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SUMMARY
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high
intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and
machine learning to identify cell types and states underlying morphological features of known diagnostic
and prognostic significance in colorectal cancer. Quantitation of these features in high-plexmarker space re-
veals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-
range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin,
where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D im-
aging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly inter-
connected and have gradedmolecular properties. Thus, while cancer genetics emphasizes the importance of
discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular
gradients analogous to those in developing tissues.
INTRODUCTION

One hundred and fifty years of inspection of hematoxylin and

eosin (H&E)-stained tissue sectionsbyhistopathologists, comple-

mented for over 80 years by immunohistochemistry,1 has identi-

fied numerous recurrent tumor features with diagnostic or

prognostic significance.2 However, these classical methods

provide insufficient information formechanistic studies and preci-

sion medicine. Spatial tumor atlases3 aim to build on this founda-

tion and contemporary tumor genetics by collecting detailed

molecular and morphological information on cells in a preserved

3Denvironment. Atlas construction ismadepossible bynewhigh-

ly multiplexed tissue imaging methods4–11 that yield subcellular

resolution imagesof 10–80antigens.When segmented andquan-

tified, these images generate single-cell data on cell types, states,

and interactions that complement single-cell RNA sequencing

(scRNA-seq).12–14 However, despite deep knowledge about the

genomic drivers of cancer—from oncogenic mutations to chro-

mosomal rearrangements—we do not yet know how the spatial

arrangement of the tumormicroenvironment (TME) impacts path-

ogenesis; for instance, which feature types and spatial scales are
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relevant, how disease-associated histological features relate to

molecular states, and whether morphological differences are

discrete (likemutations) or continuous (likemorphogengradients).

‘‘Bottom-up’’ approaches to tissue analysis involve enumer-

ating cell types, identifying cell-cell interactions, and generating

local neighborhoods using spatial statistics. Such approaches

leverage tools developed for dissociated single-cell data (e.g.,

mass cytometry15 and scRNA-seq16). In contrast, ‘‘top-down’’

approaches involve annotating histopathologic features (histo-

types) that are associated with a disease state or outcome,2

followed by computation on the multiplexed data to identify

underlying molecular patterns. Histopathology has long been

challenged by striking spatial features that do not have prog-

nostic or diagnostic value on follow-up, introducing a note of

caution into bottom-up analysis.17,18 At the same time, discov-

eries arising from top-down analysis are strongly influenced by

prior expectations. In this paper, we analyze colorectal cancer

(CRC) usingboth approaches andcompare the resulting insights.

Histological features of established significance inCRC include:

(1) the degree of differentiation relative to normal epithelial and tu-

mor cell morphology (e.g., cell shape, nuclear size, etc.) and the
nuary 19, 2023 ª 2022 The Authors. Published by Elsevier Inc. 363
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organization of cellular neighborhoods (e.g., glandular organiza-

tion, hypercellularity, etc.)19; (2) the position and morphology of

the invasive margin,10,20 including the presence of ‘‘tumor buds,’’

small clusters of tumor cells surrounded by stroma21 that are

correlated with poor outcomes (i.e., increased risk of local recur-

rence, metastasis, and cancer-related death)22; and (3) the extent

of T cell infiltration23 and the presence of peritumoral tertiary

lymphoid structures (TLSs) (organized aggregates of B, T, and

other immune cell types24). In many cases, the origins and

molecular basis of these histological features are not fully

understood, although de-differentiation, ‘‘stemness,’’25 epithe-

lial-mesenchymal transition (EMT),26 changes in nuclear me-

chanics,27 and similar processes are involved.28

In this paper, we combined high-plex cyclic immunofluores-

cence (CyCIF)8 and H&E images of CRC with single-cell

sequencing and microregion transcriptomics. We show that ac-

curate assessment of disease-relevant tumor structures requires

the statistical power of whole-slide imaging (WSI), not the small

specimens found in tissue microarrays (TMAs). Using 3D recon-

struction of serial sections and supervised machine learning, we

show that archetypical CRC histologic features are often graded

and substantially larger than they appear in 2D. Thus, the TME is

organized on spatial scales spanning 3–4 orders of magnitude,

from subcellular organelles to cellular assemblies of hundreds

of microns or more.

RESULTS

Overview of the specimens and data
Multiplexed CyCIF and H&E imaging were performed on 93 FFPE

CRC human specimens spanning histologic and molecular sub-

types (Table S1) in three different formats (Figure 1A). CRC1

(Figures 1B–1E) was subjected to 3D analysis by imaging serial

sections (see STAR Methods), combined with scRNA-seq, and

GeoMx transcriptomics29 (Figures 1A and S1A; Table S2).

CRC1 is a poorly differentiated stage IIIB BRAFV600E adenocarci-

noma (pT3N1bM0)30 with microsatellite instability (MSI-H) and a

complex histomorphology. It has an extended front invading

into underlying smooth muscle (muscularis propria) and connec-

tive tissue that includes a ‘‘budding invasive margin’’ in the sub-

mucosa adjacent to normal colonic mucosa (IM-A), a ‘‘mucinous

invasive margin’’ (IM-B), and a deep ‘‘pushing invasive margin’’

(IM-C); the latter two regions invade the submucosa and muscu-

laris (Figure 1B). 16 additional samples (CRC2–17) were acquired

using 2D WSI. Finally, CRC2–17 plus 77 additional tumors

(CRC18–93) were imaged as part of a TMA (Figure 1A). In each

case, CyCIF was performed using various combinations of 102
Figure 1. Data overview

(A) Data collection strategy—93 CRC specimens available as 3D stack, single w

(B) Histopathologic annotation of six ROIs and three invasive margins (A: budding,

Schematic diagram of architectural features (right).

(C) CyCIF whole-slide image and cell-type assignment. 21 cell types from 3 main

mapped.

(D) Comparison of cell-type percentages by scRNA-seq and CyCIF.

(E) t-SNE of single-cell data (CRC1/097) generated using all markers; 50,000 r

Figure S1C.

See also Figure S1 and Tables S1, S2, S3, and S4.
lineage-specific antibodies against epithelial, immune, and stro-

mal cell populations and markers of cell cycle state, signaling

pathway activity, and immune checkpoint expression (antibodies

for each panel in Table S3). MCMICRO software31 was used to

segment images, quantify fluorescence intensities on a per-cell

basis, and assign cell types based on lineage-specific marker

expression (Figures 1C, S1B, and S1C; Table S4). Overall,

�2 3 108 segmented cells were identified in 75 whole-slide im-

ages (WSIs) using different combinations of antibodies (�6 TB

of data).32 All data are available for download via the Human Tu-

mor Atlas Network (HTAN) portal and images of CRC1–17 are

available for interactive online viewing through MINERVA.33,34

t-distributed stochastic neighbor embedding (t-SNE) onCyCIF

data demonstrated a clear separation of cytokeratin-positive

(CK+) epithelial cells (both normal and transformed) from CD31+

endothelial cells (primarily blood vessels), desmin+ stromal cells,

and CD45+ immune cells (Figures S1B–S1D; Table S5). Immune

cells were further divided into biologically important classes,

such as CD8+PD1+ cytotoxic T cells (Tc), CD4+ helper T cells,

CD20+ B cells, CD68+ and/or CD163+ macrophages, as well as

discrete sub-categories such as CD4+FOXP3+ T regulatory cells

(Tregs) (Table S4). When scRNA-seq35 was performed on �104

cells from an adjacent region of CRC1, estimated cell-type abun-

dances exhibited a high degree of concordance with estimations

from image data (R2 = 0.94; Figures 1D, 1E, S1E, and S1F).

Impact of spatial correlation on statistical power
Most high-plex tissue imaging papers to date focus on TMAs or—

in the case of mass-spectrometry-based imagingmethods (multi-

plex ion beam imaging [MIBI] and imaging mass cytometry

[IMC])—on fields of view (FOVs) of �1 mm2 because less data

are involved and it is easier to acquire tissue from cohorts. It is

nonethelesswell-established that theminimumdimensionneeded

to accurately measure features within an image depends on the

sizeof these features,whichcanbeestimated fromcell-to-cell cor-

relation lengths.36 In CRC1–17, we observed correlation lengths

ranging from �80 mm for CD31 positivity to �400 mm for keratin

or CD20 positivity (Figures 2A–2D and S2A). These length scales

weredirectly related to recurrentmorphological features, including

small capillaries for CD31+ cells, sheets of tumor for CK+ cells, and

TLSs for CD20+ cells (Figures 2C and 2D), but were also similar in

size toTMAcores.We therefore usedempirical and first-principles

approaches to study the impact of sample size on the accuracy

and precision of statistical analysis of 3D, 2DWSI, and TMA data.

First, we generated a ‘‘virtual TMA’’ (vTMA) comprising 1-mm

diameter FOVs subsampled from an image of CRC1 section 097

(CRC1/097); each virtual core contained�103 cells as compared
hole-slides, and TMAs.

B:mucinous, C: pushing) on H&E (left). Representative images of ROIs (center).

categories (tumor, stroma, and immune; Table S4) were defined and locations

andomly sampled cells displayed. Cell-type plot (right) color code same as
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with �5 3 105 for WSI. Sampling was performed so that each

vTMA core would primarily contain CK+ tumor or epithelial cells;

this recapitulates how a histopathologist would create a real

TMA (rTMA). Moreoever, CRC2–17 had been used prior to the

current work to generate an rTMA, allowing us to confirm that

vTMA and rTMA cores were similar (Figure 2E). When we

computed the abundance of CK+ cells (cell count divided by

the total cell number) in each vTMA core we found that it varied

20-fold, from 5% to 95%, whereas the true value determined by

counting all cells in CRC1/097 was 45% (Figure 2F). Abundance

estimates for a-SMA and FOXP3 positivity in vTMA cores were

also imprecise, but to a lesser extent (Figure 2F). In contrast,

when random samples of �103 cells were drawn from the sin-

gle-cell data without regard to position in the specimen, the esti-

mated abundance of CK+ cells was 45% ± 1%, a good estimate

of the actual value (Figure 2F). Thus, imprecision associated with

computing cell abundance from a vTMA arises only when spatial

arrangements are preserved.

These findings can be explained by the central limit theorem

for correlated data.37 The effective sample size (Neff) for corre-

lated data is related to the sample size N for ‘‘dissociated cells’’

(cells chosen at randomwithout regard to position in an image or

drawn from a dissociated cell preparation, as in scRNA-seq or

flow cytometry) via a simple scaling law (see STAR Methods

for derivation):

N

Neff

� c0

�
l

lcell

�2

: (Equation 1)

where c0 is the spatial correlation strength, l the length scale

(e.g., �400 mm for CK+), and average cell size lcell. We observed

a good match between CyCIF data and theory (R2 = 0.97;

Figures 2G and S2B) corresponding to a reduction in effective

sample size (N/Neff) of 10- to 1,000-fold (median value�100), de-

pending on the marker identity. Thus, a 1-mm core containing

�103 spatially correlated cells constituted as few as 1–3 inde-

pendent samples, which explains the high variance in feature

values. We conclude that the analysis of TMA cores and other

similarly small FOVs is an inadequate means to accurately deter-

mine features as simple as cell abundance because the sample

is too small relative to feature sizes.

