
 NEW ARTICLE
This article was posted on the Archives Web site as a 
New Article. New Articles have been peer reviewed, 
copyedited, and reviewed by the authors. Additional 
changes or corrections may appear in these articles 
when they appear in a future print issue of the 
Archives. New Articles are citable by using the Digital 
Object Identifier (DOI), a unique number given to 
every article. The DOI will typically appear at the end 
of the abstract. 

The DOI for this manuscript is doi: 10.5858/arpa.2022-0051-OA

The print version of this manuscript will replace the New Article 
version at the above DOI once it is available.

©  College of American Pathologists2022



Original Article

Overcoming the Interobserver Variability in Lung
Adenocarcinoma Subtyping

A Clustering Approach to Establish a Ground Truth for Downstream Applications

Kris Lami, MD; Andrey Bychkov, MD, PhD, FRCPath; Keitaro Matsumoto, MD, PhD; Richard Attanoos, MBBS, FRCPath;
Sabina Berezowska, MD, PhD; Luka Brcic, MD, PhD; Alberto Cavazza, MD; John C. English, FRCPC;

Alexandre Todorovic Fabro, MD, PhD; Kaori Ishida, MD; Yukio Kashima, MD; Brandon T. Larsen, MD, PhD;
Alberto M. Marchevsky, MD; Takuro Miyazaki, MD, PhD; Shimpei Morimoto, PhD; Anja C. Roden, MD; Frank Schneider, MD;

Mano Soshi, MD; Maxwell L. Smith, MD; Kazuhiro Tabata, MD, PhD; Angela M. Takano, MD; Kei Tanaka, MMedSci;
Tomonori Tanaka, MD; Tomoshi Tsuchiya, MD, PhD; Takeshi Nagayasu, MD, PhD; Junya Fukuoka, MD, PhD

� Context.—The accurate identification of different lung
adenocarcinoma histologic subtypes is important for

determining prognosis but can be challenging because of
overlaps in the diagnostic features, leading to considerable
interobserver variability.

Objective.—To provide an overview of the diagnostic
agreement for lung adenocarcinoma subtypes among
pathologists and to create a ground truth using the
clustering approach for downstream computational appli-
cations.

Design.—Three sets of lung adenocarcinoma histologic
images with different evaluation levels (small patches,
areas with relatively uniform histology, and whole slide
images) were reviewed by 18 international expert lung
pathologists. Each image was classified into one or several
lung adenocarcinoma subtypes.

Results.—Among the 4702 patches of the first set, 1742
(37%) had an overall consensus among all pathologists.
The overall Fleiss j score for the agreement of all subtypes
was 0.58. Using cluster analysis, pathologists were
hierarchically grouped into 2 clusters, with j scores of
0.588 and 0.563 in clusters 1 and 2, respectively. Similar
results were obtained for the second and third sets, with
fair-to-moderate agreements. Patches from the first 2 sets
that obtained the consensus of the 18 pathologists were
retrieved to form consensus patches and were regarded as
the ground truth of lung adenocarcinoma subtypes.

Conclusions.—Our observations highlight discrepancies
among experts when assessing lung adenocarcinoma
subtypes. However, a subsequent number of consensus
patches could be retrieved from each cluster, which can be
used as ground truth for the downstream computational
pathology applications, with minimal influence from
interobserver variability.

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0051-
OA)

Lung cancer is the leading cause of cancer-related deaths
globally, accounting for 18% of all cancer deaths, and is

the second most commonly diagnosed cancer in both sexes.1

One of its histologic and most common subtypes is
adenocarcinoma (ADC), representing more than 40% of
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total lung cancer cases.2 In 2015, the World Health
Organization (WHO) adopted 5 main histologic patterns of
lung ADC, which correspond to its subtypes, namely lepidic,
acinar, papillary, micropapillary, and solid, and several
variants comprising invasive mucinous ADC, colloid ADC,
fetal ADC, and enteric-type ADC.2 These subtypes were
reproduced in the 2021 WHO classification of thoracic
tumors.3

