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Increasing demand for imaging combined with a shortage 
of radiologists in many regions of the world has led to 

growing interest in implementing deep learning classifiers 
into radiology workflows (1–4). Classifiers implemented in 
these settings must perform safely and equitably.

Commercial and open-source radiology classifiers are 
increasingly available and have been developed using da-
tasets that are reported to be unbiased with well-estab-
lished ground truth (5,6). Despite this, decreased per-
formance when implementing classifiers in new clinical 
settings and previously unseen data, also known as a gen-
eralization gap, is well established (7–11). A recent sys-
tematic review showed that most external testing studies 
in radiology demonstrate modestly decreased algorithm 
performance (12). In addition, most external testing 
studies are conducted on small datasets, which may not 
provide sufficient information on the generalizability of 
these models, especially for underrepresented subgroups 

or less common abnormalities (13). Subgroup analysis 
on protected attributes has become a critical task because 
state-of-the-art chest radiograph classifiers have demon-
strated bias against certain patient subgroups (14,15). Al-
though overall performance is important, health systems 
have a mandate to ensure equity and fairness in health 
care delivery (16).

Thus, we present a large-scale (n = 197 540) external 
testing of four state-of-the-art deep learning chest radio-
graph classifiers (14) (three trained on the three largest 
publicly available chest radiograph datasets—the CheX-
pert Image [1], MIMIC-CXR [17], and Chest X-ray-14 
[18] datasets—and one proprietary third-party classifier) 
in a binary classification task. We pursued robust subgroup 
analysis on patient, setting, and pathology subgroups to 
provide the best understanding of performance and respect 
the mandates of clinicians, health system engineers, and 
policymakers alike.

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose: To externally test four chest radiograph classifiers on a large, diverse, real-world dataset with robust subgroup analysis.

Materials and Methods: In this retrospective study, adult posteroanterior chest radiographs (January 2016–December 2020) and associ-
ated radiology reports from Trillium Health Partners in Ontario, Canada, were extracted and de-identified. An open-source natural 
language processing tool was locally validated and used to generate ground truth labels for the 197 540-image dataset based on the 
associated radiology report. Four classifiers generated predictions on each chest radiograph. Performance was evaluated using accuracy, 
positive predictive value, negative predictive value, sensitivity, specificity, F1 score, and Matthews correlation coefficient for the overall 
dataset and for patient, setting, and pathology subgroups.

Results: Classifiers demonstrated 68%–77% accuracy, 64%–75% sensitivity, and 82%–94% specificity on the external testing dataset. 
Algorithms showed decreased sensitivity for solitary findings (43%–65%), patients younger than 40 years (27%–39%), and patients 
in the emergency department (38%–60%) and decreased specificity on normal chest radiographs with support devices (59%–85%). 
Differences in sex and ancestry represented movements along an algorithm’s receiver operating characteristic curve.

Conclusion: Performance of deep learning chest radiograph classifiers was subject to patient, setting, and pathology factors, demonstrat-
ing that subgroup analysis is necessary to inform implementation and monitor ongoing performance to ensure optimal quality, safety, 
and equity.

Supplemental material is available for this article.
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dataset size (19). To perform labeling at scale, we used multi-
class natural language processing (NLP) tools to classify local 
radiology reports into one or more of 14 categories. These 
categories included the following: (a) 12 pathology classes; 
(b) a support device class; and (c) a “no finding” class, a catch-
all category indicating the absence of any clinically relevant 
abnormality. Because findings on chest radiographs represent 
a “long-tailed” distribution with few common findings and 
many uncommon findings, the “no finding” class was trained 
by the NLP tool developers to represent 53 additional find-
ings beyond the 12 pathology classes (eg, osteopenia, aortic 
aneurysm) (20,21). If the “no finding” class was positive, the 
image was considered to be absent of any abnormality, in-
cluding the “long tail,” and was labeled normal; if the “no 
finding” class was negative, abnormality was present, and the 
image was labeled abnormal.