Analysis of higher-order spatial features, such as cell proximity

(Figures 2H and S2C), was also strongly impacted by sampling
Figure 2. Spatial heterogeneity and estimation errors for regional sam

(A) Length scales for select markers across CRC1–17.

(B) Spatial correlations of binarized staining intensities for CK+ (red), a-SMA+ (blu

(C) CyCIF image showing CD20+ TLS (pink circle) and CD31+ blood vessel (yello

(D) Spatial distribution of CD20+ cells (magenta dots, contours) and CD31+ cells

(E) Virtual TMA cores from CRC1/097 and real TMA cores from CRC2–93.

(F) Cell-type abundance estimates using vTMA cores or random sampling.

(G) Estimation error of vTMAs summarized by fold-reduction in effective sample

(H) Correlation of select cell-type pairs among 10 nearest neighbors.

(I) Correlation functions of CK+ cells, estimated from vTMAs or random sampling

(J) Images of cores highlighted in (I).

(K) Fraction of marker-positive cells across CRC2–17 whole-slide or TMA data,

whiskers extend at most to 1.53 interquartile range, and proportions <0.0001 are

(F) and (H) or circles (A) and (K); medians are indicated.

See also Figure S2.
under spatial correlation. For example, vTMA data were less

precise than random sampling when computing the correlation

of CK+ (tumor) cell frequency with neighboring a-SMA+ (stromal)

cell frequency as a function of distance (compare blue and green

in Figure 2H; note that distance is plotted as the number of

neighboring cells, which is proportional to distance squared).

The same was true when we searched for neighborhoods

containing both CD45+ immune cells and CD31+ endothelial

cells, which represent areas of perivascular inflammation. In-

spection of underlying images showed that these differences

related to common forms of variation in tissue morphologies

and spatial arrangements (Figures 2I, 2J, and S2D).

To compare the magnitude of biological (patient-to-patient)

variability with sampling error, we computed cell abundances

for single markers and biologically relevant marker combinations

(e.g., CD68+PDL1+ macrophages) and observed a 3- to 10-fold

variation across CRC2–17 (Figure 2K, red). However, inter-core

variance from any single specimen obtained from rTMAs was

substantially greater (Figure 2K, blue and teal). Only one TMA-

derived measurement, Ki-67 positivity in CK+ cells, exhibited in-

ter-patient variability (18%–61%) greater than the sampling error

betweencores (�30%) (Figures 2K,S2E, andS2F).Moreover, the

sampling error was sufficient in magnitude to lead to false asso-

ciations with patient outcome in Kaplan-Meier analysis

(Figures S2G and S2H).

To determine whether 2DWSI adequately samples a 3D spec-

imen, we computed cell abundances and spatial correlations for

24 Z-sections from CRC1 and compared this to patient-to-pa-

tient variability, estimated from WSIs of specimens CRC2–17

(compare red and blue in Figures S2I and S2J). For all but a

few markers, we found that variance between Z-sections was

substantially smaller than patient-to-patient variability. We

conclude that 2DWSI of a 3D specimen does not, in general, suf-

fer from the same subsampling problem as TMAs or small FOV.

As we show below, however, many mesoscale tumor features

can only be detected in 3D data.

Morphological and molecular gradients involving tumor
phenotypes
To link high-plex image features to histological features with

established prognostic value in CRC, such as the degree of

tumor differentiation (well, moderate, poor), grade (low, high),

subtype (mucinous, signet ring cell, etc.),30 two board-certified
pling

e), and FOXP3+ (green) cells, and exponential fits.

w circle).

(cyan dots); #1–6: annotated ROIs.

size, N/Neff, for marker log-intensities and cell-type compositions.

. Estimates from four cores also shown.

or TMAs from CRC18–93. Box plot displays data points and 1st–3rd quartiles,

denoted as a single data point along a dotted line. Outliers labeled as crosses
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pathologists annotated regions of interest (ROIs) from all 22 H&E

sections of CRC1 and then transferred the annotations to adja-

cent CyCIF images for single-cell analysis. Annotations included

normal colonic mucosa (ROI1); moderately differentiated inva-

sive adenocarcinoma with glandular morphology involving the

luminal surface (ROI2), submucosa (ROI3), or the muscularis

propria at the deep invasive margin (ROI4); regions of poorly

differentiated (high-grade) adenocarcinoma with solid and/or

signet ring cell architecture (ROI5); and regions of invasive

adenocarcinoma with prominent extracellular mucin pools

(ROI6) (Figure 1B). A region with prominent tumor budding (TB)

near margin IM-A was also annotated. Excluding muscle,

CyCIF data showed that solid adenocarcinoma (RO15) had the

highest proportion of CK+ tumor cells (�70%), whereas adjacent

normal epithelium (ROI1) had the fewest CK+ (�25%) and the

most stromal and immune cells.

To identify molecular features corresponding to each histol-

ogy, k-nearest neighbor (kNN) classifiers were trained using mo-

lecular features (CyCIF intensities) on pathology labels; the

CyCIF data comprised only cell positions (centroids) and inte-

gratedmarker intensities, not morphological or neighborhood in-

formation. For simplicity, we consolidated the ROIs into four

classes, with half of the cells in each class used for training

and half for validation. A different classifier was generated for

each pair of CyCIF and H&E images for CRC1–17. We observed

high-confidence predictions from the trained kNN classifier

(Shannon entropy near zero) on the validation set (Figures 3A

and S3A), showing that the classifier had encoded disease-rele-

vant morphology using marker intensity alone. However, no

single molecular marker was unique to a specific ROI or tissue

morphology, implying that morphology is encoded in hyperdi-

mensional intensity features.

Unexpectedly, kNN classifiers scored most regions of CRC1

outside of the training and validation data as comprising a

mixture of morphological classes (as quantified by the posterior

probability), with spatial transitions from one class to another. In

many regions, Shannon entropy values approached two,

demonstrating an equal mixture of all four classes (red in

Figures 3B and S3B). This was not a limitation of the markers

used for classification, because similar results were obtained

with combinations of �100 antibodies used to stain CRC1 sec-

tions 044–047 (Figures S3C and S3D; Table S3). When tumor re-

gions with high Shannon entropy values were examined in H&E,

we found that they corresponded to transitions between clas-

sical morphologies (Figure 3D), including ones from mucinous
Figure 3. Correlation and prediction of morphological and molecular t

(A) Example ROIs corresponding to four tumor morphologies used for training an

trained and validated separately for each section to evaluate model reproducibil

(B) Prediction confidence for the assignment of kNN classes as measured by

assignment [equal mixing]).

(C) Posterior probability that each CK+ cell belongs to the given tumor class. Ann

(D) Left: sample tumor region that transitions from normal to abnormal glandular f

bottom). Contours describe averaged local epithelial cell expression of PCNA. C

(E) PCA of 31 spatially resolved GeoMx transcriptomics regions (areas in Figure

(F) Cumulative distribution of single-cell classification entropy of CRC1–17. Patie

class. Different CRC1 sections used different markers for classification.

(G) Examples of marker gradients; whole tumor sections. White circles denote T

See also Figure S3 and Table S3.
to glandular, mucinous to solid, and glandular to solid. Transi-

tions recurred multiple times in spatially separated tumor areas,

on dimensions ranging from a few cell diameters (�50 mm) to the

whole image (�1 cm) (Figure 3C).

When we performed principal component analysis (PCA) on

31 spatially resolved GeoMx transcriptomic microregions

(with each microregion sorted into CK+ or CK� cells), we also

observed gradations in molecular state for both the tumor/

epithelial (CK+; Figure 3E, circles) and immune/stromal (CK�;
squares) compartments. PC1, the dominant source of variance,

correlated with histological subtype and grade, while PC2 corre-

lated with the epithelial vs. the stromal compartment. In support

of kNN models of CyCIF data, we observed a graded transition

along PC1, from glandular/mucinous (low-grade) to frag-

mented/budding (high-grade) histologies in both the epithelial/

tumor and stromal/immune compartments.

Across all 17 tumors, analysis of CyCIF data revealed intermix-

ing of histologies to a greater or lesser extent, with some tumors

exhibiting contiguous blocks of a single morphology (e.g.,

CRC5), as compared with CRC1-like intermixing in others (e.g.,

CRC14; Figures 3F and S3B). There was no obvious correlation

between the degree of intermixing and MSI-H status (which

promotes genome instability). Thus, the highly characteristic his-

tological phenotypes routinely used for pathology grading are

present in both discrete and intermixed forms in CRCs, most

likely due to epigenetic rather than genetic heterogeneity.

We also found that CyCIF markers exhibited intensity gradi-

ents that in some cases encompassed an entire tumor and in

others coincided with local morphological gradients. Four exam-

ples are shown: a normal-glandular transition corresponding to

E-cadherin and PCNA gradients that are inversely correlated

(Figure 3D left); a mucinous-solid transition coinciding with

inversely correlated cytokeratin 20 and cytokeratin 18 gradients

(Figure 3D center); alternating glandular-solid transitions (Fig-

ure 3D, right, yellow curved arrow); and a glandular-solid transi-

tion coinciding with a graded transition in the levels of histone

acetylation (H3K27ac), or trimethylation (H3K27me3) (Figure 3D,

right, white arrow; also visible in CRC4, CRC5 in Figure 3G).

H3K27ac and H3K27me3 epigenetic markers are known to

play complementary roles in transcriptional regulation,38

providing further evidence of organized epigenetic states in the

TME. Graded expression of the tumor suppressor p53 and onco-

gene EGFR—two genes important for CRC biology—was also

observed (Figure 3G). Of note, the white circles in Figure 3G

are regions of tissue removed for rTMA construction (4 or 5 cores
umor phenotypes

d non-adjacent regions predicted with high confidence. kNN classifiers were

ity.

Shannon entropy (0 corresponds to perfect certainty; 2 indicates random

otation reflects classifier gradients corresponding to morphologic phenotype.

eatures coinciding with transition from E-cadherin expression to PCNA (CyCIF,

enter and right: additional examples of transition regions.

S1A).

nts with only two classes had only normal epithelial and a tumor morphology

MA cored regions.
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per specimen) that we find to lie along a staining gradient. Such

variation between TMAs from a single specimen is often attrib-

uted to random heterogeneity rather thanmolecular and physical

gradients, even though these are known to play essential roles in

normal tissue development.39

TB and molecular transitions at the deep invasive front
For diagnostic purposes, tumor buds are defined by the Interna-

tional Tumor Budding Consensus Conference (ITBCC) as clus-

ters of %4 tumor cells surrounded by stroma and lying along

the invasive front,21 or, less commonly, the non-marginal ‘‘inter-

nal’’ tumor mass.40 Using ITBCC criteria, a pathologist identified

a total�73 103 budding cells in 10 of 17 CRC specimens exam-

ined (representing �0.01% of all tumor cells; Figure 4A, arrows

and boxes highlight examples on H&E, yellow outlines on

CyCIF images indicate segmented budding cells, Figure S4A).