It is important to accurately recognize these architectural
patterns of lung ADC because they have shown to be an
independent prognostic factor for relapse-free and overall
survival. Lepidic, acinar, and papillary subtypes have been
found to have a better prognosis than micropapillary, solid,
and invasive mucinous patterns.4–6 However, numerous
studies have shown that the classification of lung ADC
patterns suffers from interobserver variability.7–10 As sug-
gested in one study, a novel method for distinguishing the
histologic subtypes of ADC may be needed for a more
accurate and reliable diagnosis.8

Cluster analysis is a method of identifying relevant
subgroups of items through statistical analysis to divide a
group of entities into more uniform and mutually exclusive
groups based on their correlations.11 Several studies using a
cluster analysis approach have been conducted in the field of
lung cancer, using genes or immunohistochemical expres-
sion of biomarkers as variables.12–14 Lung ADC subtyping,
with its known interobserver variability, can benefit from
cluster analysis by refining the diagnostic criteria and
obtaining the ground truth.

In recent years, digitization has emerged in the pathology
domain, with whole slide image (WSI) evaluation of
scanned glass slides entering the daily workflow of
pathologists.15,16 With this advancement, many convolu-
tional neural networks (CNNs) have been developed to
recognize and classify different tumor subtypes and tumor
grading17–19 and predict recurrence and gene mutation in
lung cancer.20,21 From the histologic point of view, several
deep learning algorithms conceived to recognize certain
subtypes of lung ADC have already been developed, with
the training set based on annotated ground truths obtained
from 1 to 3 pathologists.22,23 Regarding these algorithms,
little is known about the interobserver variability in the
recognition of lung ADC subtypes. Creating a set of
consensus images of lung ADC subtypes would decrease
the interobserver variability. It can be further used as the
ground truth to train CNNs for automatic detection and
classification of lung ADC subtypes, improving their
diagnostic accuracy.

In this regard, this study aimed to assess the agreement
among expert pulmonary pathologists to diagnose lung
ADC subtypes and obtain a reliable subset of images in
agreement using a cluster approach.

MATERIALS AND METHODS

Study Design

This retrospective study used a series of cases from a single
institute between 2007 and 2020. This study was approved by the
Clinical Research Review Committee of the Nagasaki University
Hospital (Nagasaki, Japan) (approval no. 20042008-2).

The overall workflow of the study is shown in Figure 1. Using the
institutional electronic medical records, we retrospectively retrieved
191 representative surgically resected lung ADC cases encompass-
ing all histologic subtypes from the Nagasaki University Hospital,
Nagasaki, Japan. The selection criteria included a solitary ADC of
any size. Cases with metastatic lesions and double lung cancer of

any histologic subtype were excluded. Each glass slide was scanned
with a 320 objective (0.5 lm/pixel resolution) using Aperio
Scanscope CS2 digital slide scanner (Leica Biosystems, Buffalo
Grove, Illinois), which produced 330 WSIs. The selected cases were
divided into 3 sets: the first set included 12 WSIs from 12 patients
with lung ADC, including the 6 major histologic subtypes; the
second set included 79 WSIs retrieved from 37 patients; and the
third set included the remaining 239 WSIs from 142 patients.

Each set had a different evaluation method. For the first set, the
dominant pattern of small patches was recorded. The 12 WSIs were
segmented into 1-mm2 patches with a 2 lm per pixel resolution,
corresponding to a 35 magnification, resulting in 4702 patches after
excluding those with more than 80% blank background.

For the second set, the dominant subtype of annotated areas
representing relatively uniform lung ADC histology was recorded.
The 79 WSIs were annotated by 1 pathologist in training under the
supervision of an expert pulmonary pathologist. The annotation
was performed with the SplineAnnotation function of the
Automated Slide Analysis Platform software, version 1.9 (ASAP,
Computation Pathology Group, Nijmegen, The Netherlands).

For the third set, every subtype present in the entire slide of each
of the 239 WSIs was recorded.

