, clinical trials are currently evaluating the 
clinical benefit from the use of short interfering RNA (siRNA)-based 
treatments in patients with cancer. PROTACT is a phase II trial assessing 
the clinical utility of siG12D LODER in combination with chemotherapy 
in patients with locally advanced pancreatic cancer (NCT01676259). In 
this study, siG12D LODER, a miniature biodegradable polymeric matrix 
that encloses siRNAs targeting G12D-mutated KRAS, is implanted in the 

tumor via endoscopic ultrasound. Published data from another phase I/ 
IIa trial evaluating the administration of siG12D LODER as first-line 
treatment (in combination with chemotherapy) in 15 patients with 
locally advanced pancreatic cancer showed that this therapeutic 
approach was safe and well tolerated [141]. Another phase I trial is 
evaluating the administration of a liposomal agent consisting of siRNAs 
against EphA2 that are encapsulated into 1,2-dioleoyl-sn-glycero-3--
phosphatidylcholine liposomes in patients with advanced cancer 
(NCT01591356). Both trials are currently recruiting patients. 

In addition, RNA-seq, along with NGS, has revealed transcriptomic 
silencing of DNA mutations in advanced cancers, which has important 
implications for resistance to targeted therapeutics. In a study of 45 
patients with cancer, 86 pathogenic DNA alterations were identified, 
including 17 (19.8 %) alterations that were not observed at the RNA 
level [142]. Among these patients, 31 % (14/45) had 1 or more DNA 
alterations that were not expressed at the RNA level. Examples of genes 
that had pathogenic DNA alterations not seen at the RNA level included 
ALK, KDR, and GNAS. On the other hand, alterations involving other 
genes, including TP53, PIK3CA, and FGFR3, showed 100 % concordance 
between DNA and RNA. This study concluded that a significant number 
of patients had DNA alterations that are silenced at the RNA level and 
that transcriptomic silencing merits additional investigation as a 
mechanism of therapeutic resistance. 

3.15. Interrogation of gene expression levels 

Gene amplification has frequently been described as a mechanism 
leading to carcinogenesis. Even though gene amplification would be 
expected to correlate with overexpression, there are cases where these 
phenomena are not associated [64]. In order to characterize a gene 
amplification as a “driver” alteration, overexpression is required. Gene 
expression profiling alone or in combination with copy-number varia-
tion (CNV) analysis is used to identify candidate driver genes for mo-
lecular therapeutic targeting [34,143,144]. In 1 study, investigators 
analyzed gene CNV and mRNA expression data from The Cancer 
Genome Atlas project. They identified 42 candidate cancer driver genes 
and validated their oncogenic activity via siRNA knockdown [143]. In 
another study, transcriptome and CNV analysis enabled the identifica-
tion of targetable molecular alterations as well as prognostic and diag-
nostic biomarkers [34]. Importantly, some studies suggest that the 
variability in normal transcript levels between tissues and between in-
dividuals means that cancer transcript expression levels must be 
compared to their normal-tissue counterparts for accuracy [7]. 

Novel bioinformatic approaches in large datasets are essential for 
exploring and describing the association of gene amplification and 
expression with mechanisms of carcinogenesis. Launched by the Na-
tional Institutes of Health in 2010, the Genotype-Tissue Expression 
(GTEx) Program aims to explore the association between genetic vari-
ants and gene expression [145] and consists of a tissue bank with mul-
tiple tissue samples from each donor along with whole-genome and 
RNA-seq data from approximately 960 deceased adult donors. This 
program provides publicly available data to the research community, 
which investigators can use in studies of mechanisms of gene regulation, 
genetic variation and its association with gene expression and disease 
risk, and novel methods of gene expression analysis [145,146]. 

3.16. Machine learning 

Machine learning, a subfield of artificial intelligence, has been 
playing an increasingly central role in biomedical and pharmaceutical 
sciences [147], primarily owing to the need to develop new tools to 
analyze the influx of complex, heterogeneous, and multidimensional 
biological datasets. Machine learning approaches can be used to detect 
key genomic and epigenetic features that can help classify patients who 
may have different responses to a drug. For this purpose, multiple 
feature-selection algorithms have been proposed, including filters (e.g., 
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Markov blanket filtering), wrappers (e.g., gradient-based-leave-one-out 
gene selection), and embedded techniques (e.g., block diagonal linear 
discriminant analysis). Next, a variety of established machine learning 
algorithms, including artificial neural networks, support vector ma-
chines, and decision trees can build predictive drug response models 
based on the features. As an example, a multilayer perceptron neural 
network can be trained to generate an output (e.g., whether the patient 
responds to targeted treatments) in response to a set of input variables 
(e.g., genetic variations). Most recent developments focus on deep 
learning methods, a subset of machine learning based on artificial neural 
networks. Currently, deep learning approaches hold significant promise 
as they are capable of unsupervised learning using data that are un-
structured or unlabeled [148], potentially addressing some of the 
inherent limitations of machine learning [149]. 

