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The role of Artificial Intelligence and Machine Learning in cancer research offers several advantages, primarily scaling up the
information processing and increasing the accuracy of the clinical decision-making. The key enabling tools currently in use in
Precision, Digital and Translational Medicine, here named as ‘Intelligent Systems’ (IS), leverage unprecedented data volumes
and aim to model their underlying heterogeneous influences and variables correlated with patients’ outcomes. As functionality
and performance of IS are associated with complex diagnosis and therapy decisions, a rich spectrum of patterns and features
detected in high-dimensional data may be critical for inference purposes. Many challenges are also present in such discovery task.
First, the generation of interpretable model results from a mix of structured and unstructured input information. Second, the
design, and implementation of automated clinical decision processes for drawing disease trajectories and patient profiles.
Ultimately, the clinical impacts depend on the data effectively subjected to steps such as harmonisation, integration, validation, etc.
The aim of this work is to discuss the transformative value of IS applied to multimodal data acquired through various interrelated
cancer domains (high-throughput genomics, experimental biology, medical image processing, radiomics, patient electronic
records, etc.).

British Journal of Cancer (2022) 126:523–532; https://doi.org/10.1038/s41416-021-01689-z

BACKGROUND: THE ROLE OF INTELLIGENT SYSTEMS IN
CANCER RESEARCH
Artificial Intelligence (AI) refers to functions and processes by
which machines learn from data how to intelligently use the
available information and establish associations between vari-
ables. In oncology, complex datasets reflect the presence of many
quantifiable dimensions needing Machine Learning (ML) solutions
to recommend, decide and especially predict over time while new
data are accrued. Although AI and ML are often interchangeably
used terms, they are complementary and can be reconciled under
the term ‘Intelligent Systems’ (IS) (‘learning health systems’ has
also appeared with clinical data in precision medicine [1]). A
corresponding glossary appears at the end (see Table 1). In
general, cancer researchers leverage IS for their ability to conduct
inference by algorithmic rules which eventually lead to informed
clinical decisions. These algorithms can analyse and integrate
multiple data modalities facilitating the confluence of information
from heterogeneous sources. Then, by combining computing
power and mathematical thinking with domain knowledge and
context-specific information, IS deals with scalability and gener-
alisability. Therefore, IS solutions assist the cancer expert in key
tasks such as identifying triggers for diagnosis, or intervention/
treatment, and support the decisions taken under conditions of
uncertainty. As this uncertainty can have many causes, and only
some are controllable, efficiency is desired together with the

applicability of principles such as stability and predictability, both
necessary to ensure reproducibility metrics and establish high-
quality predictions [2].
To better delineate what cancer patient outcomes can be inferred

from all types of acquired information, the IS role is to design and
implement strategies that assemble and engineer a wealth of data
features. These features are used to define signatures and patterns
carrying information at a molecular level and combining evidence
obtained at cell biology, pathology and radiology levels. Then, to
exploit the interdependence between these domains, the definition
of suitable standards is required [3]. This is a major harmonisation
effort, with three major impacts involved: (i) the identification of
diagnostic markers, (ii) The monitoring of patients’ response to
treatment and (iii) the delivery of prognostication paths. In such
regards, IS contribute to lower both infrastructural barriers (data
management related costs, computational requirements for fast
data processing, expertise needed to ensure quality processes, etc.)
and ensure further developments toward:

A. Easier access to Big Data database resources and repositories
(genes, ncRNAs, proteins, peptides, small molecules, mono-
clonal antibodies, bio-images, registries, etc.);

B. Fast deployment of scientific findings related to molecular
profiles (including RNA), genetic information, electronic
health records (EHR), medical imaging archives, etc.
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C. Digitally annotated biobanks with biological samples asso-
ciated to clinical information and analyses performed on
experimental data;

D. Drug banks with sophisticated semantic frameworks and
efficient algorithms to facilitate repurposing and repositioning.