Seventeen expert pulmonary pathologists (Japan, 5; United
States, 5; Austria, 1; Brazil, 1; Canada, 1; Italy, 1; Singapore, 1;
Switzerland, 1; United Kingdom, 1) from different institutions with
more than 15 years of experience on average and 1 pathologist in
training evaluated the histologic subtype of the 4702 patches of the
first set and the annotated areas of the 79 WSIs of the second set by
assessing 1 lung ADC subtype to each element, based on the WHO
classification.2,3 The subtypes included lepidic, acinar, papillary,
micropapillary, solid, invasive mucinous ADC, other cancer types
(for morphology with a complex glandular pattern, cribriform
pattern, colloid ADC, fetal ADC, or enteric ADC), and no
carcinoma cells (for patches of the first set not visibly containing
any cancer cells). Invasion was defined as a lung ADC subtype
other than the lepidic growth.2

After the evaluation, annotated areas of the 79 WSIs of the
second set were segmented into 1-mm2 patches, producing 8554
patches. Patches of the first set were reviewed using an application
for smartphones/tablets created explicitly for this purpose. The 79
WSIs of the second set were uploaded to the PathPresenter
platform (PathPresenter.net, New York, New York), and a
spreadsheet was created to help pathologists sort out each
annotated area with the estimated lung ADC subtypes. For the
third set, 15 pathologists from the same group (3 pathologists were
not available to join this step of the study) were asked to provide a
case-level diagnosis of the 142 patients (representing 239 WSIs) by
determining the dominant and minor subtypes of lung ADC for
each patient and their estimated percentages in 5% increments.

Staining

Because of the fading of stains, old glass slides were washed out
with 1% acid alcohol and then restained with hematoxylin-eosin
using the Tissue-Tek Prisma Plus Automated Slide Stainer (Sakura
Finetek, Tokyo, Japan).

Statistical Analysis

The Cohen j coefficient was used to evaluate the pairwise
agreement for invasive cancer versus noninvasive cancer patches
and cancer versus noncancer patches, with a total of 153 j values
calculated for each category from different combinations of the 18
pathologists. To evaluate the overall and histologic subtype
agreements from multiple raters, the Fleiss j coefficient was
calculated. Agreements were defined as poor, slight, fair, moderate,
substantial, and almost perfect for j values of less than 0, 0.01 to 0.20,
0.21 to 0.40, 0.41 to 0.60, 0.61 to 0.80, and 0.81 to 1.0, respectively.

Using the Ward method, hierarchical cluster analysis was
performed with the R software (R Foundation for Statistical
Computing, Vienna, Austria) from labels of the 4702 patches of
the 18 pathologists, and these labels were considered as categorical
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Pairwise agreements for invasive versus noninvasive
patches were evaluated with Cohen j score, varying from
0.05 to 0.76 (Supplemental Table 1). Agreements for cancer
versus noncancer patches were also evaluated, with a
narrower interval than the invasive versus noninvasive
patches. The highest score of 0.93 was observed between
pathologists 15 and 16 (Supplemental Table 2).

Interobserver variability for the 12 cases of the first set was
highlighted with individual heat maps, when patches with
their respective lung ADC patterns given by each pathol-
ogist were superimposed on the original WSIs. In 1 case,
there was a disagreement among pathologists about
whether the case was predominantly invasive or noninva-
sive. In another case, the heat map showed the WSI being
recognized by different pathologists as acinar predominant,
papillary predominant, or even invasive mucinous ADC
predominant (Figure 3).

Pathologists’ Grouping in Clusters

Based on the assessment of the uncertainty in the results
obtained from the first set, the pathologists were grouped
into 2 clusters, and 3 pathologists were outlying from both
clusters (Figure 4). Clusters 1 and 2 consisted of 10 and 5
pathologists, respectively. The main difference between the
2 clusters was predominantly seen in 1 case, where
pathologists from cluster 1 agreed for an invasive mucin-
ous–predominant case, whereas pathologists from cluster 2
opted for a micropapillary or other cancer types–predom-
inant case (Supplemental Figure 2, A). The overall

Figure 1. Flowchart of the study. Abbrevia-
tions: ADC, adenocarcinoma; WSI, whole
slide image.

variables. The distance between pathologists was determined by 
the Cramér V, calculated using the vcd package.24 The uncertainty 
in the result from the clustering analysis was assessed via multiscale 
bootstrap resampling.25

RESULTS

Agreements of the First Set

Lung ADC histologic subtypes were assigned to the first set 
of 4702 patches by the 18 pathologists. The overall proportion 
of the selected histologic patterns by each pathologist is 
shown in Figure 2, A, with scored patches for each 
pathologist shown in Supplemental Figure 1 (see 
supplemental digital content). The pathologists selected 
one of the lung ADC histologic patterns for an average 
percentage of 52.3%, and the average percentage of the 
total patches considered as containing no cancer cells was 
47.7%.