We validated the performance of two open-source NLP clas-
sifiers (the CheXpert [1] and CheXbert [22] NLP labelers) on 
radiology reports at our institution by comparing predicted clas-
sifications to manual annotations. In contrast to original studies 
that used only the report’s summary or conclusion, our analysis 
included the entire report because of variation in report struc-
tures across institutions and radiologists. For this analysis, Tril-
lium Health Partners radiology reports were manually classified 
by two independent investigators (M. Ahluwalia and J.S., both 
3rd-year medical students), and conflicts were resolved through 
consensus. Reports that solely described a lack of interval change, 
referred to findings in other scans, or could not be interpreted 
by one or more NLP or image classifiers were excluded. A total 
of 502 reports were included (similar in number to CheXpert 
Image’s test-set size of 500) (1).

To measure the effect of NLP error on image classification 
performance, we compared the performance of each image classi-
fier on the 502-image dataset against each type of report label (ie, 
manual, CheXpert, and CheXbert). Recognizing that radiology 
reports incorporating information from previous scans may bias 
NLP algorithm performance, we also determined image classifier 
performance on chest radiographs that were the first for a patient 
in the dataset (ie, with no comparison). This analysis was restricted 
to emergency department and outpatient chest radiographs.

Image Classifier Performance
We performed external testing of three open-source state-
of-the-art chest radiograph disease classification models 
(trained on the largest publicly available chest radiograph da-
tasets: CheXpert Image [1], MIMIC-CXR [17], and Chest 
X-ray-14 [18]) and one proprietary third-party model by 
comparing predictions to ground truth measurements deter-
mined by the CheXpert NLP labeler on associated radiology 
reports. These classifiers have been shown to be state-of-the 
art in chest radiograph classification when compared with 
other models trained on the same datasets (14). To enable 
direct comparisons between algorithms, each with different 
schemas, we collapsed multiclass predictions into a single 
binary prediction (ie, normal or abnormal) (23). The pres-
ence of support devices was not considered an abnormality. 
The operating thresholds were taken “as-is” from the model 

Materials and Methods

Study Design
This study was approved by the Research Ethics Board at Tril-
lium Health Partners, with waiver of informed consent. The 
algorithm developers had no role in the design, analysis, or re-
porting of this study.

We retrospectively included consecutive patients older than 
age 18 years between January 2016 and December 2020 who 
underwent posteroanterior chest radiography at Trillium Health 
Partners, a high-volume, full service, three-site hospital system 
that serves the ethnically diverse population of Mississauga, On-
tario, Canada.

All chest radiographs were extracted from our picture archiving 
and communication system. Data necessary for subgroup analysis 
were extracted, and remaining Digital Imaging and Communica-
tions in Medicine (DICOM) metadata elements were removed. 
Associated radiology reports were also extracted, and regular ex-
pression functions were used to de-identify names and dates.

A total of 293 881 posteroanterior chest radiographs were ini-
tially included. Duplicate studies were removed, leaving 207 963 
chest radiographs. Images that could not be read by one or more 
algorithms were excluded, leaving a final dataset of 197 540 chest 
radiographs (Tables 1, 2).

“Ground Truth” Extraction from Radiology Reports
Although multiple human annotations are the reference stan-
dard for ground truth generation, they are costly and limit 

Abbreviations
DICOM = Digital Imaging and Communications in Medicine, 
EHR = electronic health record, ICU = intensive care unit, MCC = 
Matthews correlation coefficient, NLP = natural language process-
ing, NPV = negative predictive value, PPV = positive predictive 
value

Summary
Chest radiograph classifier performance varied in patient, setting, and 
pathology subgroups, demonstrating that subgroup analysis is critical 
during external testing to identify gaps that affect safe and equitable 
deployment.

Key Points
 ■ Four state-of-the-art chest radiograph classifiers showed lower sen-

sitivity on younger patients (an absolute 33% decrease), emergen-
cy department patients (an absolute 12% decrease), and patients 
with a solitary abnormality (an absolute 27% decrease).

