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The U.S. Food and Drug Administration (FDA) Division of Applied Regulatory

Science (DARS) moves new science into the drug review process and

addresses emergent regulatory and public health questions for the Agency. By

forming interdisciplinary teams, DARS conducts mission-critical research to

provide answers to scientific questions and solutions to regulatory challenges.

Staffed by experts across the translational research spectrum, DARS forms

synergies by pulling together scientists and experts from diverse backgrounds

to collaborate in tackling some of the most complex challenges facing FDA.

This includes (but is not limited to) assessing the systemic absorption of

sunscreens, evaluating whether certain drugs can convert to carcinogens in

people, studying drug interactions with opioids, optimizing opioid antagonist

dosing in community settings, removing barriers to biosimilar and generic

drug development, and advancing therapeutic development for rare diseases.

FDA tasks DARS with wide ranging issues that encompass regulatory science;

DARS, in turn, helps the Agency solve these challenges. The impact of DARS

research is felt by patients, the pharmaceutical industry, and fellow regulators.

This article reviews applied research projects and initiatives led by DARS and

conducts a deeper dive into select examples illustrating the impactful work of

the Division.

KEYWORDS

regulatory science, drug regulation, public policy, public health, US Food and Drug
Administration, FDA–Food and Drug Administration, translational science

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.1109541
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.1109541&domain=pdf&date_stamp=2023-01-19
https://doi.org/10.3389/fmed.2022.1109541
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.1109541/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1109541 January 17, 2023 Time: 8:50 # 2

Chiu et al. 10.3389/fmed.2022.1109541

Introduction

The United States Food and Drug Administration (FDA)
recently highlighted regulatory science as an Agency priority
in its “2021: Advancing Regulatory Science at FDA: Focus
Areas of Regulatory Science (FARS)” report (1). Regulatory
science is defined as the science of developing new tools,
standards, and approaches to assess the safety, efficacy, quality,
and performance of FDA-regulated products (2) and it plays
an important role in supporting regulatory decision-making
and policy development (3). Located within FDA’s Center for
Drug Evaluation and Research (CDER), Office of Translational
Sciences, Office of Clinical Pharmacology, the Division of
Applied Regulatory Science (DARS) conducts mission-critical
applied regulatory science research for the Agency.

Division of Applied Regulatory Science engages
stakeholders in mission-critical laboratory, computational,
and clinical applied research to improve regulatory decision-
making and public health. DARS moves new science into the
FDA review process and addresses emergent regulatory and
public health questions. Capabilities within the Division include
laboratory-based research specializing in omics, bioanalysis,
microphysiological and cellular systems, immunology, and
electrophysiology as well as in silico research performed by
informatics and computational modeling groups. In addition,
DARS conducts clinical research focused on facilitating new
and biosimilar/generic drug development and assessing the
safety of marketed drugs. Using applied research, DARS
investigates questions related to clinical pharmacology, medical
toxicology, systems pharmacology, chemistry, and biology (see
Supplementary Appendix 1 for a more thorough description
of DARS capabilities).

The research projects and initiatives led by DARS originate
from a variety of sources. Some projects described in this article,
such as those found under the Section “Emergent regulatory
and public health questions,” were initiated following requests
from FDA or CDER senior leadership in support of an Agency
or Center priority. Other projects began as regulatory consult
requests to DARS from other offices within the Agency.

Upon receiving a project request from senior leadership
or a consult, the Division rapidly assembles a diverse,
interdisciplinary team of experts. These scientific thought
leaders have decades of cumulative experience across the
translational research spectrum (4). Moreover, DARS scientists
frequently collaborate on projects with leading academic,
government, and private institutions (Supplementary
Appendix 2).

An article (5) published in 2017 reviewed DARS’ mission
and scope of work at that time, describing example research
studies and projects. Since that time the Division has grown, as
has the impact of DARS research on drug-related policies and
regulatory decisions. This article reviews current DARS’ projects
and initiatives, showcasing unique synergies and collaborations,

and further examines selected projects that highlight DARS’
impact. In each of these examples, DARS led combinations
of applied laboratory, computational and clinical research to
provide key data to the Agency and to inform regulatory
decisions or policy. The examples described in this article
represent only a part of the Division’s full research portfolio.

Emergent regulatory and public
health questions

Two recent examples of DARS engagement on emergent
regulatory and public health issues involved over-the-counter
drug products that were widely available to patients (i.e.,
sunscreens and the heartburn medication ranitidine) and
other examples involved the prescription drug, remdesivir, a
treatment for COVID-19.