Among the 4702 patches analyzed at 35 magnification, all 
18 pathologists had a complete consensus on 1742 patches 
(37%), including 1520 patches labeled as no carcinoma cells 
(Figure 2, B). After the no carcinoma cells patches were 
excluded, the pathologists had a consensus on 222 patches 
(4.7% of total patches) labeled as one of the lung ADC 
subtypes. Solid pattern was the subtype with the most 
consensus patches, with all 18 pathologists having complete 
agreement on 180 patches, followed by invasive mucinous 
(29 patches), acinar (8 patches), and micropapillary (5 
patches) subtypes. The 18 pathologists had no complete 
consensus on lepidic, papillary, and other carcinoma types 
(Figure 2, C).
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agreement (all lung ADC subtypes and ‘‘no carcinoma cells’’
patches combined) of the 18 pathologists calculated with the
Fleiss j score was 0.585. Pathologists from clusters 1 and 2
had overall agreements of 0.588 and 0.563 within each
cluster, respectively. The highest agreements among the 18
pathologists and for both clusters were seen for categories
separating cancer and noncancer patches as well as solid
and other subtypes patches, both of them achieving an
almost perfect agreement, followed by invasive mucinous
ADC and other subtypes, with a substantial to an almost
perfect agreement (Table 1).

Agreements of the Second and Third Sets

All 18 pathologists attributed lung ADC histologic
patterns to the annotated area of the 79 WSIs from the 37

cases of the second set. The pathologists’ agreements using
the Fleiss j score were calculated again. The j values
showed scores similar to but slightly lower than those
obtained from the first set (Table 2). Once again, the solid
subtype achieved the highest score but with only a
substantial agreement among the pathologists (j ¼ 0.792).
The lowest agreement was observed for the other carcinoma
type pattern, with a j score of 0.229, indicating a slight
agreement.

Fifteen pathologists were then asked to label the 142 cases
of the third set, comprising 239 WSIs with a lung ADC
subtype. Labeling was done on WSIs on a case-level basis
by determining the dominant and minor subtypes and
estimating the percentage of every subtype present in the
case, in 5% increments. The overall agreement of the 15

Figure 2. Overview of the first set. A, Overall proportion of the selected patterns by the 18 pathologists. B, Distribution of the consensus patches for
the 18 pathologists, wherein 37% of patches had a complete agreement, including 1520 patches labeled as ‘‘no carcinoma cells.’’ C, Proportion of
the consensus patches for each histologic subtype (with ‘‘no carcinoma cells’’ removed). The solid subtype had the most consensus, accounting for
81% of all histologic subtypes. Abbreviations: ADC, adenocarcinoma; P, pathologist.
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pathologists for the predominant subtype achieved a j score

of 0.338, indicating a fair agreement, which is the lowest of

the 3 sets. The highest agreement was observed for invasive

mucinous ADC, with a substantial agreement (j ¼ 0.763)

(Table 2).

Evaluation of Invasive Morphology by the 2 Clusters

Next, the case-level diagnoses of the third set given by the
15 pathologists were used to evaluate the lung ADC tumor
grades, as proposed by the International Association for the
Study of Lung Cancer pathology committee26 and adopted
by the WHO.3 We evaluated 133 cases from the third set
after excluding cases assessed as invasive mucinous ADC by
1 of the 15 pathologists. After excluding outlier pathologists,
we retained 12 pathologists for the evaluation. Survival
analysis was conducted to evaluate the ability of patholo-
gists and clusters to separate noninvasive-predominant
from invasive-predominant tumors. Noninvasive-predomi-
nant tumors were defined as grade 1 tumors according to
the aforementioned lung ADC grading system, and
invasive-predominant tumors were defined as grade 2 or
grade 3 tumors. The patients’ demographic characteristics
are listed in Supplemental Table 3. The plotted Kaplan-
Meier curves showed statistical significance for both
clusters, with P values of .03 and .02 for clusters 1 and 2,
respectively (Figure 5, A and B). Cluster 1 showed a better
significance than 4 pathologists of its cluster (pathologist [P]
6, P7, P4, and P8), whereas cluster 2 showed a better
stratification than 3 pathologists of its cluster (P18, P10, and
P9), outperformed by only 1 pathologist (P5). These results
show that the clustering approach provided a reasonable
assessment in the prediction of invasive morphology.