 ■ Receiver operating characteristic analysis showed that subgroup 
performance can represent different locations on an operating 
curve, differences that may be obscured by classifiers with single 
performance metrics.

 ■ Open-source natural language processing tools performed ad-
equately (accuracy of 94%, precision and sensitivity > 90%) as 
a scalable means to extract ground truth from chest radiograph 
reports.

Keywords
Conventional Radiography, Thorax, Ethics, Supervised Learning, 
Convolutional Neural Network (CNN), Machine Learning Algo-
rithms 
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model is used in the setting of imbalanced classes or subgroups 
to help readers interpret performance metrics such as accuracy, 
positive predictive value (PPV), and negative predictive value 
(NPV), which can be falsely inflated or deflated (eg, a model 
with 90% accuracy in a population with 10% prevalence of 
disease does not demonstrate much skill).

developers; to permit external testing, the models were not 
altered or retrained.

To aid in result interpretation, a random classifier that ran-
domly associated a normal or abnormal prediction to each 
image with a rate equivalent to overall prevalence was used 
as a reference point (Table 1). This type of “dummy” baseline 

Table 1: Characteristics of the 197 540-Image Dataset Used to Evaluate Chest 
Radiograph Classifiers

Subgroup Normal Abnormal Total

Overall 101 002 (51) 96 538 (49) 197 540
Patient age
 >65 y 23 231 (31) 54 027 (69) 77 258 (39)
  40–65 y 49 532 (59) 33 875 (41) 83 407 (42)
 <40 y 28 239 (76) 8636 (24) 36 875 (19)
Patient setting
 Emergency 53 267 (63) 31 213 (37) 84 480 (43)
 Inpatient 8301 (32) 17 369 (68) 25 670 (13)
 Outpatient 35 741 (46) 42 216 (54) 77 957 (39)
 Intensive care unit 840 (28) 2140 (72) 2980 (2)
 No location specified 2849 (44) 3595 (56) 6444 (3)
EHR-identified sex
 Male 48 401 (49) 49 760 (51) 98 161 (50)
 Female 52 595 (53) 46 774 (47) 99 369 (50)
Name-based ancestry
 Greater European 64 445 (49) 67 535 (51) 131 980 (67)
 Greater African/Indian 31 140 (57) 23 198 (43) 54 338 (28)
 Greater East Asian 5417 (48) 5805 (52) 11 222 (6)
Chest radiograph modality
 GE type 1 1607 (48) 1775 (52) 3382 (2)
 Agfa type 1 2289 (50) 2310 (50) 4599 (2)
 GE type 2 18 001 (50) 18 234 (50) 36 235 (18)
 Canon type 1 2919 (52) 2717 (48) 5636 (3)
 Philips type 1 26 438 (46) 30 644 (54) 57 082 (29)
 Carestream type 1 15 106 (54) 13 095 (54) 28 201 (14)
 Toshiba type 1 30 164 (56) 23 768 (44) 53 932 (27)
 Varian type 1 343 (50) 347 (50) 690 (< 1)
 Other modalities 4135 (53) 3648 (47) 7783 (4)
No. of classes
 0 findings 101 002 19 699* 120 701 (61)
 1 finding 0 42 582 42 582 (22)
 2 findings 0 22 213 22 213 (11)
 3 findings 0 8754 8754 (4)
 4 findings 0 2601 2601 (1)
 5 findings 0 588 588 (<1)
 ≥6 findings 0 101 101 (<1)

Note.—Data are presented as numbers of images, with percentages in parentheses. EHR = 
electronic health record.
* Abnormal chest radiographs present in the 0 findings category represent abnormalities that 
were not captured by the CheXpert natural language processing algorithm’s 12 pathology 
classes.
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Pathology subgroups were determined from the CheXpert 
NLP results. The solitary findings subgroup comprised radiol-
ogy reports containing exactly one positive pathology class and 
the absence of all other abnormalities. For the number of classes 
analysis, a sum of positive pathology classes (up to 12 abnormali-
ties) was taken to represent the number of classes in each chest 
radiograph. For example, if an image contained a pleural effu-
sion and consolidation, it would be assigned to the two-classes 
category. Finally, a support devices analysis included radiology 
reports containing only support devices and no pathology classes 
to determine the effect of support devices on model specificity. 
For subgroups with only abnormal chest radiographs, we report 
only sensitivity; for subgroups with only normal chest radio-
graphs, we report only specificity (Tables 1, 2).