These resources suggest a rich research agenda. A few major
directions are: (i) repurposing existing drugs for treatment
decisions supported by multi-sourced protein–protein interaction
networks [4], (ii) developing ML algorithms predictive of antic-
ancer drug efficacy [5], (iii) advancing semantics to deploy public
cancer genomic datasets as linked data and offer automated
analytics and visualisation [6], in addition to other emerging
applications [7]. Accessibility, especially concerning cloud-sourced
data, and heterogeneity of independently created ontologies and
vocabularies represent real bottlenecks. There is still limited and
inconsistent data reuse, which calls for creating shared models
and performance measures for efficient data warehousing
approaches. It is worth mentioning that focusing mainly on the
algorithmic performance of methods designed for diagnostic or
therapeutic scopes may be a limiting factor. The ability to infer
patient’s outcomes depends on multidimensional decisions
embedded within the IS-supported clinical workflow, for instance
calibrating the measurement of under/overtreatment effects or
identifying early detection or relapse to guide specialistic care
(management of treatment intensity effects, reassessment of
timing in monitoring toxicity, etc.) during follow-up or
surveillance.
At the methodological level, a first critical issue is the training of

algorithms over multiple datasets to build first descriptive and
then predictive models aimed at generalisation. For example,
Deep Learning (DL) may be blind to the underlying cancer biology
but still offer (a) the power of digesting huge information from
patient sample tissues via large volumes of digitised biopsy slides
across many cancer types, (b) the alignment of such detailed maps
with therapy factors, (c) the combination of tissue characteristics
with treatment response and the correlation with identified

patterns to tell what cancer drugs work best at the individual level
or find clues in tissue microenvironment for establishing
vulnerabilities to immunotherapy drugs. In general, cancer
dynamics have inherent complexity that cannot be just algor-
ithmically trained. The mechanisms governing such dynamics
involve dysregulated cell signalling networks with crosstalk
between many variables that operate at different time scales,
which complicates data collection. Some variables may induce
response due to reprogramming, for instance at the metabolic
level. Mutations affecting treatment may require updates or
corrections of earlier predictions, especially for personalising the
cure or improve/accelerate trial practices with priority assigned to
establishing synthetic control groups or modulating drug doses
for prevention of resistance.
Precision medicine is gaining clear benefits from IS [8]. Immune

profiling (IP) offers a good example. A recent study [9] on the PD-
L1 biomarker to predict a patient’s response to treatment was
performed via tumour-immune cell interactions analysed spatially
and computationally by AI-assisted multiplexing approaches.
About the same marker, another study [10] identified factors
explaining the success of target immunotherapy treatment in
urothelial cancer by using information from tumour and immune
cells together with patient clinical and outcome data [11]. An ML
algorithm performed over 36 features from multimodal data to
find the 20 most associated with a specific response to PD-L1
inhibitor and deliver predictive marks of potential tumour adverse
immune cells in patients after treatment. The key factor was the
integration of data types: without just one of these types, the
predictive performance vanished.

SIGNIFICANCE FOR ONCOLOGY
The recent advances in radiology had strong impacts on early
diagnosis and timely treatment, reducing the chances of
misdiagnosis and therapy-related complications. Benefits involve
less overtreatment in the short term and less mortality in the long
term. IS contributed in various ways, measurable at prevention

Table 1. Glossary.

AI= Artificial Intelligence

Digital tools able to perform tasks commonly associated with intelligent beings.

ML=Machine Learning

Methodological solutions that work algorithmically to find consistent patterns and reliable features in large amounts of data aimed at deciding and
formulating predictions based on new data.

IS= Intelligent Systems

Software tools that support expert decision-makers in acquiring information from data, learning patterns from the processing of information and using the
knowledge to facilitate the decisions.

EHR= Electronic Health Records

Digital version of the patient’s paper chart and medical history.

EM= Ensemble Modelling

A computational process by which multiple diverse base models are used to predict an outcome.

DL=Deep Learning

Deep learning is a class of algorithms employing multiple layers to extract informative features from the raw input data and use them to learn and generalise.

TL= Transfer Learning

Family of techniques enabling researchers to infer about a problem by using the knowledge gained from a model applied to a similar problem.

RL= Reinforcement Learning

Algorithmic process of learning by doing to make a sequence of decisions based on rewarding desired behaviours and/or penalising undesired ones.