Sunscreen active ingredients
absorption

Food and Drug Administration issued a proposed rule
(6) in February 2019 to update regulatory requirements
for 16 sunscreen ingredients including recommendations to
assess their human systemic absorption. Historical assumptions
posited sunscreen active ingredients were not absorbed and that
the clinical studies to test this were not feasible. In collaboration
with FDA’s Office of New Drugs, DARS led and conducted
clinical research demonstrating that maximum usage sunscreen
clinical trials are feasible, that sunscreen active ingredients are
absorbed at levels that would trigger additional safety studies
(Figure 1), and that further research is needed to fill in data
gaps for sunscreen ingredients. Results from these studies were
published in the Journal of the American Medical Association:
JAMA (7, 8), one of which was the most viewed JAMA article in
2019 (8). DARS also published the detailed bioanalytical method
it developed (9) to enable further study and collaborated with
FDA’s Office of Pharmaceutical Quality staff on a study to assess
sunscreen ingredient absorption with an in vitro model (10).

Over-the-counter heartburn
medication ranitidine

In 2019, FDA received a citizen petition (11) indicating that
unacceptably high levels of N-nitrosodimethylamine (NDMA),
a probable human carcinogen, were detected in specific
ranitidine products. Ranitidine products were removed from the
US market in April 2020, owing to the unacceptable amounts
of NDMA in ranitidine products. Additionally, the petitioner
postulated that ranitidine could convert to NDMA in people. In
response, DARS, working with FDA’s Office of New Drugs and
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FIGURE 1

Division of applied regulatory science (DARS) conducted a clinical study to assess the systemic absorption and pharmacokinetics of sunscreen
active ingredients. Study results (shown in these graphs) demonstrate these compounds are absorbed at levels that would trigger additional
safety studies. Further research is needed and these findings do not indicate individuals should refrain from using sunscreen (7).

Office of Pharmaceutical Quality, designed a rigorous clinical
study that carefully controlled for factors known to influence
NDMA exposure and measurements including diet (12). DARS
developed and validated a sensitive analytical method that
was used to measure NDMA in study participants’ urine and
blood. The study found no evidence of increased NDMA
content in participants’ urine or blood (Figure 2) who were
administered ranitidine (12). Additional in vitro investigations
with simulated gastric fluid supported that ranitidine would not
produce NDMA under physiologic conditions (13). With this
information, FDA may consider allowing ranitidine products
back on the market if they are manufactured to be stable with
low, acceptable amounts of NDMA that do not increase over
time.

Adverse events of COVID-19
therapeutics

In October 2020, FDA issued an Emergency Use
Authorization for remdesivir to treat COVID-19. Subsequent
adverse event reports received by FDA suggested a possible
connection to acute kidney injury or hepatic injury. FDA
consulted DARS to assess whether there was additional
evidence or a potential mechanism for these adverse events.
DARS used target prediction software, secondary pharmacology
data analysis, quantitative structure-activity models, and
structural similarity analysis to review remdesivir and its
metabolites. DARS found that remdesivir and its metabolites
were structurally similar to drugs associated with renal
and hepatic toxicity and a description of the potential risks
associated with these adverse events is now found in remdesivir’s
product labeling (14).

Optimizing COVID-19 therapies

Division of Applied Regulatory Science developed and
published a mechanistic COVID-19 disease model that can be
used to guide candidate drug selection and dosing strategies

FIGURE 2

Division of applied regulatory science (DARS) designed a
rigorous clinical study that carefully controlled for factors
known to influence N-nitrosodimethylamine (NDMA)
measurements including diet. The study found no evidence of
increased NDMA content in participants’ urine who were
administered ranitidine (12).
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based on non-clinical data. The model strategy was developed
using remdesivir as a proof-of-concept example and provides a
well-calibrated and validated model for performing similar non-
clinical to clinical translations for other potential COVID-19
therapies (15).

Addressing the opioid epidemic

Prescription opioids are powerful pain-reducing
medications that have both benefits and potentially serious risks
(16). The U.S. is in the midst of an opioid epidemic. Nearly
92,000 people died from drug-involved overdose in 2020, 75%
of which involved an opioid (17). FDA leaders committed the
Agency to work proactively toward a solution (18) and enacted
the 2016 Opioid Action Plan (1) outlining concrete steps the
Agency would take to address the epidemic. In support of the
Agency’s efforts, DARS uses its diverse expertise to help fight
this public health crisis.

Optimizing opioid reversal agents

Division of Applied Regulatory Science is conducting
in vitro, computational, and clinical research to optimize the
use of existing opioid antagonists (naloxone) and to advance
drug development tools for new opioid antagonists (Figure 3).
Synthetic opioids, such as illicitly manufactured fentanyl, cause
a large number of opioid overdose deaths in the U.S. (19).
Moreover, a rise in illicit fentanyl derivatives (that vary widely in
potency) make it difficult to identify an adequate naloxone dose.
DARS, in collaboration with the University of Maryland (20,
21), applied an advanced in silico molecular dynamics method
called metadynamics to elucidate the dissociation mechanism
of fentanyl and its derivatives to calculate the residence times
at the mu-opioid receptor. The simulations uncovered two
distinct dissociation mechanisms, one of which involves a newly
identified binding pocket that contributes to the long residence
time and high binding affinity of fentanyl and its derivatives.
This new method was used to predict the relative dissociation
time of a newly identified opioid that emerged from illegal
markets, helping to inform overdose prevention strategy (22).