Statistical Analysis
Performance was measured using the metrics of accuracy, pre-
cision (PPV), NPV, recall (sensitivity), specificity, F1 score, 
and Matthews correlation coefficient (MCC). In contrast to 
traditional performance metrics, the MCC generates a high 

Subgroup Analysis
To provide a granular understanding of each classifier’s perfor-
mance, subgroup analysis was conducted on patient, setting, 
and pathology variables.

Patient subgroups included age, electronic health record 
(EHR)–reported sex, and ancestry. Patient age was divided into 
the following categories: older than 65 years, 40–65 years, and 
younger than 40 years. EHR-reported sex was derived from the 
EHR as male or female; gender information was not stored in 
the DICOM metadata. Patient ancestry was determined through 
name-based identification and grouped into three large ancestral 
groups (greater European, greater African/Indian, greater East 
Asian) as a proxy for ethnicity (Appendix S1).

Setting subgroups included patient location and chest ra-
diograph modality. Patient location was defined as outpatient, 
inpatient, intensive care unit (ICU), or emergency department 
based on the location of the patient at the time of image order. 
The chest radiograph modality (equipment model) was obtained 
from the DICOM metadata. Modalities with fewer than 500 
chest radiographs were excluded from this analysis.

Table 2: Description of the Pathology-specific Subgroups of the 
197 540-Image Dataset

Subgroup Normal Abnormal Total

Solitary findings
 Enlarged cardiomediastinum 0 6275 6275
 Cardiomegaly 0 7609 7609
 Lung lesion 0 2732 2732
 Lung opacity 0 8674 8674
 Edema 0 454 454
 Consolidation 0 413 413
 Pneumonia 0 1502 1502
 Atelectasis 0 5288 5288
 Pneumothorax 0 1395 1395
 Pleural effusion 0 3537 3537
 Pleural other 0 1123 1123
 Fracture 0 3580 3580
 Support device 2936 0 2936
General findings
 Enlarged cardiomediastinum 0 14 306 14 306
 Cardiomegaly 0 17 734 17 734
 Lung lesion 0 7652 7652
 Lung opacity 0 25 916 25 916
 Edema 0 3260 3260
 Consolidation 0 3547 3547
 Pneumonia 0 6455 6455
 Atelectasis 0 16 052 16 052
 Pneumothorax 0 3720 3720
 Pleural effusion 0 18 301 18 301
 Pleural other 0 3517 3517
 Fracture 0 6764 6764

Note.—Data are presented as numbers of images.
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than that observed in the real data (26). This analysis was con-
ducted in Python software, version 3.9.5.

Results

NLP Algorithm Performance
The NLP validation dataset (n = 502) is described in Table S1. 
Table 3 describes the performance of the CheXpert and CheX-
bert NLP algorithms compared with manual labels.

In the NLP validation dataset, the CheXpert NLP demon-
strated an accuracy of 94% (473 of 502), which is similar to the 
agreement between multiple radiologist annotators (23,27,28). 
In addition, we found no evidence of a difference in third-party 
classifier performance for all metrics, except for NPV, between 
manual labels and CheXpert NLP-generated labels (Fig 1; Table 
S2). Performance of image classifiers on the first chest radiograph 
of patients was lower, indicating that reports referring to previ-
ous studies was not a detriment to NLP labeler performance (Fig 
S1). CheXpert outperformed CheXbert and was selected to gen-
erate ground truth labels for the 197 540-image dataset.