In CRC1, buds were largely confined to one �2.0 3 0.7 3

0.4 mm region of the invasive front (region IM-A, Figure 1B)

near normal colonic epithelium and interspersed with T cells

(Figure 4B). In 3D we found that these ‘‘ITBCC buds’’ were

frequently connected to each other and to the main tumor

mass (Figures 4C, 4D, and S4B; Video S1). Thus, buds as clas-

sically defined appeared to be predominantly cross-sectional

views of these fibrillar structures, as previously suggested from

H&E imaging.41

To analyze these structures objectively, we used Delaunay

triangulation42 to identify CK+ cells (i.e., tumor and normal

epithelium) that were immediately adjacent to each other (Fig-

ure 4E). The smallest Delaunay clusters corresponded to

ITBCC buds, with 1–4 contiguous tumor cells surrounded by

stroma (Figure 4F, red), whereas the largest clusters contained

>104 cells andmapped to regions of poorly differentiated adeno-

carcinoma with solid architecture (primarily tumor cells; yellow

and orange). The widest range of cluster sizes was observed in

differentiated regions with glandular architecture (Figure 4F,

blue green). A key feature of TB cells is that they express low

levels of cell-to-cell adhesion proteins (e.g., E-cadherin, CD44,

Ep-CAM)43 and have a low proliferative index.44,45 We confirmed

that buds matching ITBCC criteria had reduced expression of

adhesion and proliferation markers (Figure S4C). Moreover, a

t-SNE representation of all single-cell data labeled by Delaunay

cluster size showed that CK+ cells in the smallest clusters ex-
Figure 4. Tumor budding is a distributed phenomenon associated with

(A) Left: H&E FOV from CRC1/096 IM-A (Figure 1B); budding cells indicated by b

main tumor mass (red) and canonical tumor buds (yellow).

(B) Different magnifications of annotated budding region (CRC1/097).

(C) CRC1 IM-A 3D overview. Left: surface renderings of glandular tumor (blue),

budding cells (red). Right: all annotated buds colored by budding cell density sh

(D) 3D visualization of annotated buds (purple) relative to connected tumor mass (

images shown in Figure S4B.

(E) Delaunay clusters of CK+ cells in a local FOV (CRC1/097). CK+ cell neighborhoo

buds (white).

(F) Cluster sizes (log2) in CRC1. Left: histogram across all 25 sections. Right: ma

(G) Left: t-SNE of cluster size. Color represents log2 cluster size; black outline den

cell expression of indicated marker intensity.

(H and I) Marker intensity and cluster size. Annotated buds in green. Box plots sh

tumor cells.

See also Figure S4, Table S3, and Video S1.
pressed the lowest E-cadherin levels and that proliferation

markers (e.g., PCNA) were also expressed at low levels (Fig-

ure 4G, circled region). However, tumors in our cohort did not

contain a discrete population of E-cadherin/proliferation-low

budding cells; instead, the expression of E-cadherin, Na-K

ATPase, PCNA, and Ki-67 varied continuously with cluster

size in CRC1 (Figures 4H and S4D) and other CRC tumors

(Figures 4I and S4E).

Inspection of the underlying images (Figures 5A and 5B)

showed that regions of cohesive glandular tumor (which were

associated with large Delaunay clusters and a PCNAhigh state)

were often fragmented into fibrillar structures composed of

smaller clusters with a PCNAlow state. At the terminal tips of

these fibrillar structures we found ‘‘bud-like’’ structures exhibit-

ing the lowest PCNA expression and surrounded by stroma (Fig-

ure 5A) or mucin (Figure 5B, mucins are large glycoproteins that

protect the gastrointestinal epithelium). Analogous transitions

between tumor masses and small Delaunay clusters were

observed throughout the tumor, both at the invasive front

(IM-A in CRC1), in mucinous spaces (IM-B), and along the

luminal surface of the tumor in regions corresponding to disco-

hesive growth with focal signet ring cell morphology (ROI5, Fig-

ure 1B).46 The small Delaunay clusters found inmucin pools were

not distinguishable in size or marker expression from classically

defined buds (Figures 4I and S4E), even though the ITBCC defi-

nition encompasses only clusters in fibrous stroma. Moreover,

GeoMx RNA expression data (Figure 3E) confirmed that regions

with ITBCC buds (brown dots), fragmented tumor and budding

(orange), and budding into mucinous spaces (yellow) were

similar to each other and distinct from other tumor morphologies

(Figure 3E). All three bud-like morphologies expressed elevated

levels of genes in the EMT hallmark gene set (GSEA M5930;

Figure 5C, orange, yellow, brown), consistent with the idea that

loss of cell cohesion occurs frequently across tumors, is associ-

ated with an EMT-like process, and may be driven by a similar

epigenetic program.28 In 2D views, mucin surrounding bud-like

structures is found in pools that appear isolated from each other

(Figure 5D arrowheads).47 In 3D, however, these mucin pools

were frequently continuous with each other and the colonic

lumen up to 1 cm away; in CRC1 this is most prominent in the

central region involving invasive margin IM-B (Figure 5E). Thus,

both the buds and mucin pools visible as isolated structures
graded molecular and morphologic transitions

oxes/arrowheads. Right: corresponding CyCIF (CRC1/097). Outlines indicate

a-SMA+ stroma (purple), normal mucosa (green), CD68+PDL1+ cells (yellow),

owing interconnected fibril-like networks of budding cells.

gray) and cells with uncertain connectivity (green). Corresponding regions in 2D

ds are denoted by edges, along with CK� cells (blue) and pathology annotated

pped onto section 097.

otes small clusters (including annotated buds). Center and right: t-SNE of CK+

ow 1st–3rd quartiles; points beyond not shown. Each box represents �105–106
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are in fact commonly interconnected in 3D; moreover, large

mucin-containing structures can connect to the lumen and its

microbiome.

We conclude that EMT-like transitions and TB in CRC1 is char-

acterized not by the formation of isolated spheres of cells, as first

described by Weinberg and colleagues in tissue culture,48 but

instead by the formation of large fibrillar structures that appear

to be small buds when viewed in cross-section at their distal

tips. Fibrils can invade into several different environments,

including stroma and mucin, and we speculate that their forma-

tion is driven by a gradual (not abrupt) breakdown in cell adhe-

sion associated with a graded EMT-like transition (Figure 5F).

Networks of TLSs and their composition
Anti-tumor immunity involves innate and adaptive mechanisms

that mediate the expansion and activation of cytotoxic T cells

and theproductionofantibodiesbyBcells (plasmacells).Adaptive

immunity occurs within secondary lymph organs (SLOs; e.g.,

Peyer’s patches in colonic mucosa)49 and TLSs, which develop

in non-lymphoid tissues such as tumors and other sites of chronic

inflammation. The presenceof TLSs is associatedwith goodprog-

nosis and immune checkpoint inhibitor (ICI) responsiveness.50,51

Pathology inspection of 47 individual sections of CRC1 (22 H&E

and 25 CyCIF) identified over 900 distinct SLO and TLS domains

in 2D (Figures 6A and S5A). However, we found thatmany of these

domains were interconnected, forming larger 3D structures; for

example, seven large networks (Figure 6B; Video S2), each span-

ning >12 sections and several millimeters laterally, could be

assembled from 20 to 200 individual 2D domains (the final assem-

bly included133 additional smaller SLO/TLS networks; Figures 6C

andS5B). These large TLSnetworks (TLSNs)were foundalong the

invasive fronts (networksA,B, andD), inside tumors (F andG), or in

layers of themuscularis (E) or subserosa (C; the subserosa is peri-

colonic fibroadipose tissue external to the muscularis).

To study the cellular composition of TLSNs, we performed

K-means clustering on CyCIF intensity data (with k = 7 to match

the number of large networks, Figure 6D) and recovered clusters

with the properties of SLOs (cluster 3) near normal mucosa (as

expected for Peyer’s patches) and typical TLS-like lymphoid ag-

gregates within the tumor itself (cluster 1, Figures 6E, 6F, S5C,

and S5D). TLSs undergo maturation and are expected to differ

from one another, but whenwemappedmarker expression clus-

ters onto the physical organization of TLSNs, we found that some

were relatively homogeneous, containing cells from one expres-

sion cluster, whereas others were heterogeneous. For example,

TLSN-C, which was predominantly located in the subserosa,

was >96% composed of expression cluster 7 and showed a

marked predominance of CD45+CD20+ B cells, with little
Figure 5. Small, isolated tumor and mucin structures in 2D are large, c

(A) Example transition frommain tumor mass into fibrils and ‘‘bud-like’’ cells in stro

size from main tumor mass to fibril tips (arrows, budding cells). Image oversatur

(B) Analogous budding structures in mucinous tumor regions, with fibrils and bu

(C) GeoMx data heatmap for selected EMT hallmark genes. Columns correspond

(D) Two H&E FOVs from different regions of reconstructed mucin structure with

(E) Connectivity of mucin pools across serial sections. Largest contiguous mucin

relative to Figure 1B.

(F) Schematic depicting serial sectioning through fibrils at invasive margin, illustra
enrichment of other populations; TLSN-F, which was

found immediately adjacent to the region of TB, was 95%

composed of cluster 6, a cluster involving B cells, numerous

PD1+ cytotoxic T cells, FOXP3+ Tregs, and PDL1+ myeloid cells.

In contrast, TLSN-A, -B, and -D contained mixtures of expres-

sion clusters (Figures 6E and S5C).

To study an intermixed TLSN in greater detail, we projected

marker clusters onto a 3D reconstruction of TLSN-B (Figure 6G),

which involved the greatest number of individual 2D domains

(206) (Figures 6B and S5B). We observed enrichment of myeloid

cells (CD68+CD163+; cluster 4, green) on the mucinous side of

TLSN-B, with enrichment of T cells (CD3+, CD45RO+, CD4+;

cluster 5, yellow) and B cells (CD20+CD45+; cluster 7, red) along

the stromal side (Figure 6G). Inspection of corresponding H&E

images revealed numerous discrete B cell aggregates with asso-

ciated T cells Figure 6I). The impression of graded composition

was confirmed when we performed PCA on marker intensities

and mapped principal component (PC) scores onto the

TLSN-B structure (Figures 6H and S5E).

To extend this analysis, we superimposed marker-based

clustering from CRC1 onto CRC2–17 (Figure S5F) and found

that the prevalence of individual marker clusters varied from

tumor to tumor but was similar for CRC1 and CRC2–17 in aggre-

gate (Figures 6J and 6K). Like CRC1, CRC16, and CRC17 are

MSI-H tumors with rich TLS networks. In CRC16 the area sur-

rounding mucin pools and TLSs was enriched in cells from

marker clusters 4, 5, and 7—as in CRC1 (Figure 6L). From these

data, we conclude that our single 3D reconstruction of a TLS in

CRC1 is a reasonable exemplar of our overall cohort in showing

that: (1) TLSs form interconnected 3D networks rather than the

isolated structures observed in 2D sections, (2) TLS networks

within a single tumor can have different cellular compositions,

and (3) variation in cell types and functional markers within a sin-

gle large TLS network is graded, implying intra-TLS patterning

and communication.