Division of Applied Regulatory Science developed a
quantitative systems pharmacology computational model (23)
to assess naloxone dosing strategies and applied it to the
regulatory review of a new naloxone formulation for use
by military personnel and chemical incident responders (24,
25). The model connects the pharmacokinetics of different
opioids and naloxone to in vitro receptor binding kinetics, and
subsequently to effects on respiratory depression and cardiac
arrest. DARS used this model to assess the impact of naloxone
dosing administered as an emergency treatment or temporary
prophylaxis following exposure to fentanyl or carfentanil using

FIGURE 3

To help combat the opioid epidemic, division of applied
regulatory science (DARS) is conducting research to optimize
the use of opioid antagonists and to advance drug development
tools to support new opioid antagonists. DARS is using a variety
of methods including molecular dynamics, computational
modeling, and clinical studies.

endpoints of respiratory depression and cardiac arrest (24,
25). With this information, FDA’s review team was better able
to understand this naloxone formulation’s capacity to reverse
opioid effects under different scenarios.

Division of Applied Regulatory Science conducted a
clinical study to characterize intranasal naloxone exposure
after different repeat dosing strategies and predict the
impact of the different dosing strategies on rescuing patients
from fentanyl and fentanyl-derivative overdoses using the
computational model described above (26). In addition, through
a collaboration with Leiden University, an additional study
is assessing the dynamics of how intranasal naloxone reverse
respiratory depression from fentanyl in healthy opioid naïve
participants and chronic opioid users (27). Together, these
studies will inform intranasal naloxone dosing strategies in the
community setting.

Opioid drug-drug interaction effects
on respiration

In 2016, FDA issued a warning about the increased
risk of respiratory depression when combining opioids with
benzodiazepines (28). Following the warning, DARS received
a consult request concerning the potential for drug-drug
interactions between opioids and drugs that might be co-
prescribed in lieu of benzodiazepines. DARS conducted non-
clinical in vivo studies to assess effects on respiratory depression
for drugs given alone or in combination with an opioid (29).
As a result of these studies, DARS designed a clinical study
to assess the translatability of the findings to humans (27).
This DARS-led clinical study assessed whether combining the
selective serotonin reuptake inhibitor paroxetine or the atypical
antipsychotic quetiapine with the opioid oxycodone, compared
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to oxycodone alone, decreased ventilation during hypercapnia
(elevated carbon dioxide). The study found that paroxetine
combined with oxycodone decreased ventilation (Figure 4),
indicating the need for further study of the clinical implications
(30).

Public Health Assessment via Structural
Evaluation (PHASE)

Division of Applied Regulatory Science developed a
Public Health Assessment via Structural Evaluation (PHASE)
methodology that uses molecular structure to predict the
biological function (31) of newly identified opioids (Figure 5).
Results from PHASE have the potential to inform public health
and law enforcement agencies with vital information regarding
newly emerging illicit opioids in the absence of pharmacological
data. In an example of using this method, DARS assessed
kratom alkaloids (32), which was highlighted by then FDA
Commissioner Dr. Scott Gottlieb in a statement about kratom’s
potential for abuse, addiction, and serious health consequences
(33).

Better predicting potential drug
safety issues

In 2015, FDA published “Assessing CDER’s Drug Safety-
Related Regulatory Science Needs and Identifying Priorities”
(34, 35). One of the priorities was to develop and improve
predictive models of safety in humans (34). DARS is pursuing
multiple projects to assess new tools to help identify, predict,

FIGURE 5

When a new drug of abuse is identified, public health
assessment via structural evaluation (PHASE) uses chemical
structure to assess the new drug’s risk to public safety (31).

assess, and manage drug-related adverse events that can be
incorporated into the drug safety evaluation process.

Predicting immune-mediated adverse
events

While significant progress has been made in engineering
biological products, the human immune system may still
produce an unexpected or exaggerated immune response to
a drug product resulting in poor efficacy or life-threatening
adverse reactions. DARS is comparing the ability of different

FIGURE 4

In this preliminary study involving healthy participants over 5 days, paroxetine combined with oxycodone, compared with oxycodone alone,
significantly decreased the ventilatory response to hypercapnia (30), whereas quetiapine combined with oxycodone did not cause such an
effect. Additional investigation is needed to characterize the effects after longer-term treatment and to determine the clinical relevance of these
findings.
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non-clinical models to predict immune-mediated adverse
events from biological drug products. DARS tested the use
of novel non-clinical models to predict cytokine release
syndrome, a potentially life-threatening complication associated
with biological products (36, 37) and showed that non-
clinical models can effectively demonstrate this adverse
event. Additionally, after successfully demonstrating immune-
mediated activation in a non-clinical model (38), investigations
are continuing for checkpoint inhibitor oncology treatments
for which adverse events cannot presently be predicted using
computational, in vitro, or conventional non-clinical methods.