Chest Radiograph Classifier Performance

Data characteristics.— The Trillium Health Partners dataset 
comprised 197 540 posteroanterior chest radiographs, with 
48.9% (n = 96 538) of scans labeled abnormal by the CheXpert 
NLP algorithm. Patient age ranged from 18 to older than 105 
years. We found equal proportions of male and female patients, 
skewing toward greater European ancestry, emergency depart-
ment patients, and outpatients. The full dataset description is 
shown in Tables 1 and 2.

Overall results.— The third-party algorithm demonstrated 
the highest overall performance (accuracy of 77% [152 500 of 
197 540], MCC of 0.55), followed by algorithms trained on the 
CheXpert Image, MIMIC-CXR, and Chest X-ray-14 datasets 

value only if a binary predictor accurately classifies both posi-
tive and negative cases (penalizing false classifications) and, 
unlike accuracy, is robust against class imbalance. The MCC 
is a correlation measure between actual and predicted values 
(1 represents perfect classification; -1 represents perfect mis-
classification) (24,25). The formula for each metric can be 
found in Appendix S1. Bootstrap resampling (10 000 rep-
licates, with each replicate containing the same number of 
images as the group being analyzed) was used to determine 
95% CIs.

To measure the effect of NLP error on image classification 
performance, we compared the performance of each image clas-
sifier on the 502-image dataset against each type of report label 
(ie, manual, CheXpert, and CheXbert). Using bootstrap resam-
pling (502 samples per replicate, 10 000 replicates), we generated 
95% CIs for each performance metric. Empirical P values were 
estimated from 95% CIs using the formula P = (r + 1)/(n + 1), 
where n represents the number of bootstrap simulations and r 
represents the number of simulations that produce a value higher 

Table 3: Performance of the CheXpert and CheXbert 
Natural Language Processing Algorithms Compared 
with Manual Labels in the 502-Chest Radiograph Da-
taset

Overall CheXpert CheXbert

Accuracy 473/502 (94) 465/502 (93)
Precision/PPV 226/250 (90) 228/262 (87)
NPV 247/252 (98) 237/240 (99)
Recall/sensitivity 226/231 (98) 228/231 (99)
Specificity 247/271 (91) 237/271 (87)
F1 score 0.94 0.92
MCC 0.89 0.86

Note.—Unless otherwise noted, data are presented as propor-
tions of images, with percentages in parentheses. MCC = Mat-
thews correlation coefficient, NPV = negative predictive value, 
PPV = positive predictive value.

Figure 1: Performance of the third-party algorithm on the 502-image dataset with use of manual labels versus natural language 
processing–generated labels as ground truth. Error bars show 95% CIs. *P < .05 compared with manual labels, **P < .01 com-
pared with manual labels. Full statistical results shown in Table S2. BERT = bidirectional encoder representations from transformers, 
MCC = Matthews correlation coefficient, NPV = negative predictive value, PPV = positive predictive value.
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(Fig 2A). All image classifiers showed a similar pattern of lower 
sensitivity and higher specificity and lower NPV and higher PPV. 
Figure 2B and 2C describe differences in MCC, sensitivity, and 
specificity between the overall dataset and individual subgroups. 
Results for each subgroup can be found in Figures S2–S8.

Patient subgroups.— All algorithms demonstrated markedly 
lower sensitivity and higher specificity when analyzing chest 
radiographs of patients younger than 40 years, with the oppo-

site results for patients older than 65 years (Fig 2; Figs S5, S6). 
Only 24% of studies were labeled abnormal in the subgroup 
younger than 40 years, compared with 69% of those in the 
subgroup older than 65 years. Abnormal chest radiographs of 
patients younger than 40 years compared with those of patients 
older than 65 years contained fewer pathology classes (mean, 
1.40 vs 1.76, respectively), suggesting that those younger than 
40 years had, as expected, fewer abnormal findings (Tables 1, 
2; Fig S9).