4. Transcriptomics in clinical trials 

The WINTHER trial was one of the first studies to incorporate tran-
scriptional analysis, in addition to genomics, in order to match patients 
with solid tumors to therapeutic agents (Table 1) [7]. WINTHER was an 
international clinical trial directed by the Worldwide Innovative 
Network for Personalized Cancer Medicine (WIN Consortium) and 
involved centers in 5 countries. The rationale for the trial was the need 
to expand the identification of predictive biomarkers beyond genomic 
aberrations. Therefore, a double biopsy of tumor (primary or metastatic) 
and normal tissue from each patient was performed after study enroll-
ment. Tissue was used for DNA analysis by NGS of 236 cancer-related 
genes. In addition, the study included gene expression analysis of 
matched tumor and normal tissue pairs. Transcriptional data were 
evaluated for treatment selection if genomic data generated no recom-
mended treatment option. The selection of targeted therapy using 
transcriptomic analysis occurred in a stepwise process as follows: gene 
expression analysis was performed on tumor tissue and paired normal 
samples from individual patients. Bioinformatic analysis was performed, 
and the differential expression of these genes in tumor versus analogous 
normal tissue was used to select treatment. Details for each overex-
pressed or under-expressed mRNA were provided, including gene fold 
changes, expression intensity, and type of molecular abnormality. Each 
alteration was evaluated as a potential match with a targeted agent on 
the basis of a knowledge database. The WINTHER database included 
information on the gene expression “targeting” and efficacy of both 
registered drugs and drugs evaluated in clinical trials. Treatment se-
lection was based on the recommendations of a clinical management 
committee. Finally, the trial evaluated the use of an exploratory 
matching score. The score, which was calculated in a post hoc, blinded 
fashion, was derived by dividing the number of molecular alterations 
that could be associated with a therapeutic agent by the total number of 
alterations (for DNA analysis) or by adding the reciprocal of the ranks of 
each matched drug received by the patient according to the WINTHER 
algorithm (for RNA analysis). 

Of 303 patients who consented, 107 (35 %) patients received 1 or 
more agents and were evaluable for analysis. Patients were heavily 
pretreated with a median of 3 prior therapies. Among the 107 evaluable 
patients, 15 % had stable disease for 6 months or longer, and 11 % had 
partial or complete responses. Having 2 or fewer previous therapies, an 
Eastern Cooperative Oncology Group (ECOG) performance status of 0, 
and a higher matching score were independently associated with longer 
progression-free survival. ECOG performance status of 0 and a higher 
matching score were also associated with longer overall survival on 
multivariate analysis. The WINTHER trial demonstrated that tran-
scriptomic analysis can be an indispensable tool for the navigation of 
treatment in selected patients. However, the analysis was complex and 
required bioinformatic expertise. 

Other clinical trials focusing on pediatric patients have matched 
therapies to molecular alterations identified by transcriptomic analysis 
[32–34]. In 1 study, gene expression profiling was performed in 20 

patients with refractory pediatric sarcoma to identify overexpressed 
genes and deregulated pathways that could be therapeutically targeted 
[32]. The actionable targets most commonly identified were TOP2A and 
FGFR1 upregulation. Nine of the 20 patients received a targeted therapy. 
Patients who received targeted treatments had higher overall (P =
0.0014) and progression-free (P = 0.0011) survival rates compared to 
patients who did not. 

The Individualized Therapy for Relapsed Malignancies in Childhood 
(INFORM) study used RNA sequencing in addition to whole-exome and 
low-coverage whole-genome sequencing in prospectively recruited 
children with high-risk relapsed or refractory malignancies [33]. An 
expert multidisciplinary panel prioritized the identified molecular al-
terations using a customized prioritization algorithm. The algorithm 
used a 7-step priority scale, ranging from “very low” to “very high,” 
based on the biological relevance, type of alteration, and potential 
druggability. Investigators created an internal database comprising 
genes considered to be potential therapeutic targets. Treatment was 
selected on the basis of physician choice. In the initial report of 52 pa-
tients, candidate targetable molecular alterations were identified in 26 
(50 %) of the patients, 10 of whom received the respective treatment. 
Even though patients were heavily pretreated, clinical responses were 
noted. 

The investigators recently reported updated results of the INFORM 
study. Of 1300 patients who were enrolled at 72 centers, 525 were 
included in the analysis [150]. A “very high-” or “high-” priority 
actionable target was identified in 8 % and 14.8 % of patients, respec-
tively. Patients who received targeted treatment had longer 
progression-free survival compared to patients who received 
non-targeted therapy (204.5 vs. 114 days, P = 0.0095), although no 
difference was noted in overall survival between the 2 groups. Patients 
who received treatment matched to a “very high-” priority target had 
higher time-to-progression ratios (time to progression before/time to 
progression after enrollment in INFORM) compared to the remaining 
patients. 

