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Abstract 

Lung squamous cell carcinoma in situ (SCIS) is the pre-invasive precursor lesion of lung 

squamous cell carcinoma (SCC). Only half of these lesions progress to invasive cancer, while a 

third undergo spontaneous regression. The ability to predict the evolution of SCIS lesions can 

significantly impact the management of lung cancer patients.  

Here, we present the use of the deep learning (DL) approach in order to predict the progression 

of SCIS. The dataset consisted of 112 H&E stained whole slide images (WSI) that were obtained 

from the Image Data Resource public repository. The data set corresponded to tumors of patients 

who underwent biopsies of SCIS lesions and were subsequently followed up by bronchoscopy 

and CT to monitor for progression to SCC. We show that a deep convolutional neural network 

(DCNN) can predict if a SCIS lesion will progress to SCC. The model achieved a per-tile AUC 

of 0.78 (SD = 0.01) on the test set, an F1 score of 0.84 (SD = 0.05), and a sensitivity of 0.94 (SD 

= 0.01). Class activation maps were created in order to explore how the DCNN made decisions.  
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To our knowledge, this study is the first to demonstrate that DL has the ability to predict the 

evolution of SCIS from H&E WSI. DL has the potential to be used as a low-cost method that 

could provide prognostic information for patients with preinvasive lesions. 

Introduction 

Lung cancer is the leading cause of cancer mortality, with an estimated 1.8 million deaths per 

year (1). Squamous cell carcinoma of the lung (SCC) accounts for about 20% of all lung cancers 

and is more heavily associated with smoking than lung adenocarcinoma (2). It usually occurs in 

the proximal part of the airway and originates typically from the basal cells of the bronchial 

mucosa (3). SCC shows numerous genetic alterations but only a few clinically actionable driver 

mutations, in contrast to lung adenocarcinoma, which has several targetable driver mutations 

such as EGFR, ALK, and ROS1 (4). Squamous cell carcinoma in situ (SCIS) is the preinvasive 

precursor lesion of SCC. Given the fact that 30% of SCIS undergo spontaneous regression, the 

clinical management of patients that present with SCIS is challenging and often results in 

overtreatment (5). Usually, patients have multiple comorbidities, further complicating clinical 

decisions (6). 

In recent years, low-dose helical CT screening seems to offer a promising way to improve 

survival in SCC (7). Unfortunately, a CT scan might not always detect preinvasive lesions  (5). 

The ability to predict which SCIS will progress to SCC would be invaluable to help guide further 

monitoring and treatment. Previous studies have characterized the molecular profiles of SCIS in 

order to predict if they will progress to SCC or spontaneously regress (8). Nonetheless, given the 

fact that progressive and regressive lesions are indistinguishable from each other, morphology 

was not directly used to predict progression. 

DL is a subfield of machine learning that uses artificial neural networks (ANN) in order to learn 

patterns from highly complex data. ANN are non-linear statistical models that are loosely based 

on biological neural networks and have achieved tremendous success in various pattern 

recognition tasks (9). Medical imaging and especially histopathology are ideal for analysis via 

DL techniques due to their high information density (10). Researchers have used DL to classify 

various tumors, predict molecular alterations directly from H&E stained images, and estimate 

survival from histomorphology (11) (12) (13). Histopathology images can thus be data-mined for 
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a wealth of clinically actionable data, some of which could hold information regarding the 

natural history of certain lesions. 

In this study, we apply a DL approach to H&E stained images in order to predict which SCIS 

lesions will evolve and progress to SCC and which lesions will regress. To our knowledge, this is 

the first study that uses DL on pathology images in an attempt to predict the course of a 

preinvasive lesion. It is our hope that this study will drive other researchers to explore the use of 

DL on WSI in order to predict the evolution of other preinvasive precursor lesions. 

Materials and Methods 

Dataset 

We used a publicly available WSI dataset from patients with SCIS (14), obtained from the Image 

Data Resource public repository (15). This represents the largest cohort of patients with these 

types of lesions. The cohort consisted of patients with SCIS that underwent conservative 

management, with autofluorescence bronchoscopy being performed every 4 months and CT 

scans every 12 months. Treatment was only performed when a SCIS lesion progressed to 

invasive cancer, as demonstrated by histopathology (8) (16).  The dataset consisted of 112 H&E 

stained WSI in SVS format and the corresponding regression or progression label. Of these, 68 

corresponded to lesions that progressed to invasive cancer and 44 to lesions that underwent 

regression. 

Image preparation 

In order to build the image dataset used in training the deep convolutional neural network 

(DCNN), regions of interest containing the lesions were selected by a thoracic pathologist. At 

this point, in order to prevent data leakage generated by having images from the same patient 

used for both training and testing, a test dataset consisting of 20% of the WSI was generated by 

random sampling. Tiles of 256 x 256 pixels at 20x magnification were cropped from the WSI 

using a custom script (Figure 1). The number of tiles per WSI varied depending on the size of the 

biopsy and the size of the lesion. The final dataset contained 11130 images. Of these, 7907 

images were from lesions that progressed to invasive cancer and 3223 from lesions that 

regressed. The training dataset had 8800 images, while the test dataset contained 2330 images. In 

order to improve the generalizability of the model, various data augmentation techniques such as 
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random vertical flipping, random horizontal flipping, random rotations and color jitter were 

applied to the images. 