Figure 2: (A) Overall performance of the four deep learning classifiers and the random classifier on the entire 197 540-im-
age dataset, with error bars showing 95% CIs. (B) Change in Matthews correlation coefficient (MCC) of the third-party algorithm 
for the subgroups of patient age, patient setting, patient electronic health record–identified sex, patient name–generated ancestry, 
and chest radiography modality compared with the overall dataset, with error bars showing 95% CIs. (C) Change in sensitivity and 
specificity of the third-party algorithm for each subgroup compared with the overall dataset, with error bars showing 95% CIs. ICU = 
intensive care unit, NPV = negative predictive value, PPV = positive predictive value.
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The algorithms demonstrated similar performance on EHR-
identified sex and name-derived ancestry subgroups (Figs 
S2–S8).

Setting subgroups.— Classifiers demonstrated lower sensitiv-
ity and higher specificity on emergency department patients, 
whereas the opposite was observed for inpatients and ICU pa-
tients (Fig 2; Figs S5, S6). Abnormal chest radiographs from 
the emergency department had fewer pathology classes on av-
erage compared with inpatients (mean, 1.51 vs 1.84), suggest-
ing that patients presenting to the emergency department had, 
as expected, fewer abnormal findings. This variation is not fully 
explained by differences in age because patients in the same 
age group demonstrated the same pattern across settings (ie, 
intersectionality) (Fig S10).

Analyzing performance across different chest radiograph mo-
dalities showed variation (for the third-party algorithm, sensitiv-
ity was 53%–79% [184 of 347; 18 673 of 23 768]; specificity 
was 79%–92% [20 780 of 26 438; 317 of 343]; and MCC was 
0.48–0.58) (Figs S5, S6, S8). The location and case types for 
each modality were not investigated and may confound and/or 
explain the variation.

Pathology subgroups.— Classifiers demonstrated lower sen-
sitivity in the categories of enlarged cardiomediastinum, car-
diomegaly, lung lesions, pneumonia, pneumothorax, and 
fractures. In fact, the random classifier outperformed all im-
age classifiers in detecting a solitary enlarged cardiomediasti-
num, pneumonia, and fracture (Fig S11). However, the classi-
fiers showed high sensitivity in detecting pleural effusions and 
consolidations.

Classifier performance was universally lower in one clini-
cally important scenario: cases with a solitary finding. The 
third-party algorithm correctly classified 65% (27 595 of 
42 582) of images with solitary findings as abnormal versus 
97% (11 738 of 12 044) of images with three, four, five, or six 
or more finding classes. Sensitivity decreased for all pathology 
classes when images with a solitary finding were analyzed (Fig 
3, Fig S11).

Classifiers showed 9%–24% decreased specificity on images 
with support devices but no pathology classes (eg, a central line 
in an otherwise normal chest radiograph). For example, the 
third-party algorithm had a false-positive rate of 41% on normal 
images with support devices (specificity of 59% [1797 of 2936]) 
compared with 17% on normal images without support devices 
(specificity of 83% [81 387 of 98 066]) (Fig S12).

Operating curves.— Comparing performance for different 
subgroups can be facilitated by plotting subgroup operat-
ing points on a receiver operating characteristic curve (Fig 
4). Viewed this way, some subgroup operating points repre-
sent trade-offs along an operating curve (eg, male vs female: 
the algorithm is more sensitive but less specific in male pa-
tients), whereas other operating points represent increased 
or decreased performance, as located on shifted curves (eg, 
age >65 years vs age 40–65 years, emergency department vs 
outpatient).

Discussion
The generalization gap exposed during external testing of ma-
chine learning classifiers is well established (12); our study 
extends the understanding of these performance gaps to criti-
cal patient, setting, and pathology subgroups. Although chest 
radiograph classifiers performed with accuracy nearing 80%, 
large-scale external testing demonstrates that performance is 
not uniform, varying widely by patient and disease context. We 
review important subgroup-specific generalization gaps below, 
but we first briefly discuss how our methods validated a scal-
able labeling approach for external testing.