Immune profiling of the invasive margin
The immune response at the tumor margin strongly influences

disease progression and ICI responsiveness.52 Among the three

morphologies found at the CRC1 invasive margin, IM-A, the re-

gion with TB and poorly differentiated morphology, had the

greatest immune cell density (Figure 7A) but was also strongly

immunosuppressive, with abundant CD4+FOXP3+ Tregs partially

localized with CD8+ cytotoxic T cells (Figure 7B). Although

PDL1+ cells were found both inside the tumor and stroma (Fig-

ure 7C), interactions between PDL1+ and PD1+ cells were en-

riched near buds in the stroma (Figure 7D). IM-B exhibited the

least immune cell infiltration, consistent with a role for mucins
onnected networks in 3D

ma; CyCIF (top), H&E (bottom). Na-K ATPase and PCNA decrease with cluster

ated for visualization.

dding cells (arrowheads) extending into mucin pools.

to analyzed region from one tissue section (Figure S1A); morphology indicated.

apparently isolated pools in 2D sections (arrowheads).

network (red) extends to lumen surface (yellow outline). Image mirrored along Z

ting contiguous 3D structures appearing as isolated cells/small clusters in 2D.
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in immune evasion or sequestration.53 IM-C was rich in Tregs but

had very few PDL1+ cells as compared with IM-A (Figures 7C

and 7D).

To quantify relationships between tumor margin morphologies

and molecular properties, we used latent Dirichlet allocation

(LDA), a probabilistic modeling method that reduces complex

structures into distinct component communities (‘‘topics’’) while

accounting for uncertainty and missing data.54–56 We annotated

invasive margins in CRC1–17 for (1) infiltration with TB, (2) deep-

est invasion, and (3) all other morphologies (mucinous fronts

were too infrequent to represent their own category), then

performed LDA on CyCIF data (33-plex immune panel; Fig-

ure S6A).14 We found that LDA topic frequencies varied signifi-

cantly in different regions of the invasive margin (Figures 7E,

S6B, and S6C). Margins with TB were significantly associated

with CD4+ and CD8+ T cells (Figure 7E, topic 1), the deep inva-

sive front with tumor cell proliferation (Ki-67+ CK+ cells; topic

9), and the remainder of the front with podoplanin positivity

(PDPN+; topic 7). PDPN is a short transmembrane protein impli-

cated in cell migration, invasion, and metastasis.57 Fibroblasts

secrete abundant cytokines and growth factors, potentially ex-

plaining the activation of signal transduction (i.e., phosphotyro-

sine [pTyr] and phospho-SRC positivity; topic 10) along this

portion of the tumor margin. In contrast, myeloid cells were ubiq-

uitous, and their frequency (topics 5 and 12) did not significantly

associate with any specific margin morphology. Thus, morpho-

logically distinguishable domains of the CRC invasive margin

have differing levels of tumor cell proliferation (low in buds and

high in deep invasive margins), activation of signaling pathways

(pTyr levels), and immune suppression.

Cell types involved in presenting PDL1 to PD1+ T cells
The immunosuppressive interaction between PD1+ and PDL1+

can be targeted therapeutically in CRC58 and is therefore clini-

cally significant. Across CRC1–17, the fraction of PD1+ cells var-

ied 4-fold (from 3% to 12% of all cells), and these cells were

>80% CD4+ or CD8+ T cells (Figures S6D and S7). The fraction

of PDL1+ cells in the same specimens varied 12-fold (3%–

40%) (Figure S6E) and correlated with the number of PD1+ cells

(r = 0.52, p = 0.034; Z test). Although a small minority (1%–5%) of

tumor cells expressed PDL1, the cells most likely to be PDL1+

were CD68+ (14%–51% positive) and CD11c+ myeloid cells

(10%–88% positive); PDL1+ myeloid cells were also �6.5-fold
Figure 6. 3D TLS structure and cell compositions

(A) 2D TLS domains (CRC1/097); numbers indicate individual TLS/SLO domains

(B) 3D rendering of TLS networks (TLSNs); CRC1. 7 largest TLSNs (A-G)—histog

(C) 3D TLSNs projected onto XY-surface.

(D) TLS domain clustering by K-means (left) and number of domains in each clus

(E) TLS cluster distribution in CRC1; 7 largest TLSNs are outlined/labeled.

(F) Example CyCIF images of TLS clusters 1 and 3.

(G) Left: 3D view of TLSN-B from CRC1 with each TLS domain colored by cluste

in TLSN-B.

(H) 3D view of TLSN-B, colored by principal component 1.

(I) Example CyCIF and H&E images of TLS clusters 4, 5, 6, 7.

(J) TLS domain counts in CRC1–17 (section 097 for CRC1).

(K) TLS cluster heatmap from CRC1–17.

(L) 2D TLS domains of CRC16, colored by clusters.

See also Figure S5, Table S5, and Video S2.
more abundant on average than PDL1+ tumor cells (Figures 7F

and S6E). The sole exception to this rule was CRC17, with

>40% of tumor cells strongly PDL1 positive; this tumor was

also high grade with extensive necrosis and poorly differentiated

solid architecture. t-SNE showed it to be a clear outlier in our

cohort with respect to composition (Figures 7G and S7A–S7C).

Immunotherapy is indicated for MSI-H CRCs because they are

highly immunogenic,59 and we found that MSI-H tumors in our

cohort (n = 16 of 93; see methods) had 5-fold more PDL1+ tumor

cells and 6-fold more PDL1+ myeloid cells on average than

MSI-L tumors (p = 0.044 and 0.002 two-sided t test, Figure 7H),

but the latter still outnumbered the former �4-fold. Moreover,

�80% of MSI-H tumors had more PDL1+ myeloid cells than

the average MSI-L tumor (Figure 7H). Across the CRC cohort,

we found that single positive CD68+CD11c� or CD68�CD11c+

and double positive CD68+CD11c+ cells were commonly

PDL1+, although the relative abundance of each myeloid subset

varied several fold (Figures S6F and S6G). We do not have the

markers in our panels to subtype more precisely PDL1+ myeloid

populations, but our interpretation is that they include variable

proportions of macrophages, dendritic cells, and other mononu-

clear phagocytes.

Functionally, it is not the prevalence of PDL1+ cells that is rele-

vant for T cell suppression but ratherwhich cells are close enough

for PDL1:PD1 binding. To study this, we performed proximity

analysis using a 20-mm cutoff and found that, across 24 CRC1

sections, cells interacting with PD1+ cells were strongly enriched

for CD45+ and depleted for CK+ (p < 0.001 pairwise t test, two-

sided), showing that PD1+ T cells interact with PDL1+ immune

cells more commonly than PDL1+ tumor cells. This was also

true of CRC2–16, with CRC17 representing the sole exception

(Figure 7J, red lines). Cells interacting with PD1+ cells were also

significantly more likely to be CD44+ (an adhesion receptor60)

and HLA-A+ than non-interacting cells. Co-localization of

CD68+PDL1+ myeloid cells with PD1+CD8+ T cells was also

confirmed by co-occurrence mapping in CRC1 (Figure 7K, upper

panel). Finally, high-resolution optical sectioning of 12-plex

CyCIF provided direct evidence of PDL1+ on myeloid cells co-

localizing with PD1+ T cells at the tumor margin, consistent with

the formation of functional cell-cell interactions (Figure 7L). We

conclude that immunosuppression of PD1+ T cells in our CRC

cohort most commonly involves PDL1+ myeloid cells, not tumor

cells. Nevertheless, PDL1-expressing tumor cells may also be
in this section.

ram shows number of individual TLS identified in 2D sections from each.

ter (right).

r. Right: cross-sectional views of XY (top) and XZ (bottom) show TLS domains
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involved in immune suppression in some tumors: the 3%of tumor

cells that express PDL1 in CRC1 are concentrated at the budding

margin near T cells (Figures 7K, lower panel and 7M).

DISCUSSION

Understanding intra-tumor heterogeneity (ITH) is essential for

improving our knowledge of tumor biology and for optimizing

diagnosis and therapy.61 The image-based single-cell analysis

described in this paper supports two broad conclusions about

the nature and organization of ITH in CRC. First, molecular states

(protein markers) and tissue morphologies (histotypes) are often

graded, with phenotypic transitions spanning spatial scales from

a few cell diameters to many millimeters. For example, gradients

in the epigenetic markers H3K27me3 and H3K27ac can span

several centimeters along an entire tissue specimen. These pro-

teins play complementary roles in regulating transcription,38 and

we find that their levels are commonly anti-correlated. In other

cases, changes in cellular phenotypes are graded or recur in a

semi-periodic manner, reminiscent of the ‘‘reaction-diffusion’’

morphogen gradients observed in embryonic development,62

by imaging,63 and by mass spectrometry of human tissue.64

Second, cellular communities most commonly studied in 2D at

a local level are often organized into large, interconnected 3D

structures. These structures include: (1) 1–4 cell tumor buds,

which are cross-sectional views of fibrillar structures41 that ex-

press progressively lower levels of cell adhesion and prolifera-

tion markers as the fibrils narrow along the proximal-to-distal

axis; (2) intertumoral mucin pools, which are surrounded by tu-

mors in 2D but comprise 3D networks that can connect to the in-

testinal lumen and its microbiome; (3) TLSs, which are strongly

implicated in anti-tumor immunity65 and form 3D interconnected

networks with graded molecular and cellular composition. The

presence of large- and small-scale gradients involving contin-

uous variation in cell states is consistent with the control of tissue

development66 but is little studied in cancer biology, which em-

phasizes the enumeration of discrete cell states and mutations

using sequencing.

When a machine learning (kNN) model involving high-plex in-

tensity data was trained by a pathologist to distinguish morphol-

ogies, such as glandular vs. solid and high vs. low-grade tumor,

we found that archetypal morphologies used in diagnosis were
Figure 7. Immune landscape of CRC and its invasive margins

(A–C) Abundance and distribution of (A) CD45+, (B) CD4+FOXP3+(Treg), CD8
+(Tc)

(D) Co-occurrence of PDL1+ and PD1+ using a 20 mm distance cutoff. (A)–(C) an

(E) LDA topics and relative abundancies along the tumor margin.

(F) PDL1 expression in indicated cell types. Top panel represents relative fractions

fractions of PDL1+ or double-marker-positive cells.

(G) Representative images of PDL1+CK+ cells in CRC1 (top) and CRC17 (lower).

(H) Plot of PDL1+CK+ (top) or PDL1+CD68+ cell fractions in MSI-H or MSI-L sam

(I and J) Fraction of PDL1:PD1 interaction (20 mm) within CK+ (top) and CD45+ (

sections) or (J) CRC1–17 (n = 17).

(K) Co-occurrence maps using 20 mm distance cutoff.

(L) High-resolution 3D imaging of PDL1:PD1 interaction among tumor and mye

software.

(M) Schematic illustrating tumor-immune interactions at different types of invasi

terquartile range; medians indicated. Outliers labeled crosses (F) and (H), circles

See also Figures S6, S7, and Table S3.
graded and intermixed across different specimens. The degree

of intermixing did not appear to correspond to MSI-H (hypermu-

tant) vs. MSI-L status, suggesting that epigenetics plays a

greater role than genetics in this form of ITH. We also found

that differences in morphology did not map to differences in sin-

gle markers, but instead to hyperdimensional features involving

combinations of multiple proteins. We therefore speculate that

themorphological gradients observed in tissue specimens result

from the aggregate action of several underlying molecular

gradients, which may include epigenetic regulators, oncogenes,

cytokines, and nutrients.