IoMT= Internet of Medical Things

The collection of medical devices and applications that connect to healthcare IT systems through online computer networks.

VoI= Value of Information

An analytic method that quantifies the potential benefits of additional information before making decisions under uncertain conditions.
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(primary and secondary), diagnostics, therapy and prognostication
(see Fig. 1) levels.

Prevention
The stratification of patients according to their risk profile is often
associated with the design of screening methods able to detect
cancer at the early stage [12]. One reason for using IS approaches
is to ensure the scalability of results to large-scale population
screening. Most improvements in screening outcomes have been
obtained from medical imaging, and this presents cost barriers.
Although advanced learning with large complex datasets has
become possible with various strategies and tools, often the
limitation is in terms of the clinical applicability of the proposed
solutions. These tend to leverage only some of the patients’
characteristics and thus justify even more the need to profile large
patient cohorts across many stratifying factors. Typically, an
increased detection power of disease marks captured from
multimodal data at an early stage leads to a much more accurate
patients’ classification. In the end, a full assessment of the actual
capability of IS algorithms requires a demonstration of compar-
able performance with clinicians’ interpretations, although an
excess of focus on this aspect may diminish some potential gains.
The reference goes to accuracy and efficiency achievable in
triaging practices, for instance, for which more studies are
needed [13].

Diagnosis
Medical imaging has gradually become the reference field for IS
contributions [14–20]. Here, the spectrum of investigations in
cancer covers primary versus metastatic lesion detection, image
segmentation and classification, discrimination between benign
and malignant nodules, histological subtyping, and many others.
DL has established new standards through the learning of features
directly computed from data. Complex solutions, typically Con-
volutional Neural Networks (CNN) or Recurrent Neural Networks
(RNN), can execute training over large sets of labelled Regions of
Interest (ROI) from where to learn the parameters useful to the
generalisation of results. CNN applications and demonstrations
have for instance covered skin cancer from a dataset of 12,940
clinical images [21] and metastatic breast cancer (BC) [22], and in
BC it was also shown the feasibility of fusing CNN with other
feature extractors [23].
DL is very effective in identifying variation by automatically

inspecting complex patterns [24]. An application is provided by

ExPecto [25], an experimentally validated tool that links genome-
wide sequence data genetic mutations with disease prediction. In
general, the ability to decrease variability depends on the
heterogeneity of data and requires algorithmic training followed
by testing and validation. This normally happens via accurate
separation of tasks into independent datasets to optimise
parameter tuning and performance assessment. With regards to
imaging variation, the field of radiomics [26–30] currently inspires
most of the algorithmic thinking toward predictive modelling for
cancer detection, characterisation, and monitoring. This is because
the imaging features extracted by ML algorithms are subject to
sequential analysis steps aimed at prioritising their discrimination
power and ensuring control of data redundancies, selection
operated according to relevance and model tractability.

Therapy
Optimal therapeutic strategies are considered those able to
overcome identified gaps and develop successful, sustainable and
scalable interventions that improve the outcomes at the individual
as well as population levels. IS present a wealth of methods that
accurately measure response prediction and allow to develop and
refine treatment options for cancer patients [31]. Correspondingly,
they have revealed useful to advance drug discovery. IS may
especially improve predictability, accuracy (with effects on
effectiveness and safety), and speed/timeline of drug discovery
[32]. It is possible to analyse large-scale AI-empowered and ML-
driven drug discovery platforms centred on large warehoused
data and predictive algorithms tailored to specific proteins with
their structures as a target. An example is the scalable cloud
computing ML-driven SpliceCore platform (https://www.
envisagenics.com/) with a > 5ml RNA splicing errors database
supporting identification, testing and validation of hypothetical
drug targets that specifically target RNA splice variants causing
cancer (such as triple-negative breast cancer and other genetic
diseases). To stress the importance of therapeutic targeting of
splicing in cancer [33], another tool worth mentioning is SpliceAI
(https://github.com/Illumina/SpliceAI), a 32-layer deep CNN oper-
ating on pre-mRNA sequences [34]. Then, the cloud-based
platform Ligand Express (https://www.cyclicarx.com/) that screens
small-molecule drugs against proteomes and determines poly-
pharmacological profiles. Here, an AI-assisted identification of
protein targets is operated by a structure-based drug-centric
technology (MatchMaker, a DL engine) determining drug’s effects
and visualising predicted drug–protein interactomes with
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Fig. 1 Impacts Overview. AI and ML methodological and translational roles in Precision Oncology.
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coverage of both on- and off-target interactions (expected and
unanticipated, respectively).
Computational drug development predictions face necessarily