Leveraging molecular target
information to predict safety issues

Knowledge of a drug’s molecular targets can provide
early identification of a drug’s effects and potential safety
concerns. DARS leads multiple efforts collating information

about a drug’s known and predicted targets to identify
potential safety concerns. For example, DARS developed
multiple computational methodologies, including with machine
learning, to predict a drug’s adverse effects based on the
biological receptors that the drug, or similarly structured
drugs, are known to target (39–41). These computational
methodologies demonstrated promising performance in
predicting significant adverse events. These results may
indicate which organ systems and adverse event categories to
closely monitor during clinical trials or during clinical and
non-clinical data review.

Additionally, DARS is analyzing and building a database
(Figure 6) for secondary pharmacology activity submitted by
industry as part of their Investigational New Drug application
(42, 43). A drug developer typically conducts in vitro target
binding and functional assays for 80–100 biological receptors
to determine potential on-target and off-target effects. However,
the targets chosen for the assays as well as the submission
format are not currently standardized across the industry. Data

FIGURE 6

Division of applied regulatory science (DARS) manually extracted data from a variety of secondary pharmacology reports submitted by sponsors.
The extracted data was then curated into a database (43) to allow for easier access and analysis by the agency.
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from these assays have been manually extracted and curated
into a database that will allow easier access to and analysis of
these study results. Additionally, DARS is engaging in a public-
private partnership with the Pistoia Alliance to determine the
best methods for future regulatory submission of these studies.

Predicting drug interactions with
(quantitative) structure activity
relationship [(Q)SAR] models

The use of (quantitative) structure-activity relationship, or
(Q)SAR, models has become an integral part of regulatory
review as it can rapidly assess a compound’s toxicological
and pharmacological properties based solely on chemical
structure (5, 44). (Q)SAR models describe the association
between chemical structural features and biological activity
under the general assumption that similar chemical structures
exhibit similar biological activities (45). (Q)SAR models and
databases developed through DARS are used to support
drug safety assessments and inform regulatory decisions
at FDA. Models for several endpoints that comprise the
standard genetic toxicity battery described in the International
Council for Harmonisation (ICH) S2(R1) regulatory guidance
(46) were recently updated and best practices on their use
were also described (47–49). Additionally, a structure-activity
relationship (SAR) profiler was constructed through an external
collaboration to evaluate potential interactions caused by
metabolites. Lastly, DARS recently developed a new model to
predict a drug’s potential to cross the blood-brain barrier (50)
and is in the process of developing a model to predict drug-
induced cardiotoxicity using post-market safety data.

Drug-drug interaction studies

As patients often use more than one drug at a time, it is
critical to know if drugs taken together interact leading to
safety or efficacy implications. To collect this information, FDA
requires drug-drug interaction studies from pharmaceutical
sponsors (51). DARS evaluates in vitro and in vivo methods
to identify best practices when conducting transporter- or
metabolism-based drug-drug interaction studies. For example,
conflicting information appears in the scientific literature
regarding the extent of specific cytochrome P450 (CYP)
involvement in metabolizing methadone (a treatment for
opiate dependence). Drawing from previously submitted
new drug applications, DARS constructed a database of
drug-drug interaction studies between methadone and
antiviral medications known to affect these CYP enzymes
(52, 53). After analyzing these 29 studies, DARS formulated
recommendations on how best to conduct future drug-drug
interaction studies with methadone.

Facilitating biosimilar and complex
generic development

Bringing more drug competition to the market and
addressing the high cost of medicines is a priority for FDA and
the Department of Health and Human Services (54). Improving
the efficiency of biosimilar and generic drug development can
facilitate robust drug market competition and help reduce
drug costs. Demonstrating the Agency’s commitment, FDA
announced the Drug Competition Action Plan (54) in 2017
and the Biosimilars Action Plan (55) in 2018. The plans
outlined concrete steps the Agency would take to remove
barriers to biosimilars and generic drug development. This
included prioritizing biosimilars and complex generic drug
applied research projects.