The clinical utility of molecular analysis in pediatric tumors was also 
demonstrated in the Precision in Pediatric Sequencing (PIPseq) Program 
study [34]. In this study, whole-exome and RNA sequencing were per-
formed in 101 patients with solid and hematologic malignancies. Mo-
lecular alterations (variant calls, copy number variations [CNV], 
fusions, and overexpressed genes) were initially reviewed by a multi-
disciplinary molecular tumor board comprising molecular pathologists, 
pediatric oncologists, medical geneticists, bioinformaticians, and cancer 
biologists. The final report included the following clinically relevant 
alterations: driver mutations, gain- or loss-of-function molecular alter-
ations in oncogenes and tumor suppressor genes, respectively, and fu-
sions known or expected to be oncogenic drivers. Investigators included 
“clinically meaningful” molecular alterations, used for diagnosis, prog-
nosis, treatment (as therapeutic targets), refinement of a therapeutic 
plan, and/or health maintenance interventions. On the basis of the level 
of evidence for clinical actionability [151], a tiered report of all clini-
cally relevant alterations was provided to the referring physician for 
treatment selection. Transcriptomic analysis identified diagnostic, 
prognostic, and predictive molecular alterations in 37 (57 %) of 65 
patients. Overall, 15 (23 %) patients received targetable therapeutic 
agents on the basis of sequencing findings. These studies serve as proof 
of concept showing that the use of comprehensive gene expression 
profiling in daily practice is feasible and provides useful diagnostic, 
prognostic, and predictive data. Targeted therapeutic agents can be 
matched to molecular alterations, providing clinical responses even in 
heavily pretreated patients. Finally, future prospective trials validating 
the clinical utility of this approach are warranted and should also 
address the cost, time burden, and inconsistent analysis of tran-
scriptomic data. Ongoing clinical trials are exploring the importance of 
transcriptomics in cancer therapy. 

A.M. Tsimberidou et al.                                                                                                                                                                                                                       



Seminars in Cancer Biology 84 (2022) 50–59

56

5. Challenges and limitations 

The main challenges associated with transcriptomic analyses are 
related to the handling of tissue samples and the application of advanced 
computational methodologies. For example, RNA-seq protocols include 
sample preparation, RNA isolation and selection, and cDNA synthesis 
and sequencing followed by bioinformatic analysis. Formalin-fixed, 
paraffin-embedded tissue samples can include RNA that is degraded, 
fragmented [152], or contaminated [153]. Contamination caused by 
errors during sample preparation or by inadequate equipment sterili-
zation can lead to the presence of sequence data from a different sample. 
Additionally, tumor samples can be contaminated by normal cells that 
infiltrate or surround the tumor. Experimental methods (cell sorting or 
laser capture micro-dissection) [154] and bioinformatics algorithms aim 
to eliminate contamination effects [155]. Novel methods have been 
developed to address the issue of low levels of RNA in archival tissue. 
Additionally, methodologic artifacts are often encountered in tran-
scriptome analysis and require careful assessment. 

Another challenge involves the application of advanced computa-
tional methodologies. High-level bioinformatic infrastructure is 
required to conduct complex analyses of profiling data. For instance, in 
the WINTHER trial, RNA analysis required the systematic development 
of an algorithm by bioinformaticians [7]. Therefore, the implementation 
of transcriptomic analysis in clinical workflows may be more compli-
cated than that of genomic analysis. In addition, reproducibility issues 
need to be addressed. RNA profiling can be used to compare tumor tissue 
with normal tissue from the same organ, such as in the WINTHER trial; 
however, some investigators believe that peripheral blood or buccal 
swab samples could also be used for comparison. This difference may 
introduce variability in the interpretation of the results. 

Overall, investigators who used transcriptomics in clinical trials 
developed diverse and complex algorithms for characterizing the 
actionability of molecular alterations [7,33,34]. Consequently, the use 
of transcriptomics in clinical practice is arduous and expensive. For 
instance, in the INFORM study, the average cost per patient for the 
molecular analysis, including tissue sample shipment, data processing 
and storage, labor, and general costs, was approximately €7,000 [33]. 
The time from tissue processing to start of analysis ranged from 0 to 112 
days [33]. Therefore, transcriptomic analysis requires significant opti-
mization, validation, and cost decrease in order to be optimally imple-
mented in clinical practice. Standardization of bioinformatic analysis 
through expert consensus would make the use of transcriptomic analysis 
in routine clinical practice more consistent. 

6. Conclusions and future perspectives 

Tumor genomic profiling approaches provide average signatures and 
a snapshot of the tumor state at the time of biopsy but often do not 
reflect the complete tumor biology, all tumor components, or the 
intrinsic heterogeneity of individual cell populations. Innovative 
emerging techniques, including single-cell transcriptome profiling 
technologies, will improve our understanding of tumor biology in in-
dividual patients and will provide a plethora of translational discovery 
opportunities [59,125,156]. However, understanding tumor complexity 
and heterogeneity, as well as the dynamic expression of the genome, 
requires the incorporation of several newer methodologies. The future of 
precision medicine lies in the integration of genomics, transcriptomics, 
proteomics, and epigenetics in order to fully elucidate tumor immune 
and -omic profiles, optimize comprehensive tumor molecular profiles, 
and inform treatment decisions. By focusing on the role of tran-
scriptomics in identifying appropriate targeted therapies, clinical trials 
can validate and enrich the available data demonstrating that the use of 
transcriptomics can increase the number of patients treated with 
matched targeted therapy and lead to favorable outcomes, hence 
providing the next frontier for precision medicine. 
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