Graded changes in protein expression along tumor cell fibrils

is one setting in which molecular and morphological gradients

are coincident and likely related. The diagnostic criterion for a tu-

mor bud is the presence of 1–4 cell clusters at the tumor invasive

margin, surrounded by stroma21 and expressing EMT-like signa-

tures consistent with a role in infiltration and metastasis.48 How-

ever, like an earlier H&E study,41 we find that buds in CRC1 are

most likely cross-sectional views of the narrow distal tips of

fibrillar structures projecting from a tumor mass. By quantifying

these structures with Delaunay triangulation, we observe pro-

gressively lower E-cadherin and Ki-67 levels from the widest

(proximal) to the narrowest (distal) fibril segments, as well as

morphologically similar fibrils in other regions of the tumor,

including as projections into the mucin network. This recurrence

of morphological transitions is consistent with an epigenetic

origin for bud-like states.67,68

Ensuring adequate spatial power for tissue imaging
To date, most analysis of high-plex tissue images has focused on

reconstructing small neighborhoods of cells, particularly from

TMAs and small FOVs. However, we find that even local proximity

analysis is confounded by poor statistical power due to spatial

correlation,which arises from the spatial organization of the struc-

turesweseek tocharacterizewithhigh-plex imaging.Whereas the

number of independent samples in a set of dissociated cells (e.g.,

in scRNA-seq) is equal to the number of cells (N), the central limit

theorem tells us that the effective sample size (Neff) for spatially

correlateddatawill alwaysbesmaller.37 InCRCs,weobserve cor-

relation length scales up to �500 mm, making Neff 100- to 1,000-

fold smaller thanN. Thus,TMAsandmm-scaleFOVsoftencontain

only one or a few instances of a feature of interest, resulting in
, and (C) PDL1+ cells; TB (tumor budding); labels correspond to Figure 1B.

d (K) depict CRC1/097.

of PDL1+ cells over indicated populations, while bottom panel shows absolute

ples from TMA data (CRC2–93).

bottom) cells; p values from pairwise t test shown (n = 25). (I) In CRC1 (all 25

loid cells. Top: maximum intensity projections. Bottom: 3D rendering, Imaris

ve margins. Boxplots 25%–75% with whiskers extending at most to 1.53 in-

(E).
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measurement errors that are substantially greater than the pa-

tient-to-patient variability. This ‘‘spatial power’’ penalty is even

more severe for complex properties, such as neighborhood inclu-

sion and exclusion, and is sufficient to generate spurious correla-

tions with Kaplan-Meier survival estimators.

In contrast, 2D WSI (�105 cells per specimen) largely

overcomes this problem (Neff > 100) for the characterization

of local neighborhoods. WSI is also the standard in conventional

pathology69 and is regarded by the FDA as a diagnostic neces-

sity.70,71 The argument for WSI has not conventionally had a sta-

tistical foundation and is instead justified by the need to view cell

morphologies in the overall context of the tumor and adjacent

normal tissue as part of the tumor, node, metastasis (TNM) stag-

ing system,2 the performance of which is only rarely exceeded by

the addition of molecular data. However, the two arguments are

fundamentally similar. Our data show that 3D reconstruction pro-

vides additional insight into the large-scale connectivity of biolog-

ical structures, but for relatively straightforward tasks such as

cell-type enumeration, 2D WSI is often adequate. A requirement

forWSI in a research and diagnostic setting comeswith substan-

tial cost: per-patient datasets are >102-fold larger than thosewith

TMAs and cohorts are more difficult to acquire (whole blocks

must be accessed and recut).

Immunology of the CRC invasive margin
Themorphology and depth of invasion of a tumor margin has high

prognostic value,30 and differences between infiltrative and well-

delineated pushing margins are commonly used for patient man-

agement.72 We find that the immune environment can vary sub-

stantially within a single tumor and recurrently with margin

morphology across specimens. Budding regions are the most

T cell-rich, but also the most immunosuppressive (with abundant

Tregs and PDL1-expressing cells). Whereas tumor buds have few

proliferating cells, tumor cells in deep invasive margins are highly

proliferative and have fewer immediately adjacent immune cells.

Because MSI-H CRC is often treated with ICIs, the mechanism

of PDL1-mediated suppression of T cells at the tumor margin is

particularly relevant.58 In all but one of the 17 CRCswe examined,

PDL1-expressing myeloid cells outnumbered PDL1-expressing

tumor cells 4-fold or more; high-resolution imaging also showed

that myeloid cells frequently form PDL1:PD1-mediated contacts

with PD1+ T cells. These findings are consistent with recent data

from mouse models of colon cancer showing that dendritic cells

are a primary source of immunosuppressive PDL1,73 consistent

with a known role for dendritic cells in tolerization. However, the

relative abundance of PDL1+ cells proximate to T cells varies

from tumor to tumor, suggesting that dendritic cells are not the

only relevant PDL1+ myeloid population. Moreover, although

PDL1+ tumor cells were rare in all but CRC17, these cells may

also play an immunosuppressive role because they are often

concentrated in regions of TB. An obvious question requiring

follow-up studies is whether the type of cell presenting PDL1 to

T cells plays a role in responsiveness to ICIs.

Limitations of the study
Only one CRC has as yet been reconstructed in 3D, largely

because the process remains manual and slow, and many of

the features we describe in 3D—TB fibrils, TLS networks, and
378 Cell 186, 363–381, January 19, 2023
invasivemargins—would benefit from deeper molecular profiling

to better identify cell types and states. There are many spatial re-

lationships among the 2 3 108 cells in our dataset that we have

not yet explored. Moreover, the state of the art in image segmen-

tation and cell-type calling continues to improve, arguing for

future reprocessing of primary images using the best available

methods. To mitigate these and other limitations, all images

described in this study have been released in multiple formats.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Donkey anti-Rat IgG (H+L) Highly

Cross-Adsorbed Secondary

Antibody, Alexa Fluor 488

Thermo Fisher RRID: AB_2535794

Donkey anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 555

Thermo Fisher RRID: AB_162543

Donkey anti-Mouse IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 647

Thermo Fisher RRID: AB_162542

Anti-CD3 antibody [CD3-12] Abcam RRID: AB_2889189

Na,K-ATPase a1 (D4Y7E) Rabbit mAb Cell Signaling Technology Cat#: 23565 RRID: Pending

Monoclonal Mouse Anti-Human CD45R0 Dako RRID: AB_2237910

Ki-67 (D3B5) Rabbit mAb

(Alexa Fluor� 488 Conjugate)

Cell Signaling Technology RRID: AB_2687824

Pan Cytokeratin Monoclonal Antibody

(AE1/AE3), eFluor 570, eBioscience�
Thermo Fisher/ eBioscience RRID: AB_11218704

Alpha-Smooth Muscle Actin Monoclonal

Antibody (1A4), eFluor 660, eBioscience�
eBioscience RRID: AB_2574362

Recombinant Anti-CD4 antibody

[EPR6855] (Alexa Fluor� 488)

Abcam RRID: AB_2889191

PE anti-human CD45 Antibody Biolegend RRID: AB_2562057

Recombinant Anti-PD1 antibody

[EPR4877(2)] (Alexa Fluor� 647)

Abcam RRID: AB_2728811

CD20 Monoclonal Antibody (L26),

Alexa Fluor 488, eBioscience�
eBioscience RRID: AB_10734357

CD68 (D4B9C) XP� Rabbit mAb

(PE Conjugate)

Cell Signaling Technology RRID: AB_2799935

CD8a Monoclonal Antibody (AMC908),

eFluor 660, eBioscience�
eBioscience RRID: AB_2574149

Recombinant Anti-CD163 antibody

[EPR14643-36] - C-terminal

(Alexa Fluor� 488)

Abcam RRID: AB_2889155

FOXP3 Monoclonal Antibody (236A/E7),

eFluor 570, eBioscience�
eBioscience RRID: AB_2573609

PD-L1 (E1L3N�) XP� Rabbit mAb

(Alexa Fluor� 647 Conjugate)

Cell Signaling Technology RRID: AB_2728832

E-Cadherin (24E10) Rabbit mAb

(Alexa Fluor� 488 Conjugate)

Cell Signaling Technology RRID: AB_10691457

Vimentin (D21H3) XP� Rabbit mAb

(Alexa Fluor� 555 Conjugate)

Cell Signaling Technology RRID: AB_10859896

Recombinant Alexa Fluor� 647

Anti-CDX2 antibody [EPR2764Y]

Abcam RRID: AB_2889213

Lamin A/C (4C11) Mouse mAb

(Alexa Fluor� 488 Conjugate)

Cell Signaling Technology RRID: AB_10997529

Recombinant Alexa Fluor� 488

Anti-Lamin B1 antibody [EPR8985(B)] -

Nuclear Envelope Marker

Abcam RRID: AB_2728786

Recombinant Alexa Fluor� 555

Anti-Desmin antibody [Y66] -

Cytoskeleton Marker

Abcam RRID: AB_2890164

(Continued on next page)
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Recombinant Anti-CD31 antibody

[EPR3094] (Alexa Fluor� 647)

Abcam RRID: AB_2857973

PCNA (PC10) Mouse mAb

(Alexa Fluor� 488 Conjugate)

Cell Signaling Technology RRID: AB_11178664

Ki-67 Monoclonal Antibody (20Raj1),

eFluor 570, eBioscience�
eBioscience RRID: AB_11220088

Collagen IV Monoclonal Antibody

(1042), Alexa Fluor 647, eBioscience�
Thermo Fisher/ eBioscience RRID: AB_10854267

CD11c (D3V1E) XP� Rabbit mAb #45581 Cell Signaling Technology RRID:AB_2799286

Granzyme B (Concentrate) clone GrB-7 Agilent RRID:AB_2114697

Recombinant Alexa Fluor� 647

Anti-HLA A antibody [EP1395Y]

(ab199837)

Abcam RRID:AB_2728798

Phospho-Rb (Ser807/811) (D20B12)

XP� Rabbit mAb (Alexa Fluor� 555

Conjugate) #8957

Cell Signaling Technology RRID:AB_2728827

Phospho-Tyrosine Mouse mAb

(P-Tyr-100) (Alexa Fluor� 647

Conjugate) #9415

Cell Signaling Technology RRID:AB_10693160

Alexa Fluor� 647 anti-Podoplanin

(Lymphatic Endothelial Marker) Antibody

Biolegend RRID:AB_2810816

CD44 (156-3C11) Mouse mAb

(PE Conjugate) #8724

Cell Signaling Technology RRID:AB_10829611

p53 Protein (Concentrate) Clone DO-7 Agilent RRID:AB_2206626

EGF Receptor (D38B1) XP� Rabbit mAb

(Alexa Fluor� 488 Conjugate) #5616

Cell Signaling Technology RRID:AB_10691853

CDX2 (D11D10) Rabbit mAb (Alexa

Fluor� 555 Conjugate) #84638

Cell Signaling Technology RRID:AB_2797879

Tri-Methyl-Histone H3 (Lys27) (C36B11)

Rabbit mAb (PE Conjugate) #40724

Cell Signaling Technology RRID:AB_2799182

Recombinant Alexa Fluor� 647 Anti-

Histone H3 (acetyl K27) antibody

[EP16602] (ab245912)

Abcam Cat# ab245912, RRID: pending

Purified anti-TIF1b (KAP-1, TRIM28)

Phospho (Ser473) Antibody

Biolegend RRID:AB_2563298

CD11b Monoclonal Antibody (C67F154),

Alexa Fluor� 488, eBioscience�
Thermo Fisher RRID:AB_2637200

Alexa Fluor� 488 anti-human

CD15 (SSEA-1) Antibody

Biolegend RRID:AB_493257

Anti-CD14 antibody [EPR3653]

(Alexa Fluor� 647)

Abcam RRID:AB_2890135

Collagen IV Monoclonal Antibody

(1042), Alexa Fluor 647, eBioscience�
Thermo Fisher/eBioscience RRID: AB_10854267

Biological samples

FFPE tissue block and frozen tissue (CRC1) Cooperative Human Tissue

Network, Western Division

N/A

FFPE tissue blocks (CRC2-93) Department of Pathology,

Brigham and Women’s Hospital

N/A

Software and algorithms

MCMICRO pipeline (de0d76d7cf08

70f1ed979722a465de0fc246b90b)

https://doi.org/10.1101/

2021.03.15.435473

https://github.com/labsyspharm/

mcmicro
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ImageJ (1.53c) https://doi.org/10.1038/

nmeth.2019

https://imagej.nih.gov/ij/

MATLAB 2019b Mathworks Inc. https://www.mathworks.com/

products/matlab.html

Minerva Story https://doi.org/10.1038/s41551-

021-00789-8 and https://doi.org/

10.21105/joss.02579

https://github.com/labsyspharm/

minerva-story

Deposited Data

Human Tumor Atlas Network https://humantumoratlas.org/ https://humantumoratlas.org/explore
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RESOURCE AVAILABILITY

Lead contact
Requests for further information should be directed and will be fulfilled by lead contact, Peter Sorger (peter_sorger@hms.

harvard.edu).