Consensus Patches

The first and second sets spawned several patches or areas
with high agreements among pathologists. By defining
consensus patches as those attributed 6 of 10 identical labels

Figure 3. Individual heat maps of whole slide images, with each color representing a specific pattern. The top image is predominantly acinar,
papillary, or invasive mucinous adenocarcinoma debatable among pathologists. On the bottom, the case being predominantly noninvasive or
invasive adenocarcinoma was debatable. Abbreviations: ADC, adenocarcinoma, P, pathologist.

Figure 4. Hierarchical clustering of the 18 pathologists. Two clusters
were created, with the overall Fleiss j score of each cluster indicated.
Abbreviation: P, pathologist.
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for cluster 1 and 3 of 5 identical labels for cluster 2, we were
able to retrieve a subsequent number of consensus patches
from the 2 clusters (Table 3). For the first set, a total of 3733
and 4214 consensus patches were retrieved from clusters 1
and 2, respectively. The 2 clusters had 3529 common
patches, including 3312 sharing the same lung ADC subtype
label (Figure 6, A). In total, 217 patches had different
subtype labels between the 2 clusters (Supplemental Figure
2, B). For the second set, 6409 patches of 61 WSIs and 7188
patches of 66 WSIs met consensus for clusters 1 and 2,
respectively, after the segmentation of annotated areas. The
2 clusters had 55 common WSIs (5853 patches), including 50
sharing the same lung ADC histologic subtype label (5285
patches) (Figure 6, B). Only 5 WSIs (568 patches) had
different subtype labels between the 2 clusters (Supplemen-
tal Figures 2, C, and 3, A through E). We considered the
resulting consensus patches as the ground truth of lung
ADC subtypes (Table 3).

DISCUSSION

This study investigated the interobserver agreement of
lung ADC subtypes among expert pulmonary pathologists
from different institutions. To date, this is the first study to
compare an interobserver agreement using different evalu-
ation levels and cluster analysis for determining lung ADC
subtypes. Based on their evaluation, 2 distinct clusters of
pathologists were created, with a subsequent number of
consensus patches resulting from both clusters. These
patches can help set a ground truth for lung ADC subtypes,
which can be further used to train deep learning algorithms.

Overall, the j score for the agreement of histologic
patterns in the first set was 0.585, with a specific agreement
for each lung ADC subtype, ranging from 0.562 to 0.902,
indicating a moderate to an almost perfect agreement (only
achieved for the solid subtype). These results are similar to
previous studies focused on the interobserver variability of
lung ADC subtypes, with the j score ranging from fair to
substantial.7,8,10,27 Shih et al8 found a significant difference in
assessing the invasive size of the tumor, with up to a 19-mm
difference among pathologists in one case. This highlights
the relative difficulty of correctly setting tumor invasion, as
seen in our study with the substantial agreement in

differentiating invasive and noninvasive patches, with a
Fleiss j score of 0.66. The pairwise interobserver agreement
for invasive versus noninvasive patterns had a wide-ranging
Cohen j score, from 0.05 to 0.763. This can be problematic
in clinical practice because recognizing the noninvasive/
lepidic component of cancer and the size of the invasive
component are determinants of the T stage of lung ADC,
with a direct impact on the disease-free survival in cases of
ADC in situ, minimally invasive ADC, and lepidic-predom-
inant ADC, and on the prognosis when determining the
invasive size.28 This scenario is best illustrated with personal
heat maps. In some cases, it was debatable whether the
diagnosis was primarily lepidic predominant or invasive
pattern predominant (Figure 3).