 

 

 

 

 

 

 

 

 

 

 

 

Deep learning method 

The training dataset was used to train a modified ResNet18 network architecture (17). Our DL 

library of choice was PyTorch (18). A training/validation split of 80/20 was used, with model 

hyperparameters being tuned according to results obtained on the validation set. The fully 

connected portion of the ResNet18 model contained a dropout layer with a dropout frequency 

rate of 0.7 in order to prevent overfitting. The model was pretrained on ImageNet and then fine-

tuned on the training data using a stochastic gradient descent optimization algorithm with a 

learning rate of 10-3 for 5 epochs, after which the learning rate was decreased to 10-4 for another 

5 epochs (19). At this point, the model had already reached convergence. The per-tile 

performance metrics used were: F1 score, AUC (area under the receiver operating characteristic 

curve), recall (sensitivity) and precision. F1 score was included due to the limited interpretability 

of AUC when faced with an imbalanced classification problem. The F1 score takes into account 

Figure 1: Examples of images used to train the model 
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both recall and precision and is equal to 2 x (precision x recall) / (precision + recall). The mean 

and standard deviation obtained across 5 random seeds were reported. We applied t-distributed 

Stochastic Neighbor Embedding (t-SNE) on test data to map the high dimensional information 

used by the DCNN onto the two-dimensional plane, in order to see how well the model separates 

the data. In order to gain insight into the regions in the images that are the most relevant for 

model decision making, we also created class activation maps (CAM) of the predicted classes 

(20).  

Code availability 

All of the code used for image preparation as well as model training and testing is available at 

https://github.com/ohalon/SCISEvo. 

Results 

The model achieved a mean per-tile AUC of 0.784 with a standard deviation (SD) of 0.01 

(Figure 2). The selected threshold probability for progression was 0.5. The DCNN model also 

yielded an F1 score of 0.84 (SD = 0.05), a sensitivity (recall) of 0.94 (SD = 0.01) and a precision 

of 0.76 (SD = 0.007). Figure 3 represents the confusion matrix obtained from the classification 

results, showing a low percentage of false negatives for detecting progression, which leads to 

high sensitivity.  

 

 

 

 

 

 

 

 

 

Figure 2: Receiver operating characteristic curve for the model 
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The t-SNE plot revealed 2 clusters of images corresponding roughly to the progression and 

regression classes. The progression cluster was tighter and contained relatively few images with 

regression, in agreement with the model’s good performance in detecting progression. The 

regression cluster was more spread out and contained a large number of cases with progression, 

indicating the difficulty of the model in separating the regression images (Figure 4). 

 

 

 

 

 

 

 

 

 

CAMs were created for a number of random examples of both correct and incorrect 

classifications. These activation maps can aid in obtaining discriminative image regions that are 

used by the DCNN to classify an image. Areas colored in yellow represent regions of the image 

that are deemed important by the model (Figure 5).  

Figure 3: Confusion matrix of the model 

Figure 4: t-SNE plot for the model classification 
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Discussion 

The inability to predict the evolution of SCIS creates problems in the management of patients 

that are diagnosed with these lesions. Considering the fact that 30% of SCIS regress and never 

become invasive carcinomas, overtreating these lesions is an issue. Currently, there are no 

histologic criteria in place for making such a prediction. Even though previous studies have 

managed to find molecular markers that are predictive for progression, molecular assays are still 

difficult to implement at scale, especially in the developing world, where the incidence of SCC 

of the lung is higher (21). The ability to upload photos of SCIS lesions taken from slides to a 

cloud-based prediction algorithm could facilitate access in resource-poor settings. Here, we 

present a DL based approach which relies only on H&E stained WSI that managed to reach a 

Figure 5: Class activation maps for progression and regression 

Progression - incorrectly classified 

Progression - correctly classified 

Regression - correctly classified 

Regression - incorrectly classified 
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per-tile classification AUC of 0.78 and sensitivity (recall) of 0.94. Our approach proved to be 

very capable of detecting the progression of SCIS to SCC, as shown by the high sensitivity and 

the clusters suggested by the t-SNE analysis. The F1 score of 0.84 highlights the fact that the 

model is accurate even when factoring in the imbalanced dataset. Given that our model was 

trained using a very small dataset by the standards of a DCNN, we believe that DL is a 

promising tool for predicting the progression of preinvasive lesions.  

We also generated class activation maps in order to understand the inner workings of the model. 

Explainability is a key aspect to take into account when it comes to the adoption of artificial 

intelligence (AI) in pathology. In the future, the creation of feedback loops between the 

pathologist and the models used will be vital for increasing accuracy, decision-making 

transparency and providing a pathologist-centered AI model. Various methods of visualizing the 

way DL models generate their predictions could also aid the pathologist in the discovering new 

morphologic clues. 

The study has certain limitations. Our dataset only consisted of 112 WSI out of which we 

managed to extract 11130 images. DL models are very data hungry and their performance 

increases when provided with more data (22). To create even more powerful predictive models, 

more data would be needed. However, sizeable cohorts like the one that our data came from are 

very rare as they require performing invasive procedures as well as a long follow-up period. 

Collaboration and pooling of smaller in-house cohorts would be needed to generate larger 

datasets on which even more accurate models could be trained. 

 

Conclusion 

In conclusion, our study suggests that DL could be used to predict the evolution of SCIS. We 

believe this approach could be used to generate similar predictions about other preinvasive 

precursor lesions in other organs, using only H&E stained WSI. As more and more countries 

adopt screening programs and larger databases of these lesions will become available, DL has 

the potential to become part of the screening toolkit and to be a high throughput and low-cost 

way of providing patients and clinicians with more prognostic information. 
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