Materials availability
This manuscript contains no unique reagents or resources; all antibodies are available commercially (see Table S3 and key re-

sources table).

Data and code availability
d All full resolution images, derived image data (e.g., segmentationmasks) and all cell count tables are available via theNCI-spon-

sored repository for Human Tumor Atlas Network (HTAN; https://humantumoratlas.org/). A version of this data with additional

annotations and visualizations is available at https://github.com/labsyspharm/CRC_atlas_2022 (https://doi.org/10.5281/

zenodo.7506942).

d Several of thefigurepanels in thispaper areavailablewith textandaudionarration for anonymouson-linebrowsingusingMINERVA

software,(Rashid et al.)34 as are images of CRC2–17; see https://www.tissue-atlas.org/atlas-datasets/lin-wang-coy-2021/.

d scRNA-seq data is available in the Gene Expression Omnibus (GEO accession: GSE166319).

d All software used in this manuscript is freely available via GitHub as described in Schapiro et al.31 and references therein and in

https://github.com/labsyspharm/CRC_atlas_2022.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
The tumor and adjacent normal tissue in CRC1was collected from a resection of the cecumof a 69-year oldmale; themedical reports

indicated that the tumor was a poorly differentiated stage IIIB adenocarcinoma (pT3N1bM0) 34 with microsatellite instability (MSI-H)

and a BRAFV600E (c.1799T>A) mutation. Additional colon adenocarcinoma specimens were retrieved from the archives of the

Department of Pathology at Brigham and Women’s Hospital (BWH) with Institutional Review Board (IRB) approval (IRB21-0656)

as part of a discarded/excess tissue protocol (Table S1). 92 different tumor samples (CRC2-93) were used to construct a tissue mi-

croarray (HTMA 402; four 0.6mmdiameter cores were extracted from the FFPE donor blocks per patient and assembled into a recip-

ient TMA block). The average patient age was 58.7 years (range 25-98), including 46 males (49.5%) and 47 females (50.5%), with no

known relevant underlying pathologic conditions (e.g., inflammatory bowel disease, Lynch syndrome, polyposis syndromes). The

cohort included 88 primarily diagnosed tumors (94.6%), and 5 recurrent tumors (5.4%). Whole-slide sections of 16 of these colon

adenocarcinoma specimens (CRC2-17) were also analyzed, after the four cores were removed. Clinical metadata was abstracted

from the BWH medical record and clinical and biospecimen metadata for CRC1 was provided by the CHTN.

METHOD DETAILS

Tissue samples
Unfixed (fresh) tissue from a resection of a colon adenocarcinoma (CRC1) was isolated by the Cooperative Human Tissue Network

(CHTN) for single cell RNA-sequencing. A portion of the sample was formalin-fixed and paraffin-embedded (FFPE) and tissue sec-

tions were generated by the CHTN as outlined in Table S2. Data related to CRC1 indicates section number as CRC1/section#. For

CRC1, 106 serial sections were cut from an �1.7 x 1.7 cm piece of FFPE tissue and 22 H&E and 25 CyCIF images were collected,
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skipping some sections to increase the total dimension along the Z-axis. Histopathology review showed that the tumor had a broad

front invading into underlying muscle (muscularis propria) and connective tissue giving rise to a ‘budding margin’ (IM-A) adjacent to

an area of normal colonmucosa (ROI1), a ‘mucinousmargin’ in themiddle of the specimen (IM-B), and a deep ‘pushingmargin’ (IM-C)

(these three margins are denoted ‘‘A’’, ‘‘B’’ and ‘‘C’’ in Figure 1B).

CyCIF protocol
Tissue-based cyclic immunofluorescence (CyCIF) was performed as previously described.8 The detailed protocol is available in pro-

tocols.io (https://doi.org/10.17504/protocols.io.bjiukkew). In brief, the BONDRX Automated IHC/ISH Stainer was used to bake FFPE

slides at 60�C for 30 minutes, to dewax the sections using the Bond Dewax solution at 72�C, and for antigen retrieval using Epitope

Retrieval 1 (LeicaTM) solution at 100�C for 20 minutes. Slides underwent multiple cycles of antibody incubation, imaging, and

fluorophore inactivation. All antibodies were incubated overnight at 4�C in the dark. Slideswere stainedwith Hoechst 33342 for 10mi-

nutes at room temperature in the dark following antibody incubation in every cycle. Coverslips were wet-mounted using 200 mL of

10%Glycerol in PBS prior to imaging. Images were acquired using a 20x objective (0.75 NA) on a CyteFinder slide scanning fluores-

cencemicroscope (RareCyte Inc. SeattleWA). Fluorophores were inactivated using a 4.5%H2O2, 24mMNaOH/PBS solution and an

LED light source for 1 hour.

Single-cell RNA-sequencing
Samples for scRNA-seq were processed according to the HTAN publication.35 Surgical tissues were removed and placed into RPMI

solution and transported directly to the processing laboratory within 10 minutes. Tissue samples were immediately minced to

approximately 4 mm2 and washed with DPBS. The samples were then incubated in chelation buffer (4 mM EDTA, 0.5 mM DTT) at

4�C for 1 hour and 15 minutes. Then, the resulting suspensions were dissociated with cold protease and DNAse I for 25 minutes.

The suspensions were triturated throughout the process, every 10 minutes, then washed three times with DPBS before encapsula-

tion. Single cells were encapsulated and barcoded using the inDrop scRNA-seq platform as previously described,74 targeting about

2,500 cells. Sequencing libraries were prepared using TruDrop library structure.75 Sequencing was performed on the NovaSeq 6000

(150 bp paired end) at a depth of approximately 150 million reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing and data quantification
Image analysis was performed with the Docker-based NextFlow pipeline MCMICRO)31 and with customized scripts in Python, Im-

ageJ andMATLAB. All code is available in GitHub (https://github.com/labsyspharm/CRC_atlas_2022). Briefly, after raw images were

acquired, stitching and registration of the different tiles and cycles was performed with MCMICRO using the ASHLARmodule.32 The

assembled OME.TIFF files from each slide were then passed through quantification modules. For background subtraction, a rolling

ball algorithm with 50-pixel radius was applied using ImageJ/Fiji. For segmentation and quantification, UNMICST2 was used31,76

supplemented by customized ImageJ scripts8 to generate single-cell data. More details and source code can be found at www.

cycif.org and as listed in the software availability section.

Single-cell data quality control for CyCIF
Single-cell data for multiplexed images was passed through several quality control (QC) steps during generation of the cell feature

table. Initial QCwas done simultaneously with segmentation and quantification, so that cells lost from the specimen in the later cycles

would not be included in the output. Next, single-cell data was filtered based on the mean Hoechst staining intensity across cycles;

cells with coefficient of variation (CV) greater than three standard deviations from themeanwere discarded as were any objects iden-

tified by segmentation as ‘‘cells’’ but having no DNA intensity. These steps are designed to eliminate cells in which the nuclei are not

included as a result of sectioning. Highly autofluorescent (AF) cells (measured in cycle 1 or 2) were also removed from the analysis,

using a customized MATLAB script that applied a Gaussian Mixture Model (GMM) to identify high-AF populations. More details and

scripts are available at https://github.com/labsyspharm/CRC_atlas_2022.

Cell-type identification using CyCIF data
Multiparameter single-cell intensity data was used for generating binary gates. For the main CyCIF panels, 16 measurements (cyto-

keratin, Ki-67, CD3, CD20, CD45RO, CD4 CD8a, CD68 CD163, FOXP3, PD1, PDL1, CD31, a-SMA, desmin, and CD45) were sub-

jected to binary gating. All samples and markers were gated independently. A customized MATLAB script was used to apply

2-component Gaussian Mixture Modeling and generate the initial gate, followed by human-inspection and adjustment. Double or

triple gates were also generated via Boolean operation in single-cell data. For hierarchal cell-type identification, a modified

SYLARAS algorithm77 was applied with these datasets, and a total of 21 different cell types were assigned using the 16 markers

described above. Additional markers (e.g., E-cadherin) were considered to be continuous variables and used for analysis but not

cell-type assignment. The completed cell dictionary for cell-type identification can be found in Table S4.
Cell 186, 363–381.e1–e8, January 19, 2023 e4
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Pathology annotation of histologic features
Hematoxylin and eosin (H&E) stained tissue sections from all specimens (CRC1-17) were evaluated by two board-certified pathol-

ogists (S.C., S.S.). For each case, 6 principle regions of interest (ROI) corresponding to histopathologic regions or morphologic var-

iations defined in the pathologic evaluation of CRC were defined when present for all 22 H&E Z-levels, including: (1) normal mucosa;

(2) moderately differentiated invasive adenocarcinoma (glandular, typical morphology) involving the luminal surface, (3) submucosa

(corresponding to ‘pT2’ depth by TNM staging), and (4) muscularis propria (corresponding to ‘pT3’ by TNM staging); (5) poorly differ-

entiated invasive adenocarcinoma (solid, signet ring cells, corresponding to ‘high-grade’ histology); and (6) moderately-poorly differ-

entiated invasive adenocarcinoma with mucinous features and extracellular mucin pooling (6). Regions of ITBCC-defined tumor

budding (i.e., clusters of%4 cells apparently detached from the main tumor mass surrounded by stroma at the tumor invasive front)

were also annotated in CRC2-17 and on all 22 H&E Z-levels of CRC1. For CRC2-17, additional histologic features that were not pre-

sent in CRC1 were also annotated when present, including: adenoma (tubular), tumor necrosis, comedo necrosis, squamoid, pleo-

morphic, and extensive signet ring cell tumor morphology, and perineural or lymphovascular invasion by tumor. In cases with clear

anatomic orientation, the deep invasive tumor front was initially delineated as a bandwith an approximatewidth of 5-10 cell diameters