The interobserver variability for cancer versus noncancer
patches had a Cohen j score ranging from 0.65 to 0.92,
indicating substantial to almost perfect agreement. For the
overall agreement, the j score was 0.84, indicating that
there was a consensus when differentiating the patches
containing tumor cells from the ones that showed benign
structures. One would assume a perfect agreement for
differentiating cancer from noncancerous patches. The
relatively low agreement was probably due to certain
difficulties in distinguishing in some patches cancer cells
from other floating cells, such as macrophages or reactive
epithelial cells (Supplemental Figure 4, A through O). The
low agreement can also be explained by pathologists’
fatigue, as they had to sort a considerable number of
patches. Another explanation is that some patches con-
tained very few tumor cells compared with the predominant
nontumor area, which some pathologists described as no
carcinoma cells, whereas others indicated the presence of
tumor cells by attributing the corresponding subtype.

In this study, the solid pattern had the most consensus
patches, with the highest agreement among lung ADC
subtypes, similar to that reported by other authors.7,27 The
agreement of solid pattern was also high in the frozen
specimen section analyzed in one study,29 showing the
relative ease of distinguishing this subtype from others.

Acinar and papillary patterns had the lowest agreements
among lung ADC subtypes in the first set. Overall, these 2
patterns had moderate to substantial agreements, with
Fleiss j scores of 0.57 and 0.61, respectively. A possible
reason for the low agreement can be the relative resem-

Table 1. Fleiss j Scores for Different Agreements of
the Lung Adenocarcinoma Subtypesa

Agreement Category
All 18

Pathologists
Cluster

1
Cluster

2

Overall 0.585 0.588 0.563

Cancer versus no cancer 0.844 0.836 0.811

Invasive versus noninvasive 0.661 0.610 0.608

Acinar versus other patterns 0.572 0.448 0.499

Papillary versus other patterns 0.610 0.364 0.377

Acinar þ papillary versus other
patterns

0.562 0.475 0.442

Micropapillary versus other patterns 0.713 0.580 0.689

Solid versus other patterns 0.902 0.900 0.917

Invasive mucinous versus other
patterns

0.794 0.904 0.808

Other carcinomas versus other
patterns

0.673 0.500 0.541

a ,0, no agreement; 0–0.20, slight agreement; 0.21–0.40, fair
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial
agreement; and 0.81–1.0, almost perfect agreement.

Table 2. Fleiss j Scores of the First, Second, and
Third Sets for Agreements of Various Categoriesa

Agreement Category

Set

First Second Third

Overall 0.585 0.522 0.338

Cancer versus no cancer 0.844 . . . . . .

Invasive versus noninvasive 0.661 0.608 0.453

Acinar versus other patterns 0.572 0.392 0.271

Papillary versus other patterns 0.610 0.376 0.158

Acinar þ papillary versus other patterns 0.562 0.484 0.369

Micropapillary versus other patterns 0.713 0.679 0.320

Solid versus other patterns 0.902 0.792 0.635

Invasive mucinous versus other patterns 0.794 0.597 0.763

Other carcinomas versus other patterns 0.673 0.229 0.053

a ,0, no agreement; 0–0.20, slight agreement; 0.21–0.40, fair
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial
agreement; and 0.81–1.0, almost perfect agreement.
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Figure 5. Overall survival of 133 cases of the third set stratified by invasive-predominant and noninvasive-predominant tumors. Both clusters
achieved significance, with superior performance compared with some pathologists. A, Kaplan-Meier curves for pathologists from cluster 1 and
cluster 1 consensus. B, Kaplan-Meier curves for pathologists from cluster 2 and cluster 2 consensus. Abbreviation: P, pathologist.
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blance of those 2 patterns with other subtypes in equivocal
cases. By definition, both acinar and papillary subtypes are
characterized by glandular growth as the major component,
with the difference being the presence of central fibrovas-
cular cores in the papillary subtype. Lepidic growth with the
alveolar spaces filled with papillary structures is also called

papillary subtype, and micropapillary growth is character-
ized by papillary tufts without fibrovascular cores.30 In some
cases, it can be difficult to correctly identify fibrovascular
cores; thus, papillary growth can be mistaken for other
subtypes, and vice versa. Moreover, the interobserver
agreement did not improve when merging acinar and