We demonstrated that NLP algorithms accurately label nor-
mal and abnormal chest radiograph radiology reports in external 
testing experiments, even when the entire report is included, 
which can lower associated costs and preprocessing require-
ments. Open-source NLP tools correctly classified more than 
93% of radiology reports compared with human labels; across 
measures (except NPV), we found no evidence of a difference in 
performance of image classifiers on manual versus NLP labels. 
Most (75%) NLP algorithm false-positive results occurred in the 
category of enlarged cardiomediastinum and cardiomegaly. Er-
rors in NLP algorithm performance included detecting the indi-
cation for the chest radiograph as an abnormality, misinterpret-
ing terms used to describe the cardiomediastinum, and missing 
more nuanced negations (eg, “pneumothorax seen previously is 
no longer present”). Addressing these errors would further im-
prove the accuracy of NLP labeling tools.

Regarding subgroup-specific generalization gaps, we demon-
strated an overall pattern that suggests increased performance in 
detecting grossly abnormal chest radiographs over solitary find-
ings. This is demonstrated by decreased performance at classify-
ing images with solitary findings (sensitivity ≤ 65%, an absolute 
27% decrease compared with two or more pathology classes for 
the third-party algorithm) and increased performance on chest 
radiographs with three or more pathology classes (sensitivity ≥ 
97%). The number of classes positively correlates with age and 
more acute care settings; older patients, inpatients, and ICU 
patients are more likely to have grossly abnormal chest radio-
graphs, which may explain the increased sensitivity and PPV in 
these subgroups and decreased sensitivity and PPV in young and 
emergency department patients. This hidden stratification has 
concerning implications for algorithm deployment because radi-
ologists would benefit most from decision support in challenging 
solitary finding cases (eg, a subtle pneumothorax); instead, clas-
sifiers provide reliable support only when multiple findings are 
present. In addition, low sensitivity in solitary findings should 
raise alarm when users consider deploying these algorithms as a 
screening tool to rule out important abnormalities or depriori-
tize chest radiographs in radiology workflows.

Exploring protected attribute fairness (eg, sex, ancestry), three 
of the classifiers demonstrated lower sensitivity on female pa-
tients compared with male patients (0%–7%), and all classifiers 
demonstrated lower sensitivity in those with names of African/
Indian ancestry compared with other ethnic groups (3%–10%). 
This decrease in sensitivity could be interpreted as “underdiag-
nosis.” Seyyed-Kalantari et al (15) previously demonstrated that 
state-of-the-art classifiers trained on public datasets showed bias 
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against patients who were female or Hispanic. In another study, 
Seyyed-Kalantari et al (14) found that these classifiers underdi-
agnosed underserved populations at a rate exacerbated by inter-
sectional identities. Here, performance differences in sex and 
ancestry subgroups may represent movements along a receiver 
operating characteristic curve as opposed to decreased overall 
performance, as the MCC between groups does not vary sub-
stantially and decreased sensitivity is compensated by increased 
specificity. Unfortunately, few studies analyze the effect of pro-
tected attributes on radiology classifier performance despite it 
being critical in preventing the propagation of health disparities.

In addition, decreased specificity on normal images with 
support devices suggests algorithms may erroneously label a 

“normal” chest radiograph as “abnormal” because a support de-
vice is present, even in the absence of true cardiothoracic ab-
normality. These “spurious correlates” are especially relevant in 
inpatient and ICU populations and contribute to hidden strati-
fication (29). Concordant with our findings, Chen et al (30) 
described the presence of support devices as a statistically sig-
nificant predictor of misclassification by image classifiers. Future 
work is required to avoid device-induced misclassification and 
improve classifier robustness.