(50-100 mm) at the deep edge of the tumor. In cases with multiple histologic subtypes present at the invasion margin, each type was

annotated separately; in CRC1, this included IM-A (budding/infiltrative), IM-B (mucinous), and IM-C (pushing) margins, with similar

notation used in other cases. Tertiary lymphoid structures were defined in each case by identifying aggregates of lymphoid cells on

H&E and correlating with CD20, CD4, and CD8 immunofluorescence (CyCIF) to identify discrete aggregates of B cells with adjacent

or intermixed T-cell populations, including both immature/early TLSwithout histologic evidence of well-formed germinal centers, and

more mature TLS with germinal center formation.78

Pathologist-annotated budding cells and delaunay cluster-sizes of cytokeratin+ cells
Using ITBCC criteria, a trained pathologist annotated budding regions in CRC1 (n = 25) and CRC2-17 (n = 16) from both CyCIF and

H&E images. These selected ROIs were used in the data analysis, and CK+ cells in these areas were labelled as ‘‘budding tumor

cells.’’ In cluster size analyses, a neighborhood graph was constructed for all segmented cell centroids using Delaunay triangulation,

removing edges whose lengths were greater than 20 mm. Then, the CK+ neighborhood graph was defined as the subgraph restricted

to the CK+ cells (i.e., removing all nodes and edges connected to CK- cells). The cluster size of each CK+ cell was defined as the

number of nodes in its connected component of the subgraph. For quantification of marker expression dependence on cluster-

size, cells annotated as normal colon mucosa (ROI1) were removed from the CK+ subgraph. In the 25 CRC1 Z-sections, cells in

the upper-left corner of the image (1 cm x 1 cm) were also removed; this region contained CK+ cells of reactive, benign, and meso-

thelial origin, as opposed to tumor cells of interest.

Biased downsampling based on cluster-size for t-SNE visualization
By definition, most tumor cells have a large cluster-size. Therefore, to visualize the cluster-size dependence of marker expression

with t-SNE, we downsampled cells in Figure 4G by stochastically rejecting cells at frequency 1 � ð1=ncÞ4, for cluster-size nc. The

power of 4 was chosen empirically to balance the representation of various cluster sizes. Final t-SNE plots weremade by further sub-

sampling 1,000 cells from each section uniformly. The t-SNE plots in Figure 4G were computed using the following markers: Na-K

ATPase, Ki-67, cytokeratin, PDL1, E-cadherin, vimentin, CDX2, lamin ABC, desmin, and PCNA.

kNN-classification of epithelial cell morphologies trained on pathologist annotations
To develop a kNN classifier for pathologist-annotated regions of interest (ROIs), epithelial cells were defined by gating using a uni-

variate, 2-component Gaussian Mixture Model on the relevant marker (cytokeratin, cytokeratin 19, cytokeratin 18, or E-cadherin) in

each section. A kNN-classifier was trained on the annotated, epithelial cells using CyCIF marker expression as predictors, and an-

notated ROI labels as responses. Markers that exhibited unexpected optical artefacts or significant tissue loss were not used (see

below for specific markers that were excluded). Learning and prediction were performed using MATLAB’s fitcknnðÞ and predictðÞ
functions, with k = 40 neighbors. The prior probability of each label was set as uniform. In each section, there were at least 2,000

annotated cells for each label. Annotated cells were split 50/50 into training and validation sets. Posterior probability colors in Fig-

ure S3C (panels in right column) were visualized based on its vector of classification posterior probabilities ðp1;p2;p3;p4Þ, for 1:
normal, 2: glandular classes, 3: solid, and 4: mucinous. The RGB-values of each cell were then defined as:

ðR;G;BÞ = ðp2;p3;p4Þ =maxðpiÞ
to capture the relative weight of each class.

For the sections in the primary CRC1 dataset (e.g., section 044), the following markers were used as predictors: Na-K ATPase,

Ki-67, keratin, PDL1, E-cadherin, vimentin, CDX2, lamin, desmin, PCNA, autofluorescence; see paragraph below for further details

on included and excludedmarkers. For CRC1 section 046, whichwas stainedwith an extended antibody panel, the followingmarkers

were used as predictors: cyclin B1, cytokeratin 20, cytokeratin 18, NUP98, cytokeratin 8, PDL1, acetyl-tubulin, p62, pan-cytokeratin,

lamin A/C, tubulin. For sections CRC1 sections 045 and 047, which were also stained with different extended antibody panels, we

used all artefact-free markers (totaling 29 and 36 respectively). For CRC2-17, the entire antibody panel was used.
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In the primary dataset, for kNN classification we excluded Hoechst, CD3, CD4, CD20, CD163, CD45, CD68, FOXP3, CD45RO,

a-SMA, PD1, CD8a, CD31, collagen, and autofluorescence as being irrelevant to tumor-intrinsic feature expression. The Ki-67

(D3B5) Rabbit mAb was included because it showed superior staining to another Ki67 antibody (Ki67_570) which was excluded.

For CRC1 section 045, we excluded Hoechst and autofluorescence. CK17 was excluded due to staining artefacts. CK14, alternate

pERK, Cyclin B1, Perforin, MAP2, GFAP, Cyclin A2, p-mTOR, Cyclin E were excluded due to tissue loss in the final cycles. For CRC1

section 046, we excluded Hoechst, autofluorescence, CD3, CD4, CD57, CD163, IBA1, CD16, CD11c, CD45, CD68, CD11b, CD11a,

CD1a, Granzyme B, CD14, PD1, HLA-A, CD8a, and CD31 as irrelevant to tumor extrinsic programs. PAX5, POLR2A, NFATc1, PAX8,

and phospho-BTK were excluded due to tissue loss in late cycles. VEGFR2 was excluded due to the presence of staining artefacts.

For CRC1 section 047, we excluded Hoechst, autofluorescence, and CD20 as irrelevant to tumor expression. EZH2, phospho-CDK,

E2F1, FOXA2 were excluded due to staining artefacts.

Contour plots of epithelial cell marker expression gradients
Contours represent level sets for the average marker expression of the 400 nearest tumor cells, and were computed using the

MATLAB contour() function.

3D registration of CRC1 serial sections
All CyCIF sections were registered using a custom script written in MATLAB 2018 (MathWorks). Briefly, each section was first regis-

tered using a rigid transformation followed by elastic deformations starting at section 012 and cascading towards the top and bottom

sections. For the rigid transformation, an early cycle Hoechst signal with minimal artefacts from each section was selected. All chan-

nels were padded by an equivalent of 1,600 pixels along all borders when registering at full resolution. Rigid transformation required

consistent landmarks across all sections. Therefore, we identified two such features: the edge of the mucosa section and a point

where it transitions into the stromal region. This region was annotated on several downsampled sections, providing training data

for a UNet model to estimate fuzzy locations of the transition point and the mucosal edge. Starting from section 012 and taking

the centroid of each fuzzy estimate as that section’s transition point, all 25 sections were aligned by translation. Each section was

then rotated around the transition point until the fuzzy estimates for the edge of the mucosa region overlapped maximally between

sections. For subsequent elastic deformation, wemanually selected between 25-35 control points across each section. Most control

points were located near the site of budding cells. Then, using local weighted means with these control points via the fitgeotrans()

MATLAB function, we applied a deformation starting from section 012 towards section 001 and 025. Finally, we applied Demon’s

algorithm to refine registration further. Images were downsampled by a factor of 0.25 and histogram matched, before applying

the imregdemons() MATLAB function with an accumulated field smoothing of 1.5 and downsampling with 7 pyramid levels. Demon’s

algorithm was applied starting from section 12.

3D visualization of registered CRC1 serial sections
Using Imaris, images were Gaussian-blurred, and an intensity threshold was applied to define regions (e.g., CK+). Connectivity of

buds or mucin pools were defined on blurred, thresholded voxels.

Virtual TMA cores and fold-change in effective sample size N/Neff

Virtual TMAs (vTMA) were constructed from whole-slide sections by randomly selecting a central cell and including all cells within

500 mm of the central cell’s centroid as one core. For each vTMA core, a matching, uniform random sample was generated from

the whole-slide section with an equal number of cells. The standard-errors of the mean from vTMA (i.e., regional) sampling (sTMA)

or random sampling (srandom) were estimated from the means of 1,000 cores and their matched, random samples. The effective sam-

ple size N/Neff was defined as the square of the standard-errors’ ratios:

s2
TMA

�
s2
random:

Spatial correlation functions and predicting standard-error of regional sampling
For each sample (whole-slide, virtual TMA core, or real TMA core), spatial correlation functions CABðrÞ were calculated for a pair of

variables A;B and a nearest-neighbor index r. Specifically, CABðrÞwas given by the Pearson correlation between cells’ A-values and

their rth – nearest neighbors’B-values. Each r index was associated to the average, inter-cell-centroid distance dðrÞ of all rth – nearest
neighbors in a sample. Correlations were computed up to r = 200. Each CABðdðrÞÞ was fit to an exponential c0 expðc1dÞ for param-

eters c0;c1, over the range of 5< r < 200 to avoid spurious correlations between adjacent cells that may arise from image segmen-

tation errors. Correlation strength was defined as c0, and length scale l = � 1=c1. Fits were performedwith the fitðÞMATLAB function

with default options. We subsequently estimated the standard-error of the mean of a variable A for a regional sample of N correlated

cells as follows. First, we computed the N3Nmatrix of inter-cellular distances dij, and then computed the N3N correlation matrix SN

between cells using the fit of the spatial correlation function CAAðdÞ. By the Central Limit Theorem for weakly-dependent variables,79

we expect the standard- error of the mean for N samples to be
ffiffiffiffiffiffiffiffiffiffiffij SN jp

=N, for j SN j the sum of all entries in SN.
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Scaling analysis of fold-change in effective sample size N/Neff

For a variable A with variance s2 = 1, the fold-change N/Neff is defined as:

N

Neff

=
s2
TMA

s2
random

=
j SN j�N2

1=N
=

j SN j
N

:

The final term can be interpreted as the sum of correlations between an average cell and all other cells in the sample region R.

Choosing a coordinate system with an average cell at the origin, we approximate the sum as an integral:

j SN j
N

z

ZR
dnx CAAðjxjÞrðxÞ
=

ZR
dnx c0 expð � jxj = lÞrðxÞ:

Where rðxÞ is the density of cells, and n is the spatial dimension of the regional sample. If we assume a uniform density rðxÞ � 1= lncell
for a cell length scale lcell, and change variables in the integral to eliminate the length scale l, we have:

j SN j
N

� c0

�
l

lcell

�nZR0

dnu expð�uÞ;

which gives us a scaling relation with which we can roughly estimate N/Neff from parameters:

N

Neff

� c0

�
l

lcell

�n

:

Variance between patient TMAs due to sampling error and an optimal score
For any given cell-type’s%-composition, we computed the variance of estimates from the whole-slide tumor regions of each patient,

s2patient, and the variance of estimates from TMA cores, s2TMA. We considered s2patientto be the biological variance of s2TMA, and remain-

ing variance to be residual error from sampling, s2sampling. Percent of variance explained by sampling was given by s2sampling= s2TMA. For

the hypothetical scenario of averaging 4 cores, s2sampling would be 4-fold lower, and percent variance explained was given by

ðs2sampling =4Þ= ðs2sampling =4 + s2samplingÞ. Outliers in each distribution, as indicated in each boxplot, were excluded from the variance

calculations.