Pharmacodynamic biomarkers for
biosimilar development and approval

Many of DARS’ current initiatives (Figure 7) will inform
the Agency’s thinking on the use of pharmacodynamic (PD)
biomarkers to demonstrate biosimilarity that may streamline
or negate the need for comparative clinical studies (56, 57).
This included conducting three clinical studies (58–60) to define
best practices on characterizing PD biomarkers for different
classes of drugs and to develop general considerations applicable
to all types of biomarkers for biological products. These
studies included assessments to evaluate uses of proteomic
and transcriptomic analysis of human plasma to identify
novel biomarkers for biosimilar development (61). A joint
FDA/Duke Margolis Workshop (62) discussed initial findings
and facilitated a broader discussion on use of PD biomarkers
for biosimilar development. Additional details will be reported
in the January 2023 themed issue on Innovations in Biosimilars
in the journal Clinical Pharmacology and Therapeutics (61, 63).

Novel methods to assess
immunogenicity for biosimilars and
complex generic drugs

A factor influencing rapid development of biosimilars and
generics is the ability to predict the potential risk of a stronger
immune response (immunogenicity) in humans to a proposed
biosimilar or generic drug than that seen with the innovator
product. For most biosimilars this is still assessed through
clinical trials. DARS is studying the ability of non-clinical
approaches to predict immunogenicity risk without conducting
a clinical trial. This includes assessing specific in vitro assays and
cell types, in vivo models, and identification of useful controls.
These methods have the potential to identify products with
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immunogenicity risk sooner and streamline the development of
biosimilars and certain complex generic drugs.

Supporting generic drug development
in pediatrics

Performing clinical studies in pediatric populations
that involve frequent blood samples can be challenging if
conventional methods are used that require relatively large
blood volumes that can limit generic drug development
for children. An alternative method is determining the
concentration of drug in blood from dried blood spots (DBS)
that only require 10 µl of blood compared to ∼5 mL (500 times
more) with conventional methods. However, there has been a
lack of analytical methodology metrics for using DBS analysis
for generic drug bioequivalence studies. DARS developed
and validated novel, sensitive, and specific analytical methods
(Figure 8) to support pediatric pharmacokinetic studies using
DBS cards (64).

Investigating novel approaches to
establish bioequivalence for complex
generic products

In collaboration with CDER’s Office of Generic Drugs,
DARS has conducted multiple studies to evaluate the potential
of new approaches to advance the development of complex
generic drugs such as injectable delayed release formulations
and device-drug combinations. DARS conducted a non-clinical
in vivo study to evaluate an in silico modeling approach

for delayed-release risperidone injectable products that might
be used to inform clinical trials for generic drug approvals.
Another recent study investigated slow-release dexamethasone
intravitreal implants used to treat inflammatory conditions in
a wide variety of ocular diseases. Unfortunately, no generic
implants are available on the market largely due to the challenges
associated with measuring drug concentration within the eye
to establish bioequivalence. DARS conducted a non-clinical
in vivo study to measure and correlate intraocular and systemic
dexamethasone concentrations after intravitreal implantation
(65). This research will inform whether systemic dexamethasone
exposure might serve as a surrogate for intra-ocular exposure
in assessing the bioequivalence of generic dexamethasone
implants. A similar approach may be possible for development
of other generic intraocular products.

Advancing therapies for rare
diseases

Food and Drug Administration is committed to advancing
the development of therapies for rare diseases (66). Although
a single rare disease is defined as affecting less than 200,000
people, collectively, over 7,000 rare diseases affect more than
30 million patients in the US (67, 68). With small individual
patient populations, developing therapies for rare diseases faces
unique challenges such as inadequately powered trials and
restricted clinical study designs. FDA recognizes the need for
new and novel drug development tools (Figure 9) as well
as regulatory flexibility for the evidence required for drug
approval (69).

FIGURE 7

Many of division of applied regulatory science (DARS’) current initiatives will inform the agency’s thinking on the use of pharmacodynamic (PD)
biomarkers to demonstrate biosimilarity that may streamline or negate the need for comparative clinical studies (56, 57). This includes
conducting applied clinical research (58–60) to fill information gaps, inform best practices, and evaluate novel omics methodologies (61). DARS
also developed an evidentiary framework, the draft version of which was presented at a DARS-led public workshop (62).
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FIGURE 8

Division of applied regulatory science (DARS) developed and validated novel, sensitive, and specific analytical methods to support pediatric
pharmacokinetic studies using dried blood spot (DBS) cards. One such method was for methylphenidate, an attention-deficit hyperactivity
disorder drug. The long-term stability profile of methylphenidate on DBS cards stored for up to 7 months at room temperature (64) is shown.
Methylphenidate was found to be stable (±15% of spiked concentration) on DBS cards stored at 24◦C for up to 5 months.

FIGURE 9

Complex in vitro models, induced pluripotent stem cells (iPSCs), and other non-clinical methods are some of the tools being evaluated by
division of applied regulatory science (DARS) to help advance therapies for rare diseases.