the validation stage to minimise the uncertainty about the efficacy
with which any single drug or combination of drugs may
eventually lead to better outcomes, something risky and
demanding for new compounds or large-scale clinical trials. IS
augment the possibility of diversifying drug pipelines [35, 36]. In
addition, used drugs are increasingly investigated for reposition-
ing/repurposing scopes, implying high computational demand for
evaluating the possible application in new disease domains of
libraries of approved drugs (about 1500 FDA-approved drugs can
be potentially matched with about 10000 potential targets,
numbers destined to change quickly anyhow). Some interesting
in silico approaches refer to pharmacophore modelling and
docking-based virtual screening for repurposing small-molecule
drugs against multidrug-resistant cancers [37]. The role of
resistance in cancer has stimulated research from prevention to
control directions and effectively accelerated experimental and
validation phases. The results have led to developing more
targeted therapies to (i) identify neoantigens and immunothera-
pies [38, 39], (ii) understand toxicity from chemotherapy and
radiotherapy and more automated planning of treatment
programs in radiology [40–44], (iii) prioritise surgery [45].

Prognostication
Survival prediction determines how patient profiles match the
available treatment options. A key characteristic in cancer is the
inherent risk of metastasis that generates recurrence. Metastatic
tumours, especially recurring ones with acquired resistance to
therapy, influence cancer management because the probabilistic
quantification of this type of risk is the most uncertain cancer
management phase [46]. Usually, biomarkers determine this phase
by looking at the disease at a molecular level. IS have increasingly
leveraged the algorithmic processing of patient information
inducing response to therapy under many influencing factors,
from genetics and immune status to environment and lifestyle. In
association with factors objectively measurable (histopathological
characteristics or effects of adjuvant therapies) and crucial for
determining disease markers, instruments such as risk scores and
nomograms [47] may guide the therapy phases by quantifying
chances of recurrence and prognostic assessment via various
genetic and/or molecular markers and signatures. Recourse to DL
(and other unsupervised algorithms) may offer black-box solutions
with little insight into the processes determining their final output.
Graph-based integrations may help integrate multi-omics data
and improve the prediction accuracy of clinical outcomes [48]. In
addition, beyond the problems of inaccurate, incomplete or

biased data towards specific populations, a further complication is
due to algorithms that may misrepresent the context without the
necessary specificity. More importantly, the nonlinear complexity
of biological processes indicates the necessity of matching
quantitative modelling with the context-related complexities [49].

LEVERAGING DATA FEATURES IN MODELLING CANCER
Among the tools traditionally used in quantitative cancer research, it
is common to find those modelling mechanistically and predicting
tumour progression/growth. Growth, and resilience to survive,
suggest that tumours are complex adaptive systems facing
heterogeneous environments and dealing with variables measurable
at various length and time scales (oncogenes, tumour suppressor
genes, cell–cell communication, etc.). Models of the dynamics of
growth in tumours have mostly followed principles of statistical
physics and dynamical systems accounting for both inter-tumour
processes and host–tumour interactions. This way, inference on
cancer heterogeneity (and evolution) has been mainly explorative of
the likelihood that different advantageous and deleterious mutations
survive in the tumour cell population. Outstanding open questions
remain and refer to multiscale nonlinear model parameterisations,
the role of resistance, subclone detection among various other
factors that might limit predictability [50]. At a methodological level,
it is interesting to address the IS developments that occurred in two
major areas of clinical impacts in cancer: (1) data science analytics to
manage issues such as aggregation, augmentation, imbalance issues,
etc. (2) algorithmic treatment of the complexity that affects the
dimensions of data, with reinforcement learning deserving special
attention (see the next section) when a dynamic rather than a static
treatment of the data is necessary.