Table 3. Number of Consensus Patches for Each Set and Cluster

Cluster 1 Cluster 2

L A P MP S IM O N L A P MP S IM O N

First set 308 354 116 59 319 321 34 2222 551 596 154 192 371 90 84 2176

Second set 552 1507 1475 549 866 1460 0 NA 619 1803 2066 549 1034 1117 0 NA

Total 860 1861 1591 608 1185 1781 34 2222 1170 2399 2220 741 1405 1207 84 2176

Abbreviations: A, acinar; IM, invasive mucinous adenocarcinoma; L, lepidic; MP, micropapillary; N, no carcinoma cells; NA, not applicable; O,
other carcinoma types; P, papillary; S, solid.

Figure 6. Consensus patches from clusters 1 and 2 and common patches from both clusters sharing the same lung ADC labels. Numbers outside the
circles represent the total number of consensus patches from one cluster. A, Venn diagrams showing the number of consensus patches (intersection of
the 2 circles) from the first set sharing the same label in both clusters. B, Venn diagrams showing the number of consensus patches (intersection of the
2 circles) from the second set sharing the same label in both clusters. Abbreviation: ADC, adenocarcinoma.
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papillary patterns and comparing them with other patterns
(Table 1), indicating difficulty in distinguishing these 2
patterns from other patterns.

These low agreement values could arguably be due to
the examination techniques. In the first set, pathologists
evaluated lung ADC subtypes on small patches, limiting
the appreciation of the surrounding area to assess a
subtype correctly. We therefore provided pathologists a
second set containing 79 WSIs for sorting out the
histologic patterns of the annotated area, with relatively
uniform histology. They had the freedom to magnify each
slide up to 320 magnification, with close scrutiny of
histologic architecture. Again, the papillary and acinar
patterns showed low agreement, with j scores of 0.392
and 0.376, respectively, indicating fair agreement. In the
second set, the ‘‘other carcinoma’’ subtype showed a
worse agreement than that obtained from the first set,
with a Fleiss j score of 0.229, indicating a slight
agreement. A third set with a full whole slide evaluation
was also provided, with the determination of dominant
and minor subtypes and their percentages. Similar trends
for the j score were again seen, with the acinar and
papillary subtypes achieving slight and fair agreements,
respectively. Agreements of the third set were slightly
lower than the second set. The ‘‘other carcinoma’’ subtype
showed the worst agreement among the lung ADC
subtypes in the third set. This is probably due to the
misrecognition of cribriform or complex glandular pat-
terns as ‘‘other carcinoma,’’ as recommended in this
study. These patterns were regarded as acinar ADC and
have been recently described as high-grade patterns.3,31

Some pathologists may have failed to correctly identify
these patterns, thus the slight agreement seen on the third
set for the ‘‘other carcinoma’’ subtype (Supplemental
Figure 5, A through H). Another reason that may explain
the low agreement is the possible intraobserver variability.
Supplemental Figure 2, B and C, showing the overlapping
consensus patches displaying different labels between the
2 clusters, revealed a discrepancy in labels of discordant
consensus patches between the first and second sets. This
may be explained by a probable change in the diagnostic
criteria between the sets for a given pathologist, further
decreasing the agreement of different sets.

Previous studies7,9,10,27,32–35 focusing on interobserver
variability of non–small cell lung cancer, lung ADC, or lung
ADC subtypes used conventional glass slides and micro-
photographs/still images to evaluate the pathologists’
agreements. A single study8 used WSIs to investigate the
agreement for the classification of ADC in situ, minimally
invasive ADC, and invasive ADC of the lung. We believe
that our study is the first to assess the agreement for lung
ADC subtypes using WSIs. Different evaluation methods
showed that the agreements obtained with close scrutiny of
small patches (first set) are superior to the ones obtained
with analyses of an enclosed area in a WSI (second set) or
the entire WSI (third set) (Table 2). These elements show
that inspection of small areas with minimal morphologic
features on a low power results in better agreements when
evaluating lung ADC subtypes. It is, however, important to
note that the difference in the evaluation method between
the first set (inspection of small patches) and the 2 other sets
(WSI examination) may have introduced some variable that
affected pathologists’ performance in the lung ADC
subtyping beyond the change in the size of the field

reviewed, thus the difference in agreement values between
sets.