Drug approvals using non-clinical data

Division of Applied Regulatory Science led regulatory
reviews of in vitro data to expand the approval of rare disease
treatments. The scientific framework enables the evaluation of
drug approval proposals in disease population subsets with
very rare genetic variants who may not be well represented in
clinical trials (70, 71). In 2017, DARS was consulted to determine
if electrophysiology and other in vitro data were adequate to
support the expanded approval of ivacaftor to treat patients with
cystic fibrosis (CF) who have such rare variants that the patient
population is too small for an adequately powered clinical trial.
An in vitro cell-based approach was used to assess the response
of the mutated or dysfunctional proteins in the presence of
drug to make inferences about the potential for response in
patients. As a result, the 2017 expanded approval of ivacaftor
has allowed ∼1,500 new patients access to the drug based on
in vitro data that predicted the clinical responsiveness of patients
not included in clinical trials (72). Soon after, DARS evaluated

in vitro data to support the expansion of approval for the
combination drug ivacaftor/tezacaftor/elexacaftor (73). In 2018
DARS was also consulted to determine if in vitro functional
data was adequate to support the approval of migalastat to treat
patients with Fabry disease. An estimation about the extent
of patient access to migalastat based on the original approval
is not yet available but a similar increase in access to the
drug for patients with 348 amenable galactosidase alpha gene
(GLA) variants is expected (71). In 2021, in vitro data was also
evaluated by DARS to support addition of two new amenable
GLA variants to the label.

Assessing the potential for iPSCs to
streamline drug development for rare
diseases

Induced pluripotent stem cells (iPSCs) may serve as a
renewable source of differentiated cell types with patient-
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or population-specific properties (74–76). This model could
replace, reduce, or help refine clinical trials for rare diseases.
A collaboration with Stanford University is evaluating and
comparing in vitro models with patient-specific iPSCs from
patients with Duchenne Muscular Dystrophy and iPSCs
genetically engineered to have the same genetic variants using
CRISPR. This project seeks to inform the development
of general standards, quality control criteria, and best
practices for iPSC-based models to assess the efficacy for
rare disease treatments.

Identifying molecular targets for
pediatric cancer

Pediatric cancers are rare diseases with limited treatment
options (77). To facilitate drug development in accordance
with the Research to Accelerate Cures and Equity (RACE)
Act, FDA developed the Pediatric Molecular Target List to
provide guidance to pharmaceutical developers when planning
new drug and biologic submissions that may be relevant to
pediatric cancer treatment. To assist with maintaining the
Pediatric Molecular Target List, DARS is developing natural
language processing algorithms to identify evidence in peer-
reviewed literature and external databases for molecular targets
associated with pediatric cancer. These algorithms will inform
regular updates to the Pediatric Molecular Target List including
identifying new references for existing targets, emerging
evidence for new targets, as well as supporting the review of
initial pediatric study plan submissions.

New alternative methods

New alternative methods to animal
testing

As a part of FDA’s mission to ensure the safety and efficacy
of human drugs, FDA reviews drug developer submitted data
to establish under what conditions a new drug can be safely
administered to patients and whether the new drug carries
an increased risk of various adverse effects. This involves
assessing end points that cannot be ethically obtained in
humans, such as histopathological analysis of all major organs.
Animal studies have played a critical role to meet this need
and bring safe and effective therapies to patients. At the same
time, FDA has a long-standing commitment to replace, reduce,
and refine animal testing (the “3Rs”) with successes to date in
harmonizing regulatory guidelines with international regulators
and accepting alternatives to animal testing in certain areas
(78, 79). Recent advances in systems biology, iPSCs, engineered
tissues and mathematical modeling present new opportunities
to improve our ability to predict risk and efficacy (Figure 10).

However, multiple steps are required to translate these new
technologies into regulatory use and maintain the same standard
of safety, efficacy, and quality of FDA-regulated products. While
we are nowhere near being able to replace all animal testing,
there are opportunities for new alternative methods to make
additional inroads in addressing the 3Rs for specific contexts
of use. FDA has proposed funding for an Agency-wide New
Alternative Methods Program, which was presented to the FDA
Science Board in June 2022 by DARS (80).

In line with the Agency’s broader goals, DARS is performing
applied research on complex in vitro models, including with
iPSCs and microphysiological systems, to fill information
gaps about the potential utility of these assays for regulatory
contexts of use and to assess reproducibility, quality control
and performance criteria. This has included studies on liver
microphysiological systems (81, 82) for assaying drug toxicity,
metabolism and accumulation, and additional studies with
iPSC-derived liver and cardiac cells (74–76). Furthermore,
DARS is assessing drug permeability and metabolism using
the lung, gut, and a gut-liver interconnected MPS. Recently,
DARS contributed to two white papers, which focused on
in vitro methods for assessing drug-induced effects on cardiac
contractility (83, 84). Additionally, DARS is studying the
reproducibility of three-dimensional engineered heart tissue
models. This work will be used to inform policy and guidance
around qualifying alternative methods for regulatory use.