Ensemble models
IS have emphasised the potential significance of a more
integrative use of multitype omics evidence. For instance, more
accuracy is gained in assessing the cancer metastatic potential, in
prioritising the patient-specific variables that once quantified may
help the clinicians individualise the treatment options, in
increasing the depth of risk profiles and the precision of outcome
estimates, in planning cost-effective follow-up actions. Data
integration is a critical structural component that calls for adaptive
strategies at the algorithm level. Ensemble modelling (EM) is for
example an approach that engages multiple models to predict
outcomes by the means of different algorithms and/or different
training sets. Then, EM aggregates the results in a prediction with
reduced generalisation error.
Substantial criticism points to the ability of learning strategies to

explain the results they achieve, beyond converging to optimality.
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Fig. 2 Methodological Approach. Role of features in IS modelling.
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As a rule, highly complex models can lead to low interpretability
and poor explanation of what mechanisms underlie predictions. In
oncology, data modalities may reveal the insufficient size, and
model results may present limited interpretability [51]. This means
that data integration must be contextualised at the level of input
raw data, features (extraction, selection and combination) and
finally model outcome predictions. These levels are more or less
convoluted, therefore characterising the strategies for data-to-
feature-to-prediction transforms that enable IS performance
assessment through measures and scores associated with the risk
of disease onset, relapse, treatment response (Fig. 2).

Transfer learning
The bottleneck of data significance is often insufficiency of
information. This problem calls for alternative learning approaches
aimed to augment the space of features using, for instance,
surrogate datasets. Such practice is foundational in Transfer
Learning (TL) approaches [52]. TL algorithms reuse a model pre-
trained over a new problem to improve its predictive performance
by transferring knowledge about a related problem learned from
auxiliary data. Examples are provided by drug sensitivity predic-
tion [53], cancer classification [54], automatic lung CT image
segmentation [55], etc. Domain-specific models can use impor-
tance/attribution methods to estimate the feature’s contribution
to the predictions (using prior or context knowledge).

DIFFERENTIATING FEATURES IN CANCER DOMAINS
The processing of NGS datasets has become increasingly time
effective and routinely assisted by ML tools for executing accurate
read alignment and robust variant calling tasks discriminating
coding and non-coding bioentities (mRNA and ncRNA) by
sophisticated multiplexed omics strategies. In terms of character-
isation, a typical investigation target is subtyping, as this might
affect treatment. A recent study [56] discovered patterns
characterised by feature similarity and used to computationally
classify five new subtypes within primary luminal A-type breast
tumours. The impacts involve further development of targeted
drugs and potential improvement of therapies/immunotherapies
at an individualised patient level. Another pan-cancer study [57]
used DL with multimodal data to find molecular subtypes,
together with genetic mutations, gene expression signatures,
and pathology biomarkers, by exploiting histology from tissue
slides of >5000 patients across multiple solid tumours. In addition,
a key aspect is timely monitoring to track progression or
regression or target the emergence of resistance. This goes
beyond traditional metrics (RECIST) to assign a central role to the
interplay between different tumour cells and the immune
response in the tumour microenvironment (TME). Emerging DL
applications in digital pathology treat this domain to better stratify
patients and identify relevant biomarkers predictive of clinical
outcomes and treatment response [58].
Cancer immunograms [59] describing the interactions between

cancer and the immune system, and in general, the integrated
picture of immune oncological profiling [60], are present among
the IS research developments. Gene expression signatures are
ideally either prognostic (telling about patient prognosis with
therapy or not) or predictive (telling about treatment benefit,
typically within randomised controlled clinical trials). However, the
fact of being non-specifically immune-related can bring to the loss
of important information associated with patient outcomes. Other
data augmentation strategies can be supported by supplementary
patient data points provided from new data sources (patient-
generated outcomes, sensors, wearables, implantable electronic
devices, etc.). Here, the risk is learning features from data with
some types of imbalance (skewed distributions force classifiers to
be trained with bias). The problem is what model should be used,
considering that both under- and over-sampling approaches can,