In this study, we introduced the cluster analysis technique
in the evaluation of lung ADC subtypes. The selection of the
clustering approach over the majority rule is explained by
the fact that the cluster analysis creates subgroups of
pathologists with distinctive diagnostic criteria for lung ADC
subtypes, which can help to refine ground truth images.
Also, an 80% agreement rule was abandoned as it resulted
in few consensus patches. The pathologists’ answers from
the first set created 2 hierarchical clusters, with the main
difference seen principally in 1 of the 12 cases included for
evaluating the pathologists’ agreement (Supplemental
Figure 2, A). Cluster 1 agreed with an invasive mucinous
ADC–predominant cancer, whereas cluster 2 favored micro-
papillary and other cancer subtypes. Although these
patterns are considered high-grade tumors,36–38 the pres-
ence of micropapillary features alone is a factor of poor
prognosis for lung cancer.39–41 Moreover, invasive mucinous
ADC has a different genetic signature,30 making the
distinction more important.

The clustering approach has been evaluated by its ability
to predict overall survival based on the predominance of
invasive or noninvasive features of a given tumor. For this
matter, the recently adopted lung ADC grading system has
been applied to pathologists’ answers to the third set, and
consensus has been obtained for the 2 clusters. The resulting
Kaplan-Meier curves showed a better stratification of
invasive-predominant and noninvasive-predominant tu-
mors, cluster 2 surpassing the majority of pathologists for
the particular cohort used in this study. We therefore believe
that consensus patches derived from these 2 clusters can
help in accurate recognition of lung ADC subtypes and, by
extension, assessment of invasion, which can be challenging
and problematic in some cases.42

The first and second sets produced a consequent number
of consensus patches from the 2 clusters, which shared up to
88% of identically labeled patches (Figure 6, A and B). We
considered these patches as the ground truth of lung ADC
subtypes. These patches will be used as training sets for our
future study to develop deep learning algorithms. Patches
will be augmented to increase the amount of the training
set, with the third set serving as a testing set for the
algorithms. Survival curves obtained from the deep learning
algorithms can be compared with those obtained from the
pathologists for evaluation. After the validation with survival
analysis, the whole set of ground truth images will be made
publicly accessible.

This study had some limitations. First, only 49 cases from
a single institute were used to obtain consensus patches.
Although every common invasive nonmucinous lung ADC
subtype and invasive mucinous ADC cases were included,
other ADCs, such as colloid ADC or fetal ADC, among
others, were not sufficiently represented. Second, the
annotation of the second set was done by a trainee
pathologist. Although the process was supervised by an
expert pulmonary pathologist, histologic homogeneity of
the annotated area cannot be completely guaranteed, thus
raising the possibility of increasing the interobserver
variability. However, the agreement of the third set
revealed a similar score to that obtained from the second
set. This shows that the agreement was still low, even if
pathologists had the freedom to evaluate the WSIs without
limitations. Third, the consensus patches retrieved from
the 2 clusters were not demonstrated to improve the
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overall agreement. Although we showed that the clustering
approach resulted in better identification of invasion than
some pathologists alone, consensus patches themselves
were not used to evaluate the improvement of lung ADC
subtype recognition. This issue needs to be addressed in a
separate study, in which consensus patches can be used to
train CNN models.

Nevertheless, our study proved the possibility of achieving
a consensus on ascertaining lung ADC subtypes despite
high interobserver variability, which is characteristic of lung
ADC subtyping. Moreover, this is the first study to evaluate
this agreement using cluster analysis, which can refine the
diagnostic criteria of lung ADC.

CONCLUSIONS

The agreement of pathologists for the determination of
lung ADC subtypes varied from slight to almost perfect
using the process of examining patches at low power,
annotating the area on a WSI, and performing case-level
diagnosis using WSIs. Despite the existing interobserver
variability, a subsequent number of consensus patches
could be retrieved for each lung ADC subtype. These
patches result from the general agreement of pulmonary
pathologists and thus can be considered as the ground
truth of lung ADC subtyping to be further used to train
CNNs for automatic recognition of different lung ADC
subtypes.
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