Immune profiling, LDA analysis, and PDL1:PD1 interaction
For CRC1-17 whole-slide sections stained with the immune panel, multiparameter single-cell intensity data was used to generate

binary gates (for 30 of 33 markers). LDA analysis for spatial topic analysis was performed using MATLAB fitlda function. In brief,

the single-cell data of each sample was split into 200 microns x 200 microns grids, and the positive frequency for each marker

was calculated for each grid. The pooled frequencies of all samples were used to train the final LDA model, and 16 topics were iso-

lated. To determine PDL1:PD1 interactions in single-cell data, the cell neighbors within 20 microns were identified with a k-nearest

searching algorithm. The PDL1+ cells with PD1+ cells in proximity were labeled as ‘‘PD1+ interactors.’’ Themarker expression of PD1+

interactors and other PDL1+ cells were compared as described. In Figure 7F (top panel), number PDL1+ cells with indicated subsets

(any, CK+, CD68+, and CD11c+) were divided by the total cell number in the given subset. In Figures 7I and 7J, the positive ratios were

calculated by the positive cell number of indicated markers (CK+, CD45+, HLA-A+, and CD44+) normalized with the PDL1+ cells in

either interacting or non-interacting groups.

scRNA-seq data analysis
Following sample demultiplexing from the sequencer, reads were filtered, sorted by their barcode of origin, and aligned to the refer-

ence transcriptome to generate a counts matrix using the DropEst pipeline.80 Barcodes containing cells were identified using drop-

kick.81 Batches were combined and consensus non-negative matrix factorization (cNMF82) was performed to identify metagenes in

the resulting cell matrix, assigning ‘‘usage’’ scores for each factor to all cells. The factors or metagenes contain gene loadings that

rank detected genes by their contribution to each factor, which are shown on UMAP embeddings in descending order. CytoTRACE83

was also run using the web portal at https://cytotrace.stanford.edu/ to calculate ‘‘stemness’’ or cellular plasticity scores based on

genetic diversity. Leiden clustering84 and PAGA85 graph construction was performed on principal component analysis of the normal-

ized and arcsinh-transformed raw counts matrix (PMID: 32375029, PMID: 33982010). A two-dimensional UMAP86 embedding was

then generated using SCANPY87 based on principal component analysis and initial cluster positions determined by PAGA.
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GeoMx RNA spatial transcriptomics
We used the GeoMx� Cancer Transcriptome Atlas (CTA) to profile RNA expression levels of�1,800 genes from 32 selected regions

(Figure S1A) from an FFPE tissue section of CRC1 using methods described by the manufacturer (NanoString Technologies, Seattle,

WA). Probes were collected separately from CK+ and CK- cells and processed using cDNA library preparation methods. The library

was then sent for sequencing with Illumina NovaSeq 6000. QCwas performed using vendor-provided software. 31 of the 32 samples

passedQC, and these datasets were used for downstream analysis. Probe counts were normalized with the total counts in each con-

dition and used for principal component analysis and hierarchical clustering.

Schematic diagrams
Schematics in Figures 1B, 5F, and 7M were made with BioRender.
Cell 186, 363–381.e1–e8, January 19, 2023 e8
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Figure S1. Overview of dataset and connection between cell-type calling and underlying morphologies, related to Figure 1

Design of GeoMx experiment.

(A) 32 regions were selected from one tissue section of CRC1 (31 passed quality control and analyzed). Representative images of the regions are shown (right

panels). Scale bars: 2 mm in left panel; 200 mm in the zoomed in views; and 200 mm in the right panels showing representative morphologies.

(B) Representative images of main antibody panel from CRC1. (Blue: DNA stain with Hoechst 33342.) Scale bars, 100 mm.

(C) Cell typesmapped across CRC1, section 097. Cell-type definitions andmain classification markers are as indicated. A detailed marker/reference dictionary is

presented in Table S4.

(D) Variation in composition of each annotated ROI across all sections of CRC1 for the same three main classes of cell types as listed in Figure S1C (tumor

epithelium, stroma, and immune). Boxplot represents 25%–75% and whiskers extend at most to 1.53 interquartile range. Outliers and medians are shown

as dots.

(E) UMAP plot of scRNA-seq data generated from CRC1, and cell types identified by Leiden clustering (see STAR Methods).

(F) Marker-guided sub-clustering was performed as described in STAR Methods. Positive cells are highlighted in yellow.
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Figure S2. Impact of TMA sampling error, related to Figure 2

(A) FOV portraying four different correlation length scales and strengths for CK+, FOXP3+, a-SMA+, and CD163+ cells. Four circles with radii denoting the length

scale parameters.

(B) Scaling law estimates of N/Neff for CK
+, FOXP3+, and a-SMA+ based on the scaling law in Equation 1 (shaded colored boxes represent lcell = 7–13 mm, l from

fits) compared to 0.6 mm vTMA cores (colored bars).

(C) Correlation of select cell-type pairs among 10 nearest neighbors.

(D) Correlation functions between select cell-type pairs as estimated from virtual tissue microarrays (vTMAs) or random sampling, overlaid with the correlation

functions from four cores (from Figure 2I).

(E) Percent variance in real TMA (rTMA) estimates of cell-type abundance that can be attributed to sampling error, after removing outliers. Expected improvement

from sampling four cores per tumor is shown in yellow.

(F) FOVs of patient sections with low and high Ki-67+ cell abundance. Circles show the length scale of Ki-67+ cells.

(G and H) Kaplan-Meier (KM) curves for progression-free survival (patients CRC2–17), calculated from TMAs (left) and whole-slide images (WSI, right). (G) KM

curves generated from data stratified with a-SMA+ percentage (cutoff 40%) in each patient sample. (H) KM curves generated from data stratified with mean CD4

expression level (cutoff: 3,500 arbitrary fluorescence units [AFU]) in each patient sample.

(I) Variation of cell-type composition between sections of a single tumor (CRC1) and sections from different patient tumors (CRC2–17). Section sampling error is

typically a minority of the variance between patient sections.

(J) Variation of cell-type spatial correlation strengths and length scales across CRC1 Z-sections (blue) and across patients CRC2–17 (red). Inmost cases, variation

within a patient is smaller than that between patients and shows no signs of bias. Boxplots in (C), (I), and (J) represent 25%–75% and whiskers extend at most to

1.53 interquartile range. Outliers are labeled as dots or crosses and medians shown as dots or lines.
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Figure S3. kNN-classification of epithelial histology, related to Figure 3

(A) Precision and recall of morphology classifiers trained on CRC1 sections.

(B) Normalized Shannon entropy of cells in the CRC sections indicated in Figure 3F.

(C) (Left) Shannon entropy of kNN-classification for cells in CRC1. Normal cells from normal colon epithelium (ROI1) have low-entropy, indicating high-confidence

classification. Regions used for training were also high confidence, as expected by definition. Most tumor regions were classified as being between classes, i.e.,

having high entropy. (Right) The relative weight of each class is visualized by hue.

(D) Dimensional reduction of subsampled single-cell expression fromCK+ cells by t-SNE, with pathologist annotations indicated by color. Each of the four marker

panels provide enough information to cluster normal epithelial cells (black) separately from tumor cells, despite limited overlap in markers between panels

(indicated by Venn diagram). Different annotations roughly occupy different regions of expression space, indicating that expression and morphology are

correlated, but tumor cells largely form a continuous distribution, supporting the existence of mixed morphologies.
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Figure S4. Tumor bud characterization, related to Figure 4

(A) Proportion of pathology annotated budding cells among CK+ cells across each of the sections.

(B) CyCIF image with location of 3D viewpoints corresponding to Figures 4C and 4D. Arrow represents approximate viewing angle in those figures.

(C) Differential expression ofmarkers in cells annotated as tumor buds. The relative expression of indicatedmarkers is represented in the heatmap as the log2 ratio

of budding tumor cells to all tumor cells.

(D) Log-intensity of markers and their dependency on cluster size in CRC1 tumor cells across all 25 sections (as in Figure 4H). Expression of annotated buds

shown in green for reference. Box plots show 1st–3rd quartiles; points beyond are not shown. Each box represents �105–106 cells.

(E) Log-intensity of markers and their dependency on cluster size for tumor cells in CRC2–17 (as in Figure 4I).
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Figure S5. 3D TLS structures and clusters, related to Figure 6

(A) 2D projection of TLS networks (TLSNs) across all sections of CRC1 (left panel), and the section-by-section view of TLS networks in nine selected sections (right

panels).

(B) The number of TLS per 3D TLS network (top) and the number of the total of 25 slides in which a particular TLS network was identified (bottom).

(C) TLS domain cluster composition in each section of CRC1.

(D) Representative H&E images of TLS domain clusters 1 and 3, the same regions as shown in Figure 6F (serial section shown).

(E) 3D view of TLSN-B, colored by principal component 2 (PC2) (PC1 shown in Figure 6H).

(F) t-SNE plots of all TLS domain clusters fromCRC1 (25 sections) andCRC2–17 (16 sections), colored by samples (left panel) or TLS domain clusters (right panel).
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Figure S6. LDA analysis of immune composition, related to Figure 7

(A) 16 LDA topics from CRC1–17, immune panel (33 antibodies). Representative markers are shown in red and black text (the size of label for each marker is

proportional to its probability within each of the topics).

(B) Two-way hierarchal clustering between LDA topics and pathology annotated regions. The cell/topic counts from all pathologist-annotated ROIs as well as

marker-defined ROIs (*) were clustered with full lineage and Euclidean distancing.

(C) The fractions of topics in three selected regions of the invasive margin across all samples (a subset of the topics is shown in Figure 7E). Boxplots represent

25%–75% and whiskers extend at most to 1.53 interquartile range. Outliers and medians are labeled as dots.

(D) Fractions of PD1+ cells in selected populations. The percentage of PD1+ cells in total/any cells or cell groups selected with indicated markers were plotted

sample by sample (CRC1–17).

(E) Fractions of PDL1+ cells in selected populations. The percentage of PDL1+ cells in total/any cells or cell groups selected with indicated markers were plotted

per CRC sample.

(F) The fractions of PDL1+ cells in myeloid subsets. Box plot showing the percentage of PDL1+ cells in CD68+CD11c�, CD68�CD11c+, and CD68+CD11c+ per

sample (boxes indicate 1st–3rd quartiles and whiskers extend at most to 1.53 interquartile range; red lines indicate median).

(G) Relative frequency of PDL1+ myeloid subsets in each sample. The numbers of CD68+CD11c�, CD68�CD11c+ and CD68+CD11c+ cells in PDL1+ population

were calculated, and the relative abundancy (divided by sum) of each subset is shown.
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Figure S7. Cell composition in CRC2–17, related to Figure 7

(A) t-SNE plots based on CyCIF data for specimens CRC1–17 (excluding data from the DNA staining). Cell types are shown at the bottom of the figure. Tumor/

epithelium (T/E), stroma (S) and immune (I) populations are outlined in black. The t-SNE plot for CRC1 is reproduced from Figure 1E for reference.

(B) t-SNE of CRC1–17 labeled by specimen identity with labeling by general cell type in upper right.

(C) Cell-type composition for CRC1–17 shown as stacked bar graphs with the same color code as in (A).
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