We believe subgroup analysis during external testing is critical 
to informing safe and equitable deployment of artificial intel-
ligence into clinical practice. For example, a triage tool in the 
emergency department demands high performance for patients 

Figure 3: (A) Performance of the four deep learning classifiers stratified by the number of pathology classes present, noting 
high sensitivity (third party classifier, ≥ 97%) in detecting abnormal chest radiographs with three or more findings and low sensitivity 
(all classifiers, ≤ 65%) in detecting abnormal chest radiographs with solitary findings. Error bars show 95% CIs. (B) Performance of 
the third-party classifier in detecting abnormal chest radiographs with a solitary finding compared with detecting abnormal chest 
radiographs with two or more pathology classes. Graph shows decreased performance on solitary findings and performance that is 
dependent on the finding type present. Error bars show 95% CIs. E = enlarged. 
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in the emergency department, younger patients, and emergent 
findings, such as a pneumothorax. However, all classifiers studied 
performed poorly on younger, emergency department patients 
as well as solitary pneumothoraces. We see consistent perfor-
mance disparities across classifiers despite each being pretrained 
on large datasets gathered from different institutions. Thus, such 
outcomes are not random, and health systems deploying such 

classifiers must decide whether they are safe to deploy and, if so, 
what restrictions, training, or warnings must accompany deploy-
ment. Sendak et al (31) describes a risk communication tool, the 
“Model Facts” label, which succinctly describes actionable, clini-
cally relevant information to inform users about “how, when, 
how not, and when not to incorporate model output into clinical 
decisions.” To create such a tool, subgroup analysis is essential. In 

Figure 4: Subgroup operating points for 
the third-party algorithm on a receiver operat-
ing characteristic curve. Each point represents 
model performance on one subgroup, providing 
a visual comparison of subgroup performance. 
This illustrates that some subgroups may represent 
increased or decreased performance (eg, ages 
40–65 vs >65 years), whereas others may simply 
represent trade-offs in sensitivity and specificity 
along a single receiver operating characteristic 
(eg, male vs female). CXR = chest radiography, 
ICU = intensive care unit.
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this case, a warning label might alert clinicians to poor sensitiv-
ity on chest radiographs with certain solitary findings while also 
providing information to developers and policymakers on the 
shortcomings of these classifiers. Finally, subgroup performance 
should be intentionally monitored for drifts over time to ensure 
ongoing quality, safety, and equity (32).

Our analysis had limitations. First, using a single radiology 
report as a reference standard is a trade-off that values scalabil-
ity over certainty: Radiologists do not always report every find-
ing, and one radiologist’s report may not be concordant with 
another’s (33,34). In addition, the CheXpert NLP algorithm 
introduces error; however, it was validated in this study and its 
error lies within statistical uncertainty of multiple radiologist an-
notators (27,28). Second, specific annotation schemas exclude 
many clinically relevant conditions, such as pneumomediasti-
num. There is also class overlap between finding categories, such 
as consolidation and pneumonia, which counted as two classes 
in the analysis of number of classes. Each classifier was trained 
using different annotation schemas; a negative output from one 
did not reflect the same excluded abnormalities as another (23). 
Third, there may also be confounding variables between differ-
ent subgroups, and this was not investigated beyond age and set-
ting subgroups. Fourth, only posteroanterior chest radiographs 
were used because of classifier limitations, and our results are 
not generalizable to other chest radiograph views. Fifth, because 
this was a single-center study, the numeric results and specific 
gaps may also not be generalizable to other institutions; the pre-
cise generalization gaps across subgroups will undoubtedly vary 
at other institutions with different populations. Finally, name-
based patient ancestry is an imperfect method of determining 
ethnicity-based subgroups but was the most practical method, 
given the lack of routine collection of self-identified ethnic and 
racial identifiers at Trillium Health Partners and the necessity of 
conducting such an analysis.

In conclusion, external testing of four chest radiograph clas-
sifiers demonstrated consistent differences in performance on 
patient, setting, and pathology subgroups. Subgroup analysis is 
critical when validating image classifiers to identify risks to safe 
and equitable deployment.
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