respectively, downsize or upsize the classes depending on their
large or small size. Clustering methods can mitigate under-
sampling effects in data while common solutions to over-sampling
are considered SMOTE [61] and ADASYN [62]. Selection and
collider biases are also problems. Associations between risk factors
and outcomes can be induced at the individual versus sample
level, thus affecting the likelihood of an individual being sampled
and distorting the associations between the variables in the
sample. Of relevance here are a double negative effect, lack of
generalisation (beyond the sample), and inaccurate inference
(within the sample), especially with collider bias (various tools are
nevertheless available [63]).

Predictive analytics
Predictive analytics holds great promises for clinical decisions and
genomic-driven risk stratifications but crucially needs prospective
validation and bias control to become an automatically embedded
feature of any IS learning approach. Data heterogeneity, although
highly informative, plays against a comprehensive coverage of
endpoints. Support may come from EHR capturing multifaceted
data, identifying patients that meet inclusion-exclusion criteria
and delineating reachable endpoints. Within omics, data integra-
tion strategies try to process data both horizontally (same omics
across different studies, thus automatically reducing the patient
stratification depth), and vertically (different omics applied to the
same samples to directly deal with multidimensionality, genotype-
phenotype correlation, and biomarker discovery). However, the
applicability of these strategies is ultimately cancer type-
dependent and particularly challenging when inference is
conducted at a pan-cancer level. Here, some form of control of
complexity should be reflected onto models extracting features to
verify significant associations across cancers and/or estimating the
effects of perturbed conditions. For example, to uncover latent
molecular signatures, integrative omics approaches should aim at
profiling specific omics-related data with harmonised criteria. As
cancer heterogeneity remains in large part undeciphered, it is
worth considering approaches able to balance the role of
influential variables that are either partially observable/measur-
able or latent. These variables potentially trigger early detection in
cancer and are usable in latent variable models to provide
accurate quantifications of risk of relapse and warning signals of
emerging resistance [64].

Reinforcement learning
Harnessing cancer data for clinical translation has guided IS
toward emerging directions [65]. IS development represents an
inherently elastic process that adapts rapidly to contextualised
data structures and targets the salient characteristics helping the
models to be efficient and accurate. A trade-off between structural
data and algorithmic complexity guides model selection depend-
ing on the relevance of the needed information and experiments.
In such regards, the value of information (VoI) inherent to the
context is an important factor defined in principle by a ratio of
benefits over costs, i.e., survival or quality of life gains versus costs
of discovering biomarkers, administering therapy, avoid side
effects and similar criteria. VoI tends to correlate value also with
data volumes (genomics, proteomics, histopathology, radiology,
etc.) due to the analyses needed by them (say, tissue diagnostic
analysis [66], informed decision-making, optimal trial design, etc.)
[67, 68].
Among their scopes, IS allow to better prioritise modifiable

factors and accelerate the identification of patients at high risk of
adverse events. This is the area in which reinforcement learning
(RL) approaches may support the development of personalised
treatments. RL aims at optimising the prediction performance by
processing a series of trial and error moves while considering the
feedback received from the environment (or context) and the
rewards assigned to the trials. As the goal is to learn adaptively
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(policy) how to maximise a reward function (health), the target
with treatment becomes a dynamic process (drug administration,
how it evolves and how personalised is the policy). Examples
come from adaptive radiotherapy in synergy with immune
modulators [69], with AI assisting with the adaptive planning
process, or dynamic treatment regimes [70–72]. In both cases, a
nonlinear feedback control problem is manifested and the support
to decisions comes from selected actions for inferring the
outcomes given the uncertainty of their interactions with the
environment and possible delayed effects (feedback). RL has been
evaluated in cancer screening [73] and to enable clinical decision
systems at the point of care aligned with evidence-based data. In
general, RL responds to the need of achieving superior
reproducibility, quality control, interpretability, and generalisability
standards (toward different endpoints within the same patient
cohort, different patient cohorts within same cancer, different
cancers). Hence, comparing datasets through benchmarks for
assessing robust validation, even with deficient data, is a crucial
issue [74].

EMERGING APPLICATIONS
Integrative radiomics
Radiomics represents a natural complement to radiology in the
assessment of early prediction of response to treatment. By
characterising non-invasively intratumor heterogeneity by a
myriad of features, radiomics adds value integrable with clinical
information when assessing treatment outcomes. A main goal of
radiomics is correlating the radiomic phenotypes with the
genomic profile. Radio-genomics [75, 76] goes in this direction
to better predict genotypic traits based on raw images and
transformed features. Similar principles hold for radio-metabolics
[77] and theranostic [78] and other hybrid approaches like
pathoradiomics (a recent study [79] differentiates NSCLC subtypes
and novel tumour-immune response pathomics-based DL classi-
fications in TME [80]). There are challenges associated with the
clinical translation of radiomic results (as per the recommenda-
tions related to applications that come from the National Clinical
Trials Network [81]), although the potential discoveries have been
only weakly validated so far and need to be consolidated. Other
major problems are summarised in a few needed actions: (i)
standardisation of the image acquisition parameters, (ii) harmo-
nisation of results, (iii) share of pre-/post-processing steps in
image analyses. In such regards, fused radiomics [82] (especially
multimodality [83, 84]) and integrated radiomics (joint profiling
with genomics, metabolomics, pathomics, holomics, etc. [85]) are
the domains that promise to progress in the next future.

Of general interest is the variation problem [86]. Problems of a
technical nature, together with the inherent aspect of patient
variability, call for statistics and signal processing techniques that
can deliver stable feature indexes and robust models. The features
with explainable variability are considered the most informative
for inference and predictive for generalisability. In such regards,
habitat delineation [87–89] is a strong direction of study aimed to
identify subregions with distinct characteristics, such as radio
resistance. After the initial focus on image mining [90] and the
significance established for delta radiomics [91–93], the delinea-
tion of habitats has gained popularity because of the specificity
assigned to the tumour partitioning targeted to TME studies and
impacting future immunotherapy. Standard validation strategies
and multiple approaches are needed to prove performance
quality and reproducibility aspects at the level of previously
adopted standards, such as the radiomic quality score (checklist to
ensure the quality) and the phantoms used to investigate
reproducibility and stability of CT, PET or MRI radiomic features
at single or multiple sites.

Internet of medical things
Internet of Medical Things (IoMT) [94, 95] is strongly connected
with ML and in particular DL concerning fine-tuning segmentation
and sub-type identification problems for which joint radio-
pathomic signatures are sought [96]. Here, imaging findings have
been useful to predict response to treatment via DL algorithms
offering increased efficiency (speed and cost reduction) and
accuracy (improved quality of images and their interpretation).
What is still lacking is the generalisability of the approaches and
the ability to translate the high-tech content results of these
studies into clinically valid applications. Both discriminative and
generative DL models are employed and network refinements are
implemented by a mix of feature engineered methods (mathe-
matically transformed to reduce error in modelling the target) and
non-engineered methods, both types finding utilisation also in
distributed radiomics (e.g., multicentre studies [97–99]).

OUTLOOK
Building systems-level value of information
Methods’ specificity can concretise into data overfitting when the
performance is measured for new data over which the results
should be generalised. Being the use of DL pervasive, until this
suffers from a certain lack of full interpretability due to the black-
box learning paradigm, a good part of data-intensive cancer
research can have only a reduced impact. The data integration
strategies aimed to gain statistical power do not follow standard
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solutions yet. In principle, the VoI of integrated datasets may be
summed linearly or combined in more sophisticated ways
depending on the systems’ uncertainty level, thus driving
decisional processes to take advantage of decision trees and
similar model structures.
Discovery is usually leveraging hypothesis generation that

iterates through an automated cycle (measuring, validating, and
automating) ending with predictive modelling for decision
support. The IS added value in this cycle is ultimately defined in
terms of better outcomes obtained at a lower cost, which implies
the fusion of streams of information over time (Fig. 3). In
radiomics, for instance, focusing on signatures and profiles
requires detection of ‘hard data’ vulnerabilities [100], which might
be amplified when searching for robust gene expression programs
through multiple normalisations [101], elucidation of phenotype
transitions, insights into therapy resistance, characterisation of
TME, etc. These factors motivate an increased use of systems and
network approaches for future applications. On the other hand,
‘soft data’ such as EHR, personalised and dynamic treatment data,
disease trajectories, risk profiles, and scores for patient stratifica-
tion are products of dynamical processes centred on patients. As
such, the data distributions are subject to drift over time, causing
the ML model to lose predictive power.
The sketch in Fig. 3 represents the complexity underlying the

process of assembling various data types for stratification purposes at
both population and individualised scales. The data distributions
depend on factors that are endogenous and exogenous to the
patient. Therefore, full reliability of data through the process requires
continuous testing. Explaining the possible ways uncertainty can
affect models remains quite difficult as well as it is problematic the
interpretability of results through the usual metrics. In perspective,
support to clinical decision systems in oncology will require dynamic
IS calibration strategies for uncertainty control.

Impacts in clinical practice
Two main factors limit the impact of big data and IS in clinical
practice. First, in view of the multiple data dimensions associated
with novel drug discovery strategies and therapies, changes may
be expected in the clinical trials [102–104]. Second, an increased
input heterogeneity tends to make inference more convoluted
and requiring specialised methodologies assigning specific roles
to various types of intervention solutions (coming from software
engineering, analytics, decision processes, etc.) in support of
clinical evidence [105, 106]. With few exceptions [107–109], most
translational studies are retrospective and not prospective [110].
This limits the ability to measure the IS generalisation perfor-
mance and calls for high-quality reporting to mitigate potential
problems related to data and algorithmic biases, confounders, etc.
[111]. In turn, this further stimulates the adoption of model
confidence measures to facilitate cross-domain applicability and
reproducibility of findings [112].
Important initiatives are TRIPOD-ML [112, 113], SPIRIT-AI and

CONSORT-AI [114, 115]. Algorithm-related aspects like quality
control, model recalibration and retraining performances should
be checked under varying conditions but also account for features
reassessment with evolving clinical and operational practices. FDA
guidelines were recently introduced with a regulatory framework
for software-guided medical devices that must include predeter-
mined change control plans. The sphere of opacity or ambiguity in
IS models is also involved with the DL processing of unstructured
data that represents an additional complex step toward inference
(like multiple hidden layers or special optimisation functions).
Some promising models have mitigated the overfitting effects: for
instance, Deep Forest (or gcForest), applied to lung cancer staging
with a decision-fusion strategy conservative in the parameters
used over multimodal genetic data [116].
The clinical feasibility of large data IS studies depends on the

generalisability of results across different populations (due to age,

gender, ethnicity factors), despite the effects of biases (from training
over historical data with size gaps and disparities) and confounders
on the model outcomes. Consequently, validation concerns (choice
of the dataset, selected criteria for significance assigned to variables,
model discrimination, etc.) emerge. The usefulness or expected
performance of sound algorithms is not sufficient to justify adoption
and integration into clinical workflows. Accepting less accuracy from
a 'black-box' learning machine may lead to gains in terms of
transparency and interpretability, but assuming this balance is
achieved, the risk is to rely on oversimplified models guiding the
complex decision. Ultimately, the key question remains whether
model results are beneficial to patients. Therefore, any adopted
metric should prioritise and quantitatively measure the net benefit of
using a certain model to guide actions and decisions with an
appropriate outcome-driven model design. The continuous expan-
sion of phenotypic knowledge bases of reference clinical datasets
across populations and open software analytics platforms allowing
reproducibility of results support this direction offering opportunities
for testing and validating models by cross-referencing the findings
over independent datasets while fine-tuning the methods (i.e., by
ranking performance factors and applying standards for algorithm
fairness and best practice recommendations to train-retrain and
calibrate). Such developments will be likely inducing a revision of the
model prediction paradigm [117, 118] and exerting effects on
effective translation to clinical practice together with further
propelling prospective studies.
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