Implementing regulatory science:
From applied research to leading
international regulatory guideline
updates

Division of Applied Regulatory Science has pursued a multi-
year collaborative effort to improve the assessment of drug-
induced cardiac toxicity from abnormal heart rhythms. Multiple
drugs were removed from the market in the 1990s to 2000s
and the ICH of Technical Requirements for Pharmaceuticals
for Human Use Guidelines were implemented in 2005 to
require specific non-clinical in vitro and in vivo studies, as well
as dedicated clinical trials to assess the risk. However, these
methods lacked specificity, resulting in drugs being dropped
from development, sometimes unnecessarily. In response, the
Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative
was implemented by FDA in collaboration with public-private
partnerships including industry, academics, and other global
regulators (Figure 11) (85–87). Through this, DARS led
collaborative studies to assess:

• in vitro ion channel assay standards, best practices, and
variability (88–90),

• in silico computational model development, optimization,
and validation (91–96).
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FIGURE 10

Division of applied regulatory science (DARS) is studying the
utility of complex in vitro models, including with induced
pluripotent stem cells (iPSCs) and microphysiological systems to
reduce and replace animal testing.

• best practice considerations for human iPSC-cardiomy-
ocyte assays (97–99), and

• clinical electrocardiographic biomarkers (100–107).

The initiative prompted the ICH to open an Implementation
Working Group with the purpose of developing a new guideline
through a series of questions and answers to the existing
ICH cardiac safety guidelines for an integrated strategy on

using non-clinical data to inform clinical decision making.
DARS staff served as lead (rapporteur) in developing new
Questions and Answers (Q and As) to the ICH E14/S7B “Clinical
and Non-clinical Evaluation of QT/QTc Interval Prolongation
and Proarrhythmic Potential” guideline (108). This new ICH
guideline contains best practice recommendations for in vitro
ion channel and human induced pluripotent stem cell assays
to enable use as follow-up studies in place of potential animal
studies and principles for validating in vitro and in silico
proarrhythmia models and qualifying them for regulatory use,
which can reduce animal use.

Limiting drug impurities and
extractable/leachable compounds

The growing use of (Q)SAR models for the safety
assessment of drug products led to the formation of the
DARS Computational Toxicology Consultation Service (109).
DARS staff receive consult requests from across CDER to
support hundreds of new and generic drug applications, post-
market safety assessments, and drug monograph reviews each
year (Figure 12). For substances with limited experimental
toxicology data, DARS reviews (Q)SAR model data submitted by
the pharmaceutical applicant and, if needed, generates (Q)SAR
predictions to inform setting an acceptable limit for impurities
and extractable or leachable substances. Model predictions are
then reviewed by DARS staff with the application of expert

FIGURE 11

Under the comprehensive in vitro proarrhythmia assay (CiPA) initiative, division of applied regulatory science (DARS) (along with colleagues from
CDER’s office of new drugs) developed a non-clinical model (94) to evaluate the risk of drugs causing abnormal heart rhythms with a high level
of predictivity. DARS also leads research in collaboration with external consortia to overhaul the approach to assessing the risk of abnormal
heart rhythms for all new drugs and update regulatory guidelines.
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knowledge (110, 111) before a regulatory recommendation
is made (109). Three common review scenarios for (Q)SAR
consultation requests are described below.

(Q)SAR assessments for drug impurities

The ICH M7(R1) international regulatory guideline
recommends the use of (Q)SAR predictions as a state-of-the-art
alternative to experimental testing to qualify a drug impurity
for mutagenic potential (112). DARS receives consults to review
mutagenicity (Q)SAR predictions in pharmaceutical industry
submissions and to generate in-house (Q)SAR predictions using
a battery of complementary models and expert knowledge.

Structure-activity relationship
assessments for extractable/leachable
compounds

Extractable/leachable compounds are industrial chemicals
that may be present in a drug product from manufacturing,
packaging, drug delivery, and/or container closure systems.
For non-mutagenic compounds with limited general toxicity
data, a manual structure-activity relationship, or “read-across,”
assessment based on structurally similar surrogate compounds
may be used to inform setting a permissible daily exposure
limit. DARS staff review applicants’ proposed surrogates for
extractable/leachable compounds and, if needed, recommend
alternative surrogates based on structural, metabolic, and
physicochemical considerations.

(Q)SAR evaluation of nitrosamine
impurities to assess carcinogenic
potency

Nitrosamine impurities constitute a special class of
potentially mutagenic impurities that are controlled to very low
levels because of their high carcinogenic potency. Due to the
limited availability of experimental data for these impurities,
read-across and (Q)SAR models may be used to inform an
acceptable intake based on structurally related surrogate
compounds. DARS staff conduct read-across and (Q)SAR
analyses and review structure-based justifications for proposed
nitrosamine limits to support internal decision-making.

Additional regulatory challenges

The research topics and projects selected for this article
represent only a part of DARS’ research portfolio and the
Division’s work covers the full spectrum of regulatory science.

To help further illustrate the breadth and depth of DARS’ work,
this section highlights an additional sampling of projects.

Drug overdose labeling

Within drug labeling, the overdosage section describes the
signs, symptoms, and laboratory abnormalities that occur with
drug overdose as well as recommendations on treatment, if
known (113). Although FDA has implemented initiatives to
update this section, it is typically not revised after initial
approval (114). Using natural language processing informatics
tools, DARS is identifying outdated or inaccurate information
within the overdosage section. Thus far, the project has
evaluated drugs from 10 different drug classes highly associated
with drug overdose fatalities to inform potential label updates.

New model to measure emergence of
antimicrobial resistance

Antimicrobial resistance (AMR) remains a significant global
public health threat. FDA, in collaboration with internal
stakeholders, develops approaches to detect, prevent, and limit
the impact of AMR (115). In particular, DARS developed a cell-
based method to measure the rate at which antibiotic resistance
appears. This hollow fiber bioreactor system (116) administers
drugs to cells using human pharmacokinetic profiles to identify
drug combinations that slow the development of resistance.
Next-generation sequencing is being used to investigate the
genetic and epigenetic biomarkers of antibiotic resistance and
to investigate the effects of combinations of oral antibiotics on
bacterial genomes and the gut microbiome (117) high-through
put screening assay to identify optimal drug combinations for
different organisms.

Resulting regulatory impact

As mentioned previously, DARS comprises scientific
thought leaders with decades of cumulative experience across
the translational research spectrum. With their expertise, DARS
staff not only lead cutting-edge research projects, but also lead
or participate in multiple working groups and task forces.
These in turn lead to the development of or significant changes
to regulatory policies, decisions, and regulatory guidance.
Below are examples.

Supporting regulatory action: Drug
labeling change

Division of Applied Regulatory Science generates data
and evidence to help the Agency make the most well-
informed regulatory decisions and take the most appropriate
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FIGURE 12

Limiting drug impurities and extractable/leachable compounds division of applied regulatory science (DARS) computational toxicology
consultation service receives consult requests from across CDER. Experts review model predictions using a combination of toxicology
databases, similarity methods, and (quantitative) structure-activity relationship [(Q)SAR] models before a regulatory recommendation is made.

regulatory actions. Examples include issuing Drug Safety
Communications, drug approvals, and as in this case, updating
drug labeling. In 2018, information emerged showing a
disproportionate number of neural tube defects in infants
born in an HIV patient population treated with dolutegravir
as part of a clinical trial (118). Over time, DARS received
four consults on this issue. DARS evaluated dolutegravir in
comparison with four related drugs using structural similarity,
secondary pharmacology, and computational toxicology. The
work informed updates to dolutegravir’s label and the labels
of related drugs.

Affecting regulatory policy: Drug
development tools

Division of Applied Regulatory Science helps establish
and steer policies surrounding drug development tools. DARS
leadership serves on the agency’s Drug Development Tools

Committee, the decisional body for qualification submissions.
Many of DARS staff serve as expert reviewers for drug
development tools qualification submissions. Additionally,
DARS work is informing best practices and quality control
criteria for complex in vitro models in support of biomarker
qualification and the new Innovative Science and Technology
Approaches for New Drugs (ISTAND) pilot program. DARS is
also leading the development of an evidentiary framework to
advance the use of PD biomarkers for biosimilars. The draft
version of this evidentiary framework was presented at a DARS-
led public workshop (119) and a review describing this work was
recently published (63).

Conclusion

These selected research topics and projects were chosen to
represent DARS’ portfolio. The Division’s work in regulatory
science plays an integral part in helping the Agency continually
modernize its policies and processes to ensure the U.S.
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pharmaceutical system remains one of the safest and most
advanced in the world. As has been done with recent examples
to respond to emerging public health and regulatory challenges
(e.g., sunscreen absorption, carcinogenicity evaluation, opioid
drug interactions and respiratory depression, and safety of
COVID-19 therapies) the Division’s laboratory, computational,
and clinical research expertise, and infrastructure position it
to be able to respond to the next challenges the Agency faces.
In addition, DARS continues to help make drug development
more efficient, as it has done with advancing new methods
for biosimilar and complex generic drug evaluations and
adopting new technologies to speed the development of
treatments for rare diseases. Performing these mission-critical
tasks involves complex science, innovative thinking, and a high-
level of dedication.
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