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INTRODUCTION 

Five years ago, Dr. Bakul Patel, the current Senior Director of 
Global Digital Health Strategy and Regulatory Affairs for Google 
Health, recruited “13 engineers—software developers, AI experts, 
cloud computing whizzes”—to prepare for “a future in which health 
care is increasingly mediated by machines.”1 At that time, artificial 
intelligence (AI) technologies were on their way to revolutionize drug 
development, medical diagnostics, and health care delivery—not only 
in the private sector,2 but also at the federal Food and Drug 
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 1.  Megan Molteni, Medicine Is Going Digital. The FDA Is Racing to Catch Up, WIRED 
(May 22, 2017), https://www.wired.com/2017/05/medicine-going-digital-fda-racing-catch [https://perma.cc/
V2LE-UY4Z]. Dr. Batel joined Google in 2022, after working 13 years at the FDA. See Casey 
Ross, Google Taps FDA’s Former Digital Health Chief for Global Strategy Role, STATNEWS (May 
16, 2022), https://www.statnews.com/2022/05/16/bakul-patel-google-global-strategy-role [https://perma.cc/
UR6C-VHME]. 
 2.  See No Longer Science Fiction, AI and Robotics Are Transforming Healthcare, PWC 
(Apr. 11, 2017), https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-
health/transforming-healthcare.html [https://perma.cc/BFR8-YNQR] (describing advances in AI 
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Administration (FDA), which is in fact where Dr. Patel spearheaded 
this recruitment effort in 2017 as Director of the FDA’s Digital Health 
Division.3  

Tucked away in a chapter titled “Regulatory Analysis at the Food 
and Drug Administration” of a voluminous 2020 report commissioned 
by the Administrative Conference of the United States (ACUS), 
“Government by Algorithm: Artificial Intelligence in Federal 
Administrative Agencies” (2020 Government by Algorithm Report), 
one of us showcased how the “FDA is in the vanguard among agencies 
in its experimentation with advanced AI techniques, including ‘deep 
learning,’” and predicted that “[i]n the FDA’s case, uptake of AI/ML 
tools may herald a broader shift away from premarket approval and 
toward postmarket surveillance efforts.”4 

Professor Mason Marks takes up both of these threads in 
“Automating FDA Regulation.”5 First, Marks describes rich case 
studies of FDA modeling and simulation to demonstrate that AI tools 
are changing the landscape of FDA regulatory decisionmaking.6 
Second, Marks insightfully probes how “the role of AI as a medical 
product regulator” has accelerated the shift of the FDA’s focus away 
from premarket clearance of medical devices and drugs toward 
postmarket surveillance and review.7 

We wholeheartedly agree with Marks that the FDA is at the 
forefront of an AI revolution in health safety. We likewise agree that 
the FDA is in the midst of a regulatory paradigm shift—one further 
propelled by the influx of AI technologies. Marks probes this shift with 
increasing alarm, warning of subpar safety and efficacy standards, 
eroding public trust in the FDA, and threats to the agency’s 
transparency, accountability, objectivity, and legitimacy.8 Whereas 

 
for healthcare); Laura Lorenzetti, Here’s How IBM Watson Health Is Transforming the Health 
Care Industry, FORTUNE (Apr. 5, 2016), https://fortune.com/longform/ibm-watson-health-
business-strategy [https://perma.cc/ZWJ4-S7LF] (describing IBM Watson’s attempts at applying 
AI to medical diagnostics).  
 3.  Molteni, supra note 1; Bakul Patel: Experience, LINKEDIN, https://www.linkedin.com/
in/bakul-patel/details/experience [https://perma.cc/FLG9-VVMM], (last visited Nov. 13, 2022). 
 4.  Catherine M. Sharkey, Regulatory Analysis at the Food and Drug Administration, in 
GOVERNMENT BY ALGORITHM: ARTIFICIAL INTELLIGENCE IN FEDERAL ADMINISTRATIVE 

AGENCIES 53, 54, 56 (Feb. 2020) [hereinafter Sharkey, Regulatory Analysis at the FDA]. 
 5.  Mason Marks, Automating FDA Regulation, 71 DUKE L.J. 1207 (2022). 
 6.  See id. at 1219–45 (describing how the agency is “building an algorithmic FDA” through 
the use of “molecular models,” “virtual humans and patient-specific models,” and “simulated 
clinical trials”). 
 7.  Id. at 1207. 
 8.  Id. at 1246–62, 1272–76. 
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Marks maintains a steadfast drumbeat of the perils of this shift, we 
draw attention to its promise. We highlight the transformative 
potential in terms of enhancing public health and safety. The FDA, by 
sustaining its investments in AI regulatory capabilities, could leverage 
AI to accelerate and broaden access to drugs and medical devices while 
preserving its “gold standard” of medical safety. 

In Part I, we elaborate on the scope of the FDA’s 
experimentation, which extends beyond the fascinating (albeit limited) 
case studies of FDA molecular modeling and clinical trial simulation 
presented by Marks. In particular, we highlight novel pilot projects in 
which the FDA used Natural Language Processing (NLP) to analyze 
data collected through its Adverse Event Reporting System for 
postmarket surveillance of drugs.9 

In Part II, we describe the paradigm shift in resources and efforts 
at the FDA from stringent ex ante premarket approval to more 
dynamic and rigorous postmarket surveillance. Whereas Marks places 
exclusive emphasis on the potential perils from this shift, we fill out the 
picture by pointing to the potential promise of an AI-enabled 
postmarket surveillance regime. 

In Part III, we explore the FDA’s track record in building internal 
AI capacity and show how the agency’s bold experimentation with the 
collection of structured “fit-for-purpose” data (as distinguished from 
unstructured text-based adverse event reports)10 illustrates its 
transformation into an “information agency” of the twenty-first 
century.11 Given that for most federal agencies the question is not 
whether the agency will eventually embrace AI technologies, but how 

 

 9.  See infra notes 36–41 and accompanying text (surveying NLP pilots that FDA has built 
on top of its Adverse Reporting System); Questions and Answers on FDA’s Adverse Event 
Reporting System (FAERS), U.S. FOOD & DRUG ADMIN. [hereinafter Q&A on FAERS], 
https://www.fda.gov/drugs/surveillance/questions-and-answers-fdas-adverse-event-reporting-system-
faers [https://perma.cc/EF69-9V3Q], (last updated June 4, 2018) (providing an introduction to the 
FDA Adverse Event Reporting System (FAERS) database, which includes adverse reports 
submitted for drugs and therapeutic biological products). 
 10.  Unstructured data is data that is not organized in a pre-defined manner (often taking 
the form of unstructured text collected from free-form text inputs), as distinguished from 
structured data, which is data stored in a standardized format with a well-defined structure. See 
IBM Cloud Education, Structured vs. Unstructured Data: What’s the Difference, IBM (June 29, 
2021), https://www.ibm.com/cloud/blog/structured-vs-unstructured-data [https://perma.cc/3EHD-
TRLU]. 
 11.  See generally Catherine M. Sharkey, Direct-to-Consumer Genetic Testing: The FDA’s 
Dual Role as Safety and Health Information Regulator, 68 DEPAUL L. REV. 343 (2019) (arguing 
that the FDA has developed dual roles as “safety regulator” and “health information regulator”). 
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and in which domains,12 the FDA’s experience provides a window into 
the future promise of AI in the administrative state.  

I.  THE FDA AT THE FOREFRONT OF AN AI REVOLUTION IN PUBLIC 
HEALTH AND SAFETY 

The FDA is in the vanguard among federal agencies in its 
experimentation with advanced AI techniques, including “deep 
learning.”13 The FDA oversees products that represent over $3 trillion 
in annual consumption, or about 20 percent of household spending in 
the United States.14 This vast regulatory scope means that even limited 
use of AI tools by the FDA has a substantial potential impact on 
human welfare. The AI revolution is affecting the FDA’s regulatory 
operations in two ways. First, the FDA regulates medical devices that 
increasingly incorporate AI technologies. Second, the FDA leverages 
AI for its own internal uses. We explore each in turn. 

A. Regulating AI Devices 

AI medical devices are revolutionizing the practice of medicine. 
AI pattern recognition powers these devices to recognize certain types 

 

 12.  See Ben Gansky, Michael Martin & Ganesh Sitaraman, Artificial Intelligence Is Too 
Important To Leave to Google and Facebook Alone, N.Y. TIMES (Nov. 10, 2019), https://www.
nytimes.com/2019/11/10/opinion/artificial-intelligence-facebook-google.html [https://perma.cc/86AD-CHPE] 
(arguing that a “public option for artificial intelligence” would enable federal agencies to develop 
AI capacity, notably in the health care sector). The FDA is charting a path toward such a “public 
option for artificial intelligence.” Id. 
 13.  See generally DEP’T OF HEALTH & HUM. SERVS., ARTIFICIAL INTELLIGENCE USE 

CASES INVENTORY (2022), https://www.hhs.gov/sites/default/files/hhs-ai-use-cases-inventory.pdf 
[https://perma.cc/286K-U5HJ] (listing AI pilots at the FDA to search tobacco authorization 
applications, de-duplicate and extract clinical features from drug adverse event reports, and mine 
social media data to monitor opioid usage); Di Zhang, Jaejoon Song, Sai Dharmarajan, Tae Hyun 
Jung, Hana Lee, Yong Ma, Rongmei Zhang & Mark Levenson, The Use of Machine Learning in 
Regulatory Drug Safety Evaluation, STATS. BIOPHARM. RSCH. (2022) (describing the FDA’s use 
of machine learning and “real-world data” to regulate drug safety); Zhaoyi Chen, Xiong Liu, 
William Hogan, Elizabeth Shenkman & Jiang Bian, Applications of Artificial Intelligence in Drug 
Development Using Real-World Data, 26 DRUG DISCOVERY TODAY 1256 (2021) (describing the 
FDA’s efforts at promoting the use of “real-world data” and surveying resulting studies that have 
leveraged real-world data and AI, including deep learning); Pratik Shah, Francis Kendall, Sean 
Khozin, Ryan Goosen, Jianying Hu, Jason Laramie, Michael Ringel & Nicholas Schork, Artificial 
Intelligence and Machine Learning in Clinical Development: A Translational Perspective, 69 NPJ 

DIGIT. MED. 2, 4 (2019) (describing a partnership between the FDA and the MIT Media Lab to 
“engender AI and ML research for computational medicine and clinical development and [an] 
accompanying regulatory framework to improve health outcomes for patients”). 
 14.  See Fiscal Year 2023: Justification of Estimates for Appropriation Committees, U.S. FOOD 

& DRUG ADMIN. 2 (2022). 
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of injuries,15 diagnose medical conditions,16 increase the quality of 
medical imaging technology,17 or predict future adverse medical 
events.18 Such AI-powered devices increasingly outperform 
conventional medical devices in the hands of specialized doctors.19 

The FDA has granted approval to a first generation of AI medical 
devices.20 Utilizing the agency’s de novo review process—an 

 

 15.  See, e.g., FDA Permits Marketing of Clinical Decision Support Software for Alerting 
Providers of a Potential Stroke in Patients, U.S. FOOD & DRUG ADMIN. (Feb. 13, 2018) 
[hereinafter Viz.AI Approval], https://www.fda.gov/newsevents/newsroom/pressannouncements/
ucm596575.htm [https://perma.cc/BN8G-GDZE] (“The Viz.AI Contact application is a 
computer-aided triage software that uses an artificial intelligence algorithm to analyze images for 
indicators associated with a stroke.”); FDA Permits Marketing of Artificial Intelligence Algorithm 
for Aiding Providers in Detecting Wrist Fractures, U.S. FOOD & DRUG ADMIN. (May 24, 2018) 
[hereinafter OsteoDetect Approval], https://www.fda.gov/newsevents/newsroom/pressannouncements/
ucm608833.htm [https://perma.cc/E4N2-SG7N] (“The OsteoDetect software is a computer-aided 
detection and diagnostic software that uses an artificial intelligence algorithm to analyze two-
dimensional X-ray images for signs of distal radius fracture, a common type of wrist fracture.”). 
 16.  See, e.g., FDA Permits Marketing of Artificial Intelligence-Based Device to Detect Certain 
Diabetes-Related Eye Problems, U.S. FOOD & DRUG ADMIN. (Apr. 11, 2018) [hereinafter IDx-
DR Approval], https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm604357.htm 
[https://perma.cc/8HAG-KHKC] (“IDx-DR[] is a software program that uses an artificial 
intelligence algorithm to analyze images of the eye taken with a retinal camera called the Topcon 
NW400.”). 
 17.  See, e.g., Aquilion Precision, CANON, https://us.medical.canon/products/computed-
tomography/aquilion-precision [https://perma.cc/UK97-UJ5B] (noting Canon’s “Aquilion 
Precision” Ultra High Resolution CT Scanner provides more than twice the resolution of previous 
CT systems). 
 18.  See, e.g., Georgios Christopoulos, Jonathan Graff-Radford, Camden L. Lopez, Xiaoxi 
Yao, Zachi I. Attia, Alejandro A. Rabinstein, Ronald C. Petersen, David S. Knopman, Michelle 
M. Mielke, Walter Kremers, Prashanthi Vemuri, Konstantinos C. Siontis, Paul A. Friedman & 
Peter A. Noseworthy, Artificial Intelligence–Electrocardiography to Predict Incident Atrial 
Fibrillation, 13 CIRCULATION: ARRHYTHMIA AND ELECTROPHYSIOLOGY 1420 (2020); Nozomi 
Niimi, Yasuyuki Shiraishi, Mitsuaki Sawano, Nobuhiro Ikemura, Taku Inohara, Ikuko Ueda, 
Keiichi Fukuda & Shun Kohsaka, Machine Learning Models for Prediction of Adverse Events 
After Percutaneous Coronary Intervention, 12 NATURE: SCI. REPS. 1 (2022). 
 19.  See, e.g., Xiaoxuan Liu, Livia Faes, Aditya U. Kale, Siegfried K. Wagner, Dun Jack Fu, 
Alice Bruynseels, Thushika Mahendiran, Gabriella Moraes, Mohith Shamdas, Christoph Kern, 
Joseph R. Ledsam, Martin K. Schmid, Konstantinos Balaskas, Eric J. Topol, Lucas M. Bachmann, 
Pearse A. Keane & Alastair K. Denniston, A Comparison of Deep Learning Performance Against 
Health-Care Professionals in Detecting Diseases from Medical Imaging: A Systematic Review and 
Meta-Analysis, 1 LANCET DIGIT. HEALTH 271, 272, 291–93 (2019) (finding that deep learning 
algorithms using medical imaging provide equivalent diagnostic accuracy at increased diagnostic 
speed); Ravi Aggarwal, Viknesh Sounderajah, Guy Martin, Daniel S. W. Ting, Alan 
Karthikesalingam, Dominic King, Hutan Ashrafian & Ara Darzi, Diagnostic Accuracy of Deep 
Learning in Medical Imaging: A Systematic Review and Meta-Analysis, 65 NPJ DIGIT. MED. 1, 19–
20 (2022) (finding that “[deep learning] currently has a high diagnostic accuracy”); see also Nan 
Wu et al., Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening, 
39 IEEE TRANSACTIONS ON MED. IMAGING 1184, 1184–94 (2020).  
 20.  As of September 2020, the FDA had approved sixty-four AI-based medical products. 
See Stan Benjamens, Pranavsingh Dhunnoo & Bertalan Meskó, The State of Artificial Intelligence-
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alternative approval pathway for “novel devices of low to moderate 
risk”21—the FDA gave marketing clearance to Viz.AI (detects 
strokes), OsteoDetect (recognizes bone fractures), and IDx-DR 
(identifies diabetic retinopathy) after their respective manufacturers 
demonstrated certain performance criteria.22 With regard to these first 
AI medical device approvals, the FDA sought to “creat[e] a regulatory 
framework for [clinical decision support] products that encourages 
developers to create, adapt, and expand the functionalities of their 
software to aid providers in diagnosing and treating diseases and 
conditions.”23 

The next generation of AI medical devices will present additional 
regulatory challenges. Thus far, the FDA has only approved “locked” 
devices, i.e., devices that do not independently adapt to new data they 
observe, but rely, instead, on manufacturer updates. But, the FDA has 
recognized that “there’s a great deal of promise beyond locked 
algorithms that’s ripe for application in the health care space.”24 
Enabling AI models to dynamically update through time promises to 
unlock better performance and more personalized health care 

 
Based FDA-Approved Medical Devices and Algorithms: An Online Database, 3 NPJ DIGIT. MED. 
1, 2 (2020). 
 21.  This approval pathway provides authorization to “be marketed and used as predicates 
for future 510(k) submissions.” Evaluation of Automatic Class III Designation (De Novo) 
Summaries, U.S. FOOD & DRUG ADMIN., http://www.fda.gov/about-fda/cdrh-transparency/
evaluation-automatic-class-iii-designation-de-novo-summaries [https://perma.cc/PW3T-ZJ8X], (last 
updated Oct. 17, 2022). 

 The vast majority of medical devices enter the market via the FDA’s 501(k) process, a 
streamlined “premarket notification” approval (PMN) pathway that imposes less stringent 
requirements than the FDA’s Premarket Approval (PMA) process. It mirrors the streamlined 
Abbreviated New Drug Application (ANDA) regulatory approval pathway for generic drugs. See 
Sharkey, Regulatory Analysis at the FDA, supra note 4, at 54. 
 22.  See, e.g., Viz.AI Approval, supra note 15 (“The company submitted a retrospective study 
of 300 CT images that assessed the independent performance of the image analysis 
algorithm . . . against the performance of two trained neuro-radiologists for the detection of large 
vessel blockages in the brain.”); OsteoDetect Approval, supra note 15 (explaining that 
OsteoDetect was approved based on “a retrospective study of 1,000 radiograph images that 
assessed the independent performance of the image analysis algorithm for detecting wrist 
fractures and the accuracy of the fracture localization of OsteoDetect against the performance of 
three board certified orthopedic hand surgeons”); IDx-DR Approval, supra note 16 (reporting 
that the FDA found that “IDx-DR was able to correctly identify the presence of more than mild 
diabetic retinopathy 87.4 percent of the time and . . . identify . . . patients who did not have more 
than mild diabetic retinopathy 89.5 percent of the time”). 
 23.  Viz.AI Approval, supra note 15. 
 24.  Conor Hale, FDA Lays Out Plans for a New Review Framework for AI and Machine 
Learning-based Devices, FIERCE BIOTECH (Apr. 3, 2019), https://www.fiercebiotech.com/
medtech/fda-lays-out-plans-for-a-new-review-framework-for-ai-and-machine-learning-based-
devices [https://perma.cc/7XL9-869M]. 
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delivery.25 Anticipating approval of “dynamic AI” devices, the FDA, 
in January 2021, issued its “Software as a Medical Device Action Plan” 
(SaMD Plan) guidance, which outlines a “Predetermined Change 
Control Plan” process through which manufactures can get pre-
approval for certain types of dynamic updates.26 Critically, the FDA’s 
SaMD Plan emphasizes the need for any dynamic AI medical device to 
be monitored “from its premarket development through postmarket 
performance.”27 

B. Internal AI Use 

We turn now from the FDA’s regulation of AI-powered medical 
devices for use in society to our main focus (as well as Marks’): the 
FDA’s internal use of AI in its regulatory drug and medical device 
approval processes. Marks draws attention to the FDA’s 
experimentation with uses of AI in molecular modeling (to 
preemptively identify potentially harmful drug substances), virtual 
humans and patient-specific models, and simulated clinical trials (to 
reduce the cost of in vivo clinical trials and accelerate drug 

 

 25.  See, e.g., Mihaela van der Schaar, Ahmed M. Alaa, Andres Floto, Alexander Gimson, 
Stefan Scholtes, Angela Wood, Eoin McKinney, Daniel Jarrett, Pietro Lio & Ari Ercole, How 
Artificial Intelligence and Machine Learning Can Help Healthcare Systems Respond to COVID-
19, 110 MACH. LEARNING 1, 4 (2020) (explaining how machine learning models can “learn” 
through time how an individual’s features can be “mapped into personalized predictions of risk”); 
Chris Giordano, Meghan Brennan, Basma Mohamed, Parisa Rashidi, François Modave & Patrick 
Tighe, Accessing Artificial Intelligence for Clinical Decision-Making, 4 FRONTIERS DIGIT. 
HEALTH 1, 4–5 (2021) (stating that clinical decisionmaking tools using “dynamic and 
personalized” AI models can improve patient outcomes); Fei Wang & Anita Preininger, AI in 
Health: State of the Art, Challenges, and Future Directions, 28 YEARBOOK MEDICAL 

INFORMATICS 16, 23 (2019) (explaining that combining state-of-the-art “dynamic AI” and 
“federated learning” techniques—which enables the training of personalized AI models without 
accessing sensitive patient data—can allow AI medical devices to continuously improve their 
performance based on troves of data collected by wearable or mobile devices). 

 Moreover, “locked” algorithms “can lead the AI/ML system to use a poor estimate of 
the true relationship between the inputs and outputs and thereby possibly cause harm to patients 
(for example, through misdiagnosis).” Boris Babic, Sara Gerke, Theodoros Evgeniou & I. Glenn 
Cohen, Algorithms on Regulatory Lockdown in Medicine, 366 SCI. 1202, 1202–03 (2019). 
 26.  ARTIFICIAL INTELLIGENCE/MACHINE LEARNING (AI/ML)-BASED SOFTWARE AS A 

MEDICAL DEVICE (SAMD) ACTION PLAN, U.S. FOOD & DRUG ADMIN. 3 (Jan. 2021) 
[hereinafter SAMD PLAN], https://www.fda.gov/media/145022/download [https://perma.cc/4ZSY-
AB2S] (describing the “Predetermined Change Control Plan” as including an SaMD Pre-
Specifications (SPS) component describing “what” model aspects the manufacturer intends to 
change through learning and an Algorithm Change Protocol (ACP) component explaining “how” 
the algorithm will learn and change while remaining safe and effective). 
 27.  Id. at 1. 
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development).28 We have our quibbles with the conclusions Marks 
draws from his rich case studies. But, our greater concern is that by 
focusing solely on these specific use cases, Marks omits key ways in 
which the FDA leverages AI to more effectively operate in an 
increasingly complex and high-stakes regulatory environment, thus 
failing to acknowledge benefits the FDA is receiving through the use 
of AI in its regular activities. 

To begin, we are skeptical of the main conclusion Marks draws 
from his case studies. Take his primary motivating example: the FDA’s 
use of the Public Health Assessment via Structural Evaluation 
(PHASE) computational methodology in a potential regulatory 
decision to schedule and ban kratom.29 Marks puts forth the 
PHASE/kratom saga to support his overarching thesis that the FDA is 
recklessly substituting algorithms for human judgment based on 
reliable evidence. Marks argues that PHASE is a “poor substitute for 
the eight-factor analysis”—the traditional means by which the FDA 
evaluates unknown substance risk, taking into account “complex 
historical, epidemiological, and psychological factors” in addition to 
purely chemical and physical properties.30 While this is undoubtedly 
correct (especially given that PHASE is not designed for processing 
sociological and demographic data), PHASE may nonetheless serve as 
a “signaling” tool, incorporated into a hybrid human-machine review 
process that would likely be more accurate and reliable than the 
traditional eight-factor analysis.31 

Moreover, as Marks details, in this specific case, the Department 
of Health and Human Services (HHS) overrode the FDA and asked 

 

 28.  See Marks, supra note 5, at 1227–36, 1238–45 (outlining the current and potential roles 
of molecular models, virtual humans and patient-specific models, and simulated clinical trials in 
FDA regulation and policymaking). 
 29.  See id. at 1227–36 (discussing how PHASE, a computational methodology adopted by 
the FDA, was used to assess risk to public health and its shortcomings). PHASE was an internally 
built model, later supplemented with Clarity, a third-party software, i.e., “proprietary technology 
developed by a private drug company”—i.e., one of the companies the FDA regulates. Id. at 1275. 
But, this type of conflict of interest is not endemic to all (or even most) forms of FDA 
experimentation with AI. Id.  
 30.  Id. at 1231.  
 31.  For example, PHASE can be useful in quickly identifying those substances that require 
further examination by the FDA because of their similarities to other harmful substances. In other 
words, the FDA could employ molecular modeling at the outset of unknown or understudied 
substance analysis to generate a framework through which to complete a more comprehensive, 
albeit streamlined analysis. The AI system would thereby guide the FDA in best utilizing its 
expertise and not to make a broader policy decision. 
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the Drug Enforcement Administration not to schedule the drug.32 
Could this be evidence that an existing internal oversight mechanism 
was deployed to recognize and correct for model deficiencies and lack 
of evidentiary support? Marks does not pause to consider this (and we 
thus do not have enough information to evaluate), nor does Marks 
appreciate the extent to which the FDA is subject to “high potential 
for judicial review and public scrutiny”33 and thus subject to external 
constraints as well.34 

And, even if one (like Marks) tends toward inherent skepticism 
regarding the FDA’s AI use and administrative law constraints, an 
equally plausible interpretation of the PHASE/kratom incident is that 
then-Commissioner Gottlieb’s preexisting hostility toward kratom led 
to a seemingly inevitable political outcome.35 In other words, the 
PHASE/kratom saga fits an overarching story about the role of politics 
in regulatory policy and the influence of industry in agency 
decisionmaking and accountability—not having anything in particular 
to do with the FDA’s use of AI. 

 

 32.  See Marks, supra note 5, at 1233–36 (explaining that HHS instructed DEA not to 
schedule kratom because it did not find FDA’s PHASE predictions conclusive and assessed that 
prohibiting the drug could prompt detrimental public health consequences from millions of users 
potentially switching to lethal opioids as alternative painkillers). 
 33.  Nitisha Baronia, David Freeman Engstrom, Daniel E. Ho, Shawn Musgrave & 
Catherine M. Sharkey, Building Internal Capacity, in GOVERNMENT BY ALGORITHM: 
ARTIFICIAL INTELLIGENCE IN FEDERAL ADMINISTRATIVE AGENCIES 74 (Feb. 2020) 
[hereinafter Building Internal AI Capacity]. 
 34.  Administrative law offers more agency-constraining tools than Marks lets on. Should 
the FDA actually use PHASE to decide not to approve a drug, a manufacturer could mount a 
challenge under the Administrative Procedure Act, arguing that FDA failed to consider 
methodological flaws of PHASE or that the FDA’s conclusion is implausible given that it used 
PHASE to reach it. See 5 U.S.C. § 706(2)(A) (2018). Agency rules are arbitrary, capricious, and 
in violation of 5 U.S.C. § 706(2)(A) “if the agency failed to consider an important aspect of the 
problem, offered an implausible explanation that runs counter to the evidence before it, or relied 
on factors that Congress did not intend.” Motor Vehicle Mfrs. Ass’n of U.S., Inc. v. State Farm 
Mut. Auto. Ins. Co., 463 U.S. 29, 43 (1983). Marks does not consider the extent to which external 
constraints from administrative law doctrine can require the FDA to use reasoned 
decisionmaking, thus enhancing credibility and public trust in its decisions. 
 35.  To take perhaps the most obvious example (not mentioned by Marks), consider the 
DEA’s scheduling of marijuana as a Schedule I drug (defined by the DEA as those with “no 
currently accepted medical use and a high potential for abuse”). See Drug Scheduling, U.S. DRUG 

ENF’T ADMIN., https://www.dea.gov/drug-information/drug-scheduling [https://perma.cc/V9ZF-
MEMN], (last visited Nov. 4, 2022). President Biden recently released a statement calling on the 
Secretary of HHS to review marijuana’s scheduling classification. See President Joe Biden, 
Statement from President Biden on Marijuana Reform (Oct. 6, 2022), 
https:/www.whitehouse.gov/briefing-room/statements-releases/2022/10/06/statement-from-president-
biden-on-marijuana-reform [https://perma.cc/NHT8-SU5K]. Marks’ silence on the racial and 
societal implications of drug scheduling is surprising. 
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But, given that readers can evaluate for themselves the 
persuasiveness of Marks’ case studies, more worrisome to us are 
Marks’ sins of omission. We fill out the picture here by drawing 
attention to additional internal AI-use pilots conducted by the FDA 
that show great promise. The FDA has used AI-enabled models to 
mine data in order to assist with its postmarket surveillance targeting 
of drug safety issues and to uncover new relationships between drugs 
and medical conditions. The FDA’s Adverse Event Reporting System 
(FAERS) database contains “adverse event reports, medication error 
reports and product quality complaints resulting in adverse events that 
were submitted to FDA.”36 These millions of reports and complaints 
are in freeform text-based format.  

In one pilot, with the goal of using AI technology to identify 
postmarket safety concerns so as to prioritize safety review by FDA 
subject matter experts, the FDA, in collaboration with Stanford 
University data scientists, tested different NLP models to predict the 
probability that FAERS reports contained policy-relevant information 
about drug safety concerns.37 The FDA considered the pilot, which 
identified six key features for priority review,38 “the foundation” of an 
improved system that better allocates scarce agency resources in 
identifying postmarket safety concerns.39 In another pilot, the FDA 
used similar NLP techniques to translate FAERS’ unstructured data 
into structured data before attempting to model relationships between 
different drugs and hepatic failure, a medical condition affecting the 
liver.40 For both pilots, the agency compared the performance of 
multiple NLP models (such as neural network, logistic regression, 
random forest, and support vector machine models) and optimized 

 

 36.  Q&A on FAERS, supra note 9. The FDA received nearly 2.34 million FAERS reports 
in 2021. See U.S. FOOD & DRUG ADMIN., FDA ADVERSE EVENTS REPORTING SYSTEM 

(FAERS) PUBLIC DASHBOARD [hereinafter FAERS Dashboard], https://fis.fda.gov/sense/
app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis 
[https://perma.cc/2MJJ-9RNN]. 
 37.  The FDA-Stanford team trained their models on drug reports from the World Health 
Organization-Uppsala Monitoring Centre (WHO-UMC) manually labeled by FDA safety 
evaluators for drug causality assessment. See Sharkey, Regulatory Analysis at the FDA, supra note 
4, at 55. 
 38.  See id. at 56. 
 39.  Id. 
 40.  This second pilot proved less successful than the FDA-Stanford pilot to prioritize 
FAERS review, as it failed to confirm or disprove that the drugs involved in the FAERS reports 
had a causal relationship to hepatic failure and did not generate outputs accurate enough for 
deployment. Id. 
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model parameters until it reached satisfying predictive power, in some 
cases above 90 percent.41 

Marks’ dismissive characterization (in a footnote reference) that 
“the FDA concluded [the FAERS pilots] were unsuccessful” is thus 
misleading (at best).42 Marks’ sole reference to FAERS is in his 
scholarship review, in which he cites the 2020 Government by 
Algorithm Report.43 But, the report uses far more positive qualified 
language—namely that “the FDA’s FAERS efforts have been 
successful, to an extent.”44 

Moreover, the FDA fully recognizes that its experimentation with 
AI in this domain is an iterative, trial-by-error long-term approach. In 
2020, the FDA engaged the public in a “precisionFDA challenge” to 
develop improved models for analyzing unstructured data from 
FAERS reports. precisionFDA challenges involve the public in solving 
technical challenges faced by the FDA in the domains of AI and 
bioinformatics. Public participation in such “community-sourced 
science” challenges helps bolster the transparency, accountability, 
objectivity, and legitimacy of the new AI methods used by FDA.45 AI 
innovation is a particularly apt area for involving the public given the 
low startup costs of setting up computing-based challenges (as opposed 
to wet-lab scientific challenges). The “Gaining New Insights by 
Detecting Adverse Event Anomalies Using FDA Open Data” 
challenge, which started in early 2020, asked participants to develop 
AI/ML models to better detect “possible safety issues” from FDA’s 
FAERS records.46 Since then, the agency has expanded its use of NLP 

 

 41.  The hepatic failure pilot achieved a true positive rate of 91 percent and false positive 
rate of 4.9 percent. Id. at 55. The review prioritization pilot did not achieve such high predictive 
performance (area under the curve of 0.66) but still provided actionable results to accurately 
prioritize human review. Id. at 55 & n.47. 
 42.  See Marks, supra note 5, at 1213 n.30. 
 43.  Id. 
 44.  Sharkey, Regulatory Analysis at the FDA, supra note 4, at 56. 
 45.  Challenges, PRECISIONFDA [hereinafter precisionFDA Challenges], https://precision.fda.gov/
challenges [https://perma.cc/83E3-BV3U]. 
 46.  See Gaining New Insights by Detecting Adverse Event Anomalies Using FDA Open Data, 
precisionFDA [hereinafter FAERS precisionFDA Challenge], https://precision.fda.gov/
challenges/9 [https://perma.cc/ZC8A-QKRL]. The challenge suggested that participants rely on 
NLP to extract relevant data features from the “text narrative portion of the adverse event 
reports,” including basic information such as “symptoms, diagnosis, treatments, and dates.” Id. 
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on unstructured text data to more data sources47 and to cutting-edge 
“deep learning” language models.48 

In addition to its investment in NLP technologies, the FDA has 
launched initiatives to restructure its data operations and reshape its 
technical data infrastructure, such as INFORMED (Information 
Exchanged and Data Transformation), which tasked entrepreneurs-in-
residence, engineers, and data scientists with medical subject-matter 
expertise to strategize how the FDA should invest in big data analytics 
capabilities.49 

II.  A REGULATORY PARADIGM SHIFT AT THE FDA: FROM 
PREMARKET APPROVAL TO POSTMARKET SURVEILLANCE 

The AI technological innovations for mining big data at the FDA 
will likely drive a paradigm shift at the agency—from heavy investment 
of resources and efforts focused on stringent ex ante premarket 
approval to more dynamic and rigorous postmarket surveillance. 
Marks, too, has recognized the significance of this paradigm shift. But, 
whereas Marks emphasizes the potential perils from this shift, we point 
to the promise not only in conventional terms of fostering innovation 
but also in more novel terms of enabling more effective institutional 
collaboration and regulatory enforcement in an AI-enabled 

 

 47.  See A. Sorbello, R. Hasan, H. Francis, I. Chang, M. Ahadpour, M. Laponsky, J. Walsh 
& C. Trier, A Novel Natural Language Processing and Machine Learning Classifier That 
Streamlines Extracting Drug-Adverse Event Data from Literature Reports, U.S. FOOD & DRUG 

ADMIN., https://www.fda.gov/media/142029/download [https://perma.cc/83JQ-4KB9] (summarizing 
the FDA’s analysis of the PubMed/MEDLINE database, a leading scientific literature database 
produced by the National Library of Medicine, to facilitate the identification of adverse drug 
events). 
 48.  See Yiwen Shi, Ping Ren, Yi Zhang, Xiajing Gong, Meng Hu & Hualou Liang, 
Information Extraction from FDA Drug Labeling to Enhance Product-Specific Guidance 
Assessment Using Natural Language Processing, 6 FRONTIERS RSCH. METRICS & ANALYTICS 1, 
1 (2021), https://www.frontiersin.org/articles/10.3389/frma.2021.670006/full [https://perma.cc/EXE9-2FSG] 
(using large language “transformer” model called BERT (Bidirectional Encoder Representations 
from Transformers) to extract information from regulatory text and help the development of 
product-specific guidances); Yue Wu, Zhichao Liu, Leihong Wu, Minjun Chen & Weida Tong, 
BERT-Based Natural Language Processing of Drug Labeling Documents: A Case Study for 
Classifying Drug-Induced Liver Injury Risk, 4 FRONTIERS A.I. 1, 10 (2021), 
https://www.frontiersin.org/articles/10.3389/frai.2021.729834/full [https://perma.cc/X92W-ZZBF] 
(using similar BERT models to classify risks of hepatic failures created by different drugs). 
 49.  See Sean Khozin, Richard Padzur & Anand Shah, INFORMED: An Incubator at the US 
FDA for Driving Innovation in Data Science and Agile Technology, 17 NATURE REVS. DRUG 

DISCOVERY 529, 530 (2018) (“Our current objectives are twofold: first, to continue to expand and 
maintain organizational and technical infrastructure for data science and big data analytics; and 
second, to support systems thinking in oncology regulatory science research, [and develop] novel 
solutions for improving efficiency, reliability and productivity in related workflows.”). 
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postmarket surveillance regime. Chief among these benefits are (1) AI 
increasing the speed at which FDA investigatory and corrective action 
can take place and (2) the public benefit of heightened product and 
manufacturing quality arising from firms being induced to have sound 
algorithmic monitoring systems in place. 

A. Describing the Shift  

1. The FDA’s traditional paradigm.  The FDA historically has 
operated as a strict ex ante regulator. The FDA’s traditional regulatory 
framework imposes heightened ex ante premarket approval for both 
drugs and medical devices with relatively limited postmarket 
surveillance. The core of the premarket approval process for brand-
name prescription drugs is the New Drug Application (NDA) process, 
which requires manufacturers to conduct three phases of premarket 
clinical trials to demonstrate the safety and efficacy of their drugs to 
the FDA’s satisfaction.50 A similarly stringent Premarket Approval 
(PMA) process applies to Class III (high risk) medical devices.51 The 
FDA emerges as the most stringent ex ante safety regulator of any U.S. 
federal agency; moreover, its “gold standard” is higher than that of 
foreign medical product regulatory agencies.52 

Under this traditional model, the FDA acts as a centralized federal 
safety gatekeeper for prescription medical devices and drugs.53 
 

 50.  See, e.g., The FDA’s Drug Review Process: Ensuring Drugs Are Safe and Effective, U.S. 
FOOD & DRUG ADMIN (Nov. 24, 2017), https://www.fda.gov/Drugs/ResourcesForYou/
Consumers/ucm143534.htm [https://perma.cc/NXL8-G3LN]. 
 51.  See Premarket Approval (PMA), U.S. FOOD & DRUG ADMIN., https://www.fda.gov/
medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-
approval-pma [https://perma.cc/9M5U-NCJU] (stating that “PMA is the most stringent type of 
device marketing application required by FDA” because the “FDA has determined that general 
and special controls alone are insufficient to assure the safety and effectiveness of Class III 
devices”); Riegel v. Medtronic, Inc., 552 U.S. 312, 317–18 (2008) (noting that PMA is a “rigorous” 
process requiring a “multivolume application” and that “[t]he FDA spends an average of 1,200 
hours reviewing each application”). 
 52.  Merck and Vioxx: Putting Patient Safety First?: Hearings Before the Senate Committee 
On Finance, 108th Cong., at 1 (2004) (statement of Sandra L. Kweder, Deputy Dir., FDA Off. of 
New Drugs) (“It is well recognized that FDA’s drug review is a gold standard. Indeed, we believe 
that FDA maintains the highest worldwide standards for drug approval.”). 
 53.  This regulatory framework is largely federalized, with important swaths of federal 
preemption limiting the role of state law in promoting medical device and drug safety. See 
generally Catherine M. Sharkey, Products Liability Preemption: An Institutional Approach, 76 
GEO. WASH. L. REV. 449, 464–66, 474 (2008) (describing the “pro-preemption” trend of U.S. 
Supreme Court cases); Riegel, 552 U.S. at 330 (holding that state tort laws seeking to add design 
or labeling requirements on top of the FDA’s rigorous premarket approval scheme for medical 
devices were preempted); PLIVA, Inc. v. Mensing, 564 U.S. 604, 626 (2011) (holding that state 
law failure-to-warn claims against generic drug manufacturers were preempted). 
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Historically, the FDA has focused great attention on minimizing “Type 
I” errors—“false positives” or approval of drugs that turn out to have 
safety issues—at the expense of increasing corresponding “Type II” 
errors—“false negatives” or delaying or withholding drugs from the 
market that, in fact, would provide net safety benefits to patients.54 
Indeed, some have argued that, by doing so, the FDA has built up 
tremendous reputational capital.55 It is precisely this institutional 
reputational capital that Marks fears the FDA has been eroding in 
recent times.56 

Still, clinical trials—despite the FDA requiring three phases—
nonetheless only provide information from a relatively limited 
population (even Phase III trials can be conducted with 1,000 
participants) over a relatively brief period.57 We should, therefore, be 
cognizant of their potential to mask serious safety risks and at least 
remain open to the possibility that AI-enabled simulated clinical trials 
might improve safety outcomes. 

The stakes are particularly high for minority and marginalized 
communities due not only to their relatively small sample sizes but also 
selection bias in recruiting study participants for clinical trials.58 Marks 

 

 54.  See, e.g., Andrew Flowers, How the FDA Could Change The Way It Approves Drugs, 
FIVETHIRTYEIGHT (Sept. 3, 2015, 12:34 PM), https://fivethirtyeight.com/features/how-the-fda-
could-change-the-way-it-approves-drugs [https://perma.cc/4K3D-CZ57] (presenting research 
criticizing the FDA’s focus on minimizing Type I error and arguing for higher false positive 
tolerance for severe diseases “to allow more drugs to hit the market even though some of them 
would be ineffective or harmful”); Jack Botting, The History of Thalidomide, 15 DRUG NEWS & 

PERSPS. 604, 604 (2002) (explaining that the FDA strengthened its drug premarket approval 
process following the thalidomide “disaster,” where a sedative drug initially thought to be 
nontoxic caused an epidemic of deformities in children whose mothers had taken the drug while 
pregnant). For a corresponding analysis of the Type I versus Type II trade-off in the device 
approval realm, see Thomas J. Hwang, Elisaveta Sokolov, Jessica M. Franklin, & Aaron S. 
Kesselheim, Comparison of Rates of Safety Issues and Reporting of Trial Outcomes for Medical 
Devices Approved in the European Union and United States: Cohort Study, 353 BMJ 1, 1–7 (2016). 
 55.  See generally DANIEL CARPENTER, REPUTATION AND POWER: ORGANIZATIONAL 

IMAGE AND PHARMACEUTICAL REGULATION AT THE FDA (2010) (summarizing a large-scale 
theoretical, historical, and statistical analysis of FDA pharmaceutical regulation (the FDA 
Project) and concluding that the FDA’s organizational reputation has been the primary source of 
its power). 
 56.  See Marks, supra note 5, at 1260 (stating that the FDA’s reputation has been “under 
fire” and warning that substituting algorithmic models for clinical trials may further erode its 
reputation). 
 57.  See Aaron S. Kesselheim, Michael D. Greene & Jerry Avorn, Who is Now Responsible 
for Discovering and Warning About Adverse Effects of Generic Drugs?, 310 JAMA 1023, 1023 
(2013) (recognizing that “premarket testing does not reveal the full range of a drug’s adverse 
effects”). 
 58.  See Theodore Eisenberg & Martin T. Wells, Statins and Adverse Cardiovascular Events 
in Moderate-Risk Females: A Statistical and Legal Analysis with Implications for FDA Preemption 
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is right to raise a cautionary flag—if not attended to, the use of AI 
could exacerbate biases against marginalized communities.59 But, 
Marks understates the benefits of simulated trials, which can act as a 
complement (as opposed to replacement) to randomized controlled 
trials and allow trials to be run repeatedly or to reduce racial equity 
risks inherent in unrepresentative clinical trials.60 Scientists conducting 
simulated trials can intentionally and proactively build 
representativeness into the virtual cohorts interacting with their 
models. Moreover, one might take a more sanguine view after 
examining how the FDA has been particularly attuned, as part of its 
Model-Informed Drug Development (MIDD) initiative, to leverage 
AI-based models “to bridge efficacy and safety for certain unstudied 
patient subpopulations or use scenarios”61 with the goal of making 
clinical trial data not only more efficient to collect but also “more 
representative of diverse patient populations.”62 In one promising 
study in May 2022, a team of pharmaceutical researchers, taking up the 
MIDD challenge, confirmed the efficacy of an influenza drug on ethnic 
groups that were underrepresented in the drug’s Phase III clinical 
studies.63 

In addition to the high costs and potential unrepresentativeness of 
the FDA’s existing pre-market approval regime, such a stringent ex 
 
Claims, 5 J. EMPIRICAL LEGAL STUD. 507, 509–10 (2008) (explaining that the top-selling drug 
Lipitor was approved by the FDA although its clinical trials included few women and generated 
“inconclusive” drug efficacy results for women); Bassel Nazha, Manoj Mishra, Rebecca Pentz & 
Taofeek K. Owonikoko, Enrollment of Racial Minorities in Clinical Trials: Old Problem Assumes 
New Urgency in the Age of Immunotherapy, 39 AM. SOC’Y CLINICAL ONCOLOGY EDUC. BOOK 
3, 4 (2019) (reporting that non-white participants represent only 20 percent of cancer clinical trial 
participants). 
 59.  See Marks, supra note 5, at 1273–76.  
 60.  As Marks himself seems to recognize—by referring to models predicting rituximab as a 
superior treatment to rheumatoid arthritis—simulated trials can also help drug manufacturers 
decide whether running a clinical trial is worth the risks and costs. See id. at 1243. 
 61.  See CDER Conversation: Model Informed Drug Development, U.S. FOOD & DRUG 

ADMIN., https://www.fda.gov/drugs/news-events-human-drugs/cder-conversation-model-informed-drug-
development https://perma.cc/KD44-VGCG], (last updated June 12, 2018). 
 62.  FDA’s Technology Modernization Action Plan (TMAP), U.S. FOOD & DRUG ADMIN. 
2 (Sept. 18, 2019) [hereinafter TMAP], https://www.fda.gov/media/130883/download 
[https://perma.cc/JFQ6-UC6W]. 
 63.  Sylvie Retout, Stefan De Buck, Sébastien Jolivet, Vincent Duval & Valérie Cosson, A 
Pharmacokinetics–Time to Alleviation of Symptoms Model to Support Extrapolation of Baloxavir 
Marboxil Clinical Efficacy in Different Ethnic Groups with Influenza A or B, 112 CLINICAL 

PHARMACOLOGY & THERAPEUTICS 372, 373, 380 (2022); Piet H. van der Graaf, Diversity in 
Clinical Pharmacology Coming of Age, 112 CLINICAL PHARMACOLOGY & THERAPEUTICS 191, 
192 (2022) (stating that Retout and co-workers’ success in using MIDD to support new drug 
applications in different ethnic patient groups demonstrates the potential of MIDD for drug 
development). 
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ante regulatory approach undeniably delays time to market for 
innovative drug and medical device products.64 To date, the FDA has 
faced perhaps a Faustian dilemma with regard to tradeoffs between 
Type I and Type II errors, namely the impossibility of reducing one 
without increasing the other. Even its most adamant critics have 
acknowledged that, should the FDA lower its stringent premarket 
criteria, increased resources should be dedicated to postmarket 
surveillance.65 While the FDA has been gradually expanding its 
postmarket surveillance regime over the last fifteen years, the AI 
revolution promises a more transformative shift. 

2. A shift, accelerated by AI, to postmarket surveillance.  The 
development of AI technologies has propelled the FDA’s 
transformative shift toward increased postmarket surveillance. For the 
past several years, the FDA has relaxed the stringency of its premarket 
testing regime, in effect shifting resources from premarket to 
postmarket scrutiny.66 In 2021, the FDA issued 74 percent of its new 
drug approvals under an “expedited program” loosening premarket 
requirements to speed drug commercialization, and 28 percent of 
approved drugs were approved through the Accelerated Approval 
program, one type of “expedited program” that enables earlier drug 
approval by relying on postmarket trials to confirm clinical efficacy.67  

Back in 2007, responding to pleas by the FDA and legal scholars 
urging the need for postmarket surveillance of drugs, Congress enacted 
the Food and Drug Administration Amendments Act (FDAAA).68 

 

 64.  Note the difficulty in measuring these Type II errors, which are not as salient as Type I 
errors. For some attempts to measure Type II errors in drug approvals, see generally Thomas J. 
Philipson & Eric Sun, Cost of Caution: The Impact on Patients of Delayed Drug Approvals, 
PROJECT FDA REPORT (June 2010).  
 65.  See Richard A. Epstein, Regulatory Paternalism in the Market for Drugs: Lessons from 
Vioxx and Celebrex, 5 YALE J. HEALTH POL’Y, L. & ETHICS 741, 747–48 (2005) (arguing for a 
shift from premarket drug scrutiny by FDA to postmarket surveillance). 
 66.  See, e.g., Nathan Cortez, Digital Health & Regulatory Experimentation at the FDA, 18 
YALE J. HEALTH POL’Y, LAW & ETHICS 4, 14 (2019) (describing the FDA’s “shifting its focus 
from pre-market to post-market evidence gathering” as a significant experiment in medical 
product regulation); see also W. Nicholson Price III, Regulating Black-Box Medicine, 116 MICH. 
L. REV. 421, 458 (2017) (advocating an approach for “black-box medicine” that would “combine 
more moderate up-front regulation—graded by risk but with lower barriers than the full 
premarket approval pathway—with robust postmarket surveillance to monitor the performance 
of algorithms in real-world settings”). 
 67.  CTR. FOR DRUG EVALUATION AND RSCH., U.S. FOOD & DRUG ADMIN., Advancing 
Health Through Innovation: New Drug Therapy Approvals 2021, at 18 (Jan. 2022) [hereinafter 
Advancing Health Through Innovation]. 
 68.  See generally U.S. GOV’T ACCOUNTABILITY OFF., REPORT TO REQUESTERS: DRUG 

SAFETY, IMPROVEMENTS NEEDED IN FDA’S POSTMARKET DECISION-MAKING AND 



102  DUKE LAW JOURNAL ONLINE [Vol. 72:86 

The FDAAA granted the FDA authority to monitor safety risks from 
already approved drugs and require drug manufacturers to perform 
postmarket safety studies.69 Concerns have been raised since then 
(including by Marks70) about the FDA’s track record of postmarket 
surveillance.71 We recognize that it will likely take increased financial 
resources along with institutional commitment for the FDA to up its 
postmarket surveillance game.  

But, notwithstanding the FDA’s constrained resources,72 we see 
promise in the FDA’s ability to harness AI-enabled tools (with the 
FAERS pilots being an early example) to improve the agency’s ability 
to evaluate postmarket data at scale.73 Since the late 2000s, the FDA 
has amassed large amounts of data, almost exclusively from 
manufacturers, into adverse event reports databases (including 
FAERS) to inform its postmarket surveillance efforts.74 The FDA has 
 
OVERSIGHT PROCESS (2006); see also Rebecca S. Eisenberg & W. Nicholson Price II, Promoting 
Healthcare Innovation on the Demand Side, 4 J.L. & BIOSCIENCES 3, 41–44 (2017) (describing the 
development of the FDA’s postmarket surveillance authority). 
 69.  See Catherine M. Sharkey, The Fraud Caveat to Agency Preemption, 102 NW. U. L. REV. 
841, 863–64 (2008) (“Congress, after conducting numerous hearings . . . , has taken recent action 
to buttress the FDA’s drug approval and oversight functions. The FDA Amendments 
Act . . . empowers the FDA with additional authority during the postapproval period to monitor 
drug side effects and to impose larger fines on companies that do not conduct postmarketing 
studies.”). 
 70.  See Marks, supra note 5, at 1216–17. 
 71.  See, e.g., Daniel Carpenter, Reputation, Gatekeeping and the Politics of Post-Marketing 
Drug Regulation, 8 ETHICS J. AM. MED. ASS’N 403, 404 (2006) (arguing that the FDA has 
struggled to ensure compliance postmarket because the agency’s power over manufacturers 
decreases once a drug or device is approved); Sheila Kaplan, FDA Faulted for Failure to Track 
Safety Issues with Drugs Already on Market, STATNEWS (Jan. 14, 2016), 
https://www.statnews.com/2016/01/14/fda-postmarket-study-report [https://perma.cc/6XR3-FNGS] 
(noting that safety concerns arise after a drug goes on the market); Kesselheim et al., supra note 
57, at 1023 (asserting that “post-market surveillance by the [FDA] is insufficient”); see also 
Prashant V. Rajan, Daniel B. Kramer & Aaron S. Kesselheim, Medical Device Postapproval 
Safety Monitoring Where Does the United States Stand?, 8 CIRCULATION: CARDIOVASCULAR 

QUALITY OUTCOMES 1, 3 (2015) (finding that “many of the [adverse event] reports” on which 
the FDA bases its postmarket surveillance “have flaws”). 
 72.  As the U.S. Supreme Court remarked: “The FDA has limited resources to monitor the 
11,000 drugs on the market, and manufacturers have superior access to information about their 
drugs, especially in the postmarketing phase as new risks emerge.” Wyeth v. Levine, 555 U.S. 555, 
578–79 (2009). 
 73.  See supra Part I.B. 
 74.  The FDA started accepting electronic FAERS report submission in 2000 (though some 
of the data in FAERS date back to 1968), and the volume of received reports started increasing 
exponentially since around 2009. See FAERS Dashboard, supra note 36 (showing 107 reports for 
1968, followed by a slow increase to tens of thousands in the 70s and 80s and hundreds of 
thousands in the 90s and 2000s, before an exponential increase from 490,412 in 2009 to 2.34 million 
in 2021). Manufacturers submit 95 percent of FAERS reports to fulfill FDA reporting 
requirements, whereas patients, caregivers, and healthcare professionals voluntarily submit the 
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used its postmarket analyses of adverse event reports data to update 
regulatory rulemaking and guidance.75 On rare occasions, it even has 
relied on postmarket insights to reevaluate premarket approval 
decisions.76 

Since incorporating AI into its postmarket surveillance regime, 
the FDA has announced notable progress on processing its backlog of 
postmarket surveillance analyses.77 After focusing exclusively on 
premarket testing for most of its history, the FDA has made 
postmarket surveillance an increasing priority over the past fifteen 
years and now recognizes such ongoing review as a “critical part of the 
FDA’s responsibilities.”78 While using NLP models to analyze FAERS 
data has been the FDA’s principal foray into postmarket surveillance 
to date, this postmarket shift can expand to more data sources and 
leverage additional AI technologies.79  

 
remaining 5 percent. See Anne Tobenkin, An Introduction to Drug Safety Surveillance and FDA 
Adverse Event Reporting System, U.S. FOOD & DRUG ADMIN. 24 (Apr. 10, 2018), 
http://www.learning.proclinical.com/wp-content/uploads/2019/04/PV-DDI-Webinar-FINAL.pdf 
[https://perma.cc/H88P-W53R]. 
 75.  See CTR. FOR DEVICES & RADIOLOGY HEALTH, U.S. FOOD & DRUG ADMIN., 
INFUSION PUMP IMPROVEMENT PROGRAM (Apr. 2010), https://www.fda.gov/medical-
devices/infusion-pumps/white-paper-infusion-pump-improvement-initiative 
[https://perma.cc/33QR-QVX5] (describing how the FDA used its adverse event reports analyses 
to refine its regulation of infusion pumps).  
 76.  See Sharkey, Regulatory Analysis at the FDA, supra note 4, at 53. 
 77.  See SCOTT GOTTLIEB, U.S. FOOD & DRUG ADMIN., STATEMENT BY FDA COMM’R 

SCOTT GOTTLIEB, M.D., ON THE FDA’S EFFORTS TO HOLD INDUSTRY ACCOUNTABLE FOR 

FULFILLING CRITICAL POST-MARKETING STUDIES OF THE BENEFITS, SAFETY OF NEW DRUGS 

(Nov. 16, 2018), https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-
gottlieb-md-fdas-efforts-hold-industry-accountable-fulfilling [https://perma.cc/NW8W-3MAR] 
(stating that, as of 2018, 76 and 81 percent of the FDA’s “post-marketing requirements” and 
“post-marketing commitments,” two types of post-approval studies, were respectively progressing 
on schedule). 
 78.  See U.S. Food & Drug Admin., The Public’s Stake in Adverse Event Reporting, 
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/
publics-stake-adverse-event-reporting [https://perma.cc/HY47-HM68] (presenting postmarket drug 
and device safety monitoring as a “critical part of FDA’s responsibilities”). Especially with regard 
to medical devices, the FDA has explored ways to lower premarket barriers while ratcheting up 
postmarket scrutiny. See generally, U.S. FOOD & DRUG ADMIN., DEVELOPING A SOFTWARE 

PRECERTIFICATION PROGRAM: A WORKING MODEL (2019), https://www.fda.gov/downloads/
MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/UCM629276.pdf [https://perma.cc/A9Y6-
AVNA]. 
 79.  The FDA has created additional adverse event reporting databases, including the 
Sentinel Database (for drugs, vaccines, biologics, and medical devices), the Manufacture and User 
Facility Device Experience (MAUDE) database (for medical devices), and the Tobacco Product 
Problem database (for tobacco products). See U.S. FOOD & DRUG ADMIN., FDA’s Sentinel 
Initiative, https://www.fda.gov/safety/fdas-sentinel-initiative [https://perma.cc/R4UE-AGM6]; 
U.S. FOOD & DRUG ADMIN., Manufacturer and User Facility Device Experience, OPENFDA, 
https://open.fda.gov/data/maude [https://perma.cc/6NSW-MQFX]; U.S. FOOD & DRUG ADMIN., 
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B. Evaluating the Shift 

As an initial matter, as the FDA confronts regulating a new 
generation of AI medical devices that incorporate dynamic AI, this 
shift to postmarket surveillance becomes a practical necessity. The 
FDA’s regulatory guidance regarding novel medical AI devices 
emphasizes the need for postmarket monitoring of AI models.80 
Postmarket monitoring is accordingly one of the key principles for the 
FDA’s “Good Machine Learning Practice for Medical Device 
Development” (co-published with Canadian and U.K. health safety 
regulators in October 2021).81 

Moreover, the FDA’s increase in postmarket surveillance opens 
up the possibility for more streamlined, less stringent premarket safety 
review—holding overall safety constant (or even improving it overall). 
For example, in the realm of regulating AI powered software-based 
medical devices, the FDA is experimenting with developing a more 
streamlined premarket review, coupled with ongoing heightened 
postmarket surveillance.82 It is in this vein that we must evaluate 
Marks’ concern that the FDA’s relaxation of ex ante requirements for 
premarket clinical trial studies to allow AI-driven simulation models 
might lead to “erroneous conclusions” (i.e., Type I errors) in drug 
approval.83 We, too, might readily agree if viewed in isolation, but 

 
Tobacco Product Problem Reports, https://www.fda.gov/tobacco-products/tobacco-science-
research/tobacco-product-problem-reports [https://perma.cc/4XRP-29RY]. 
 80.  See supra notes 26–27 and accompanying text; TMAP, supra note 62, at 3 (mentioning 
the need to manage “workload both in the premarket and post-market space”). 
 81.  Good Machine Learning Practice for Medical Device Development: Guiding Principles, 
U.S. FOOD & DRUG ADMIN., https://www.fda.gov/medical-devices/software-medical-device-samd/good-
machine-learning-practice-medical-device-development-guiding-principles [https://perma.cc/5VLG-XQM2] 
(listing as a guiding principle that “Deployed Models Are Monitored for Performance and Re-
training Risks Are Managed”). 
 82.  See Informing the FDA’s Digital Health Pre-Cert Program, PRESIDENTIAL INNOVATION 

FELLOWS: PROJECTS, https://presidentialinnovationfellows.gov/projects/fda-precert [https://perma.cc/
DML5-EWSP] (describing project by FDA to “streamline[]” the premarket review of software-
based medical devices developed by trusted manufacturers who “are committed to [postmarket] 
monitoring [of the] real-world performance of their products”). The FDA’s use of AI-powered 
postmarket surveillance thus will equip it to match the iterative improvement framework 
implemented by dynamically updating AI/ML-based software. See SAMD PLAN, supra note 26, 
at 1 (“This framework would enable FDA to provide a reasonable assurance of safety and 
effectiveness while embracing the iterative improvement power of artificial intelligence and 
machine learning-based software as a medical device.”). 
 83.  Marks, supra note 5, at 1223 (“[A]dopting [computer] models [for drug approval] hastily 
or haphazardly can produce erroneous conclusions. . . . [M]any existing and proposed algorithmic 
models have not been rigorously evaluated, and their credibility is unknown. Others have known 
deficiencies that negatively affect their credibility.”). 
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surely such risks are mitigated in a context in which the FDA also 
simultaneously boosts its postmarket surveillance regime. 

Our point here is, at least, to consider the extent to which the 
reduction of premarket regulatory requirements can thereby lower 
Type II errors—fostering innovation and minimizing delay to 
market—without sacrificing overall safety (or Type I errors) by 
increasing postmarket surveillance. The FDA is experimenting with 
the collection and evaluation of “real-world evidence” in the 
postmarket surveillance period to uncover risk evidence that inevitably 
may be missed from clinical trials or other premarket testing 
procedures.84 The FDA has launched multiple projects to collect real-
world data, such as the National Evaluation System for health 
Technology (NEST), which was designed to “help improve the quality 
of real-world evidence that FDA can use to detect emerging safety 
signals quickly and take appropriate actions,”85 and the 
MyStudiesApp, which was built to “foster the collection of real world 
evidence via patients’ mobile devices” with the goal of helping 
manufacturers in their design of new health care solutions while 
complying with “the FDA’s regulations and guidance for data 
authenticity, integrity and confidentiality.”86 By leveraging such “real 
world evidence,” the FDA “may be able to provide patients and 
providers with important answers much sooner by potentially 
identifying a broader range of safety signals more quickly.”87 

III.  REALIZING THE PROMISE OF AI AT THE FDA  

We recognize the tentative nature of our rebuttal to Marks’ 
doomsday predictions. In our minds, the key to the FDA’s realizing the 

 

 84.  See TMAP, supra note 62, at 2 (“FDA is building the scientific and policy infrastructure 
to support increasing use of real-world evidence to support regulatory decisions. The 21st Century 
Cures Act, enacted in 2016, highlighted the importance of real-world evidence in the context of 
drug development.”); supra notes 57–58 and accompanying text (emphasizing that clinical trials 
inevitably mask or fail to uncover drug risks). 
 85.  Medical Device Safety Action Plan: Protecting Patients, Promotion Public Health, U.S. 
FOOD & DRUG ADMIN. 10 (2018), https://www.fda.gov/media/112497/download [https://perma.cc/UP5X-
5UK7]. 
 86.  FDA Launches New Digital Tool to Help Capture Real World Data from Patients to Help 
Inform Regulatory Decision-Making, U.S. Food & Drug. Admin. (Nov. 6, 2018), 
https://www.fda.gov/news-events/fda-brief/fda-brief-fda-launches-new-digital-tool-help-capture-
real-world-data-patients-help-inform-regulatory [https://perma.cc/4LPF-2GHT]. 
 87.  Scott Gottlieb, Remarks Before the Bipartisan Policy Center, Breaking Down Barriers 
Between Clinical Trials and Clinical Care: Incorporating Real World Evidence into Regulatory 
Decision Making, U.S. FOOD & DRUG. ADMIN. (Jan. 28, 2019), https://www.fda.gov/
NewsEvents/Speeches/ucm629942.htm [https://perma.cc/3YC4-A62M]. 
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promise of AI (and mitigating its perils) is the agency’s success at 
building internal AI capacity.88 Armed with the strong AI-embedded 
expertise that it has built over the past five years, the FDA has the 
opportunity to become an AI-enabled “information agency” if it 
restructures its data operations and adopts a technical data 
infrastructure relying on “fit-for-purpose” data. 

A. Building Internal AI Capacity at the FDA 

Whereas federal agencies often lack the technical capability 
necessary to regulate novel AI products or build AI tools in-house,89 
the FDA emerges as an outlier agency that has invested significant 
resources to develop internal AI capacity. More specifically (tracking 
the guidelines articulated in the 2020 Government by Algorithm 
Report), the FDA has: (1) “invest[ed] in [its] technical and data 
infrastructure,” (2) “cultivate[d] in-house human capital to produce AI 
tools that are not only usable at the technical level but also compliant 
at the legal and policy levels,”90 and (3) “invest[ed] in comprehensive 
and flexible AI strategies that allow [the] agenc[y] to learn strategically 
from failures and evolve.”91  

First and foremost, the FDA has invested in building human 
capital expertise in AI. As a protector of public health, the FDA must 
be prepared to respond to the health emergencies of the future using 
tools and processes that meet the sophistication of the industry that the 
FDA regulates. Starting in 2017, the FDA has recruited dozens of 
technical hires, including engineers, AI experts, and “cloud computing 
whizzes,” to help it adjust to the AI revolution.92 That same year, the 

 

 88.  See Building Internal AI Capacity, supra note 33, at 71–74. 
 89.  See Deirdre K. Mulligan & Kenneth A. Bamberger, Procurement as Policy: 
Administrative Process for Machine Learning, 34 BERKELEY TECH L.J. 781 (2019) (showing that 
agencies “most often lack the technical expertise to design or assess algorithmic systems on their 
own”).  
 90.  Success stories at other agencies, such as the Social Security Administration (SSA), the 
Internal Revenue Service (IRS), and the Securities and Exchange Commission (SEC), illustrate 
the need for agencies to have their staff with technical expertise collaborate with their staff with 
regulatory subject matter expertise in order to implement AI tools effectively for regulatory 
purposes. See Building Internal AI Capacity, supra note 33, at 71–73 & n.29–30 (showing that the 
SSA’s success in building tools identifying potential errors in draft disability determinations 
hinged on its ability to hire lawyers with both regulatory and technical skills, that the IRS built in-
house technical expertise to automate dynamic regulatory tasks, and that the SEC relied on 
internal expertise to iteratively update its AI enforcement tools and prevent regulated entities 
from gaming its violation detection models). 
 91.  Id. at 71. 
 92.  See supra note 1 and accompanying text. 
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agency created an Entrepreneurs in Residence program.93 In 2021, 
HHS—the FDA’s mother agency—appointed its first Chief AI 
Officer.94 Among other initiatives, the Office of the Chief AI Officer 
released an AI strategy and created a framework for developing 
“trustworthy AI” within government.95 

Leveraging this human capital with AI expertise, the FDA has 
developed a flexible and iterative approach to regulating AI-based 
medical products by experimenting with regulatory “sandboxes” and 
building partnerships to complement its own internal AI capacity.96 
Regulatory sandboxes present great advantages for regulating nascent 
and quickly evolving technologies such as AI. They enable regulators 
to “fail cheaply” and relatively safely,97 de-risk projects early, define 
metrics to measure success, and iterate on their technical infrastructure 
for regulatory analytics. The FDA has partnered with entrepreneurs 
and private organizations to run its INFORMED program as a 
regulatory sandbox focusing on AI-driven oncology innovation. 
INFORMED created “a unique sandbox for networking, ideation and 

 

 93.  See Digital Health Innovation Action Plan, U.S. FOOD & DRUG. ADMIN. 7 (2017), 
https://www.fda.gov/media/106331/download [https://perma.cc/2QRR-2YMY]. 
 94.  See About the HHS Office of the Chief Artificial Intelligence Officer (OCAIO), U.S. 
DEP’T HEALTH HUMAN SERVS., https://www.hhs.gov/about/agencies/asa/ocio/ai/ocaio/
index.html [https://perma.cc/LU9C-98S7], (last updated Mar. 4, 2022). 
 95.  Artificial Intelligence (AI) Strategy, U.S. DEP’T HEALTH HUMAN SERVS. 3 (Jan. 2021), 
https://www.hhs.gov/sites/default/files/hhs-ai-strategy.pdf [https://perma.cc/R644-HFXV] (presenting HHS’s 
AI strategy); Trustworthy AI (TAI) Playbook, U.S. DEP’T HEALTH HUMAN SERVS. 7 (Sept. 2021), 
https://www.hhs.gov/sites/default/files/hhs-trustworthy-ai-playbook.pdf [https://perma.cc/R4QA-BV8S] 
(presenting HHS’s “trustworthy AI” framework). The FDA’s growing internal AI capacity could 
strengthen the agency’s “innovation role” for AI products, with HHS’s Office of the Chief AI 
Officer essentially serving as an innovation internal coordinator. Cf. Rachel E. Sachs, W. 
Nicholson Price II & Patricia J. Zettler, Rethinking Innovation at FDA (forthcoming) (manuscript 
at 8) (on file with the Duke Law Journal) (analyzing “the ways that FDA makes decisions and 
judgments that shape what products, or new uses of products, are developed (or are believed to 
be developed) in the future”). 
 96.  In its 2019 Technology Modernization Action Plan (TMAP), the FDA emphasized its 
strategy of adopting a flexible approach combining internal capacity building, collaboration with 
industry and other government agencies, or purchasing off-the-self solutions:  

“For some projects, FDA will perform the role of a traditional technology developer: 
seeking and taking a leading role in the technological modernization of our regulatory 
review system as well as the underlying infrastructure that supports it. . . . Other 
solutions will be catalyzed by FDA but otherwise built within the larger biomedicine 
ecosystem, including through collaboration with other government agencies. FDA will 
also continue to review the overall technology marketplace for new fit-for-purpose off-
the-shelf solutions that can be efficiently adopted into the FDA environment.”  

See TMAP, supra note 62, at 6. 
 97.  The FDA, however, must preserve a low risk tolerance even in such regulatory sandbox 
initiatives, given the potential public health consequences from any mistake in drug or medical 
device safety regulation. 
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sharing of technical and organizational resources, empowering project 
teams with the tools needed to succeed in developing novel data 
science solutions.”98 Perhaps even Marks would support such AI 
“sandboxes,” which allow the FDA to take the necessary steps to 
develop stronger independent AI tools without endangering public 
safety. 

With regard to partnerships, Marks raises a flag of caution with 
regard to the FDA’s collaboration with industry partners.99 Here, we 
agree that the FDA should take measures to ensure that it does not 
become reliant on “black box” proprietary AI technologies built by 
private companies, which could unduly favor these companies’ 
regulatory objectives. Agencies that rely on third-party developers to 
build their AI tools take on a risk of allowing the regulated industry to 
gain access to that same developer, thus potentially compromising their 
tool. For this reason, the 2020 Government by Algorithm Report 
strongly encourages agencies to develop their own internal expertise 
on AI development and maintenance.100 

The FDA has, moreover, built partnerships with other agencies 
and engaged the public to augment its internal technical capacity. In 
2016, the FDA started a partnership with the National Institute of 
Standards and Technology (NIST), which has played an active role in 
creating standards to evaluate the risk and “trustworthiness” levels of 
AI tools.101 While Marks criticizes the FDA’s inattention to standards-
setting in the realm of AI, he missed an opportunity to explore the 
possibility that the FDA might draw from NIST’s AI Risk 
Management Framework (which gets nary a mention by Marks).102  

 

 98.  Khozin et al., supra note 49, at 530. 
 99.  See Marks, supra note 5, at 1245 (warning against the conflict-of-interest dangers 
inherent in the FDA’s reliance on clinical trial simulation technologies developed by industry 
stakeholders to evaluate the safety and efficacy of their own products). 
 100.  See Building Internal AI Capacity, supra note 33, at 71–74. 
 101.  See Memorandum of Understanding Between the National Institute of Standards and 
Technology, U.S. Department of Commerce and the Food and Drug Administration, U.S. DEP’T 

HEALTH AND HUMAN SERVS., https://www.fda.gov/about-fda/domestic-mous/mou-225-21-006 
[https://perma.cc/S2T6-Y2YG] (stating that the FDA and NIST will “collaborate in 
interdisciplinary research in . . . application of synthetic intelligence (e.g. neural networks, 
AI/ML), and adaptive process control strategies”); AI Risk Management Framework, NAT’L INST. 
OF STANDARDS AND TECH., https://www.nist.gov/itl/ai-risk-management-framework [https://perma.cc/
4H9V-RW2Q] (describing NIST’s work to “develop[] a framework to better manage 
risks . . . associated with artificial intelligence”). 
 102.  Instead, Marks looks to whether an industry framework developed by ASME’s 
Verification & Validation 40 Committee could be adapted for FDA’s internal use, specifically to 
the agency’s internal assessment of model credibility. See Marks, supra note 5, at 1264–66. Given 
the V&V 40 model’s shortcomings (as rehearsed by Marks), it is all the more surprising that he 
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Since 2014, the FDA has solicited input from outside AI experts 
to help solve technical challenges by running open challenges through 
its precisionFDA program, which provides “a secure, cloud-based 
platform where participants can access and share datasets, analysis 
pipelines, and bioinformatics tools, in order to benchmark their 
approaches and advance regulatory science.”103 The FDA’s sustained 
efforts in strengthening its internal capacity and engaging partners to 
augment its expertise give us confidence in the agency’s ability to avoid 
the dark path that Marks predicts. 

The FDA faces perhaps its biggest future challenges to internal 
capacity building with regard to buttressing the agency’s technical data 
infrastructure. Although the FDA has launched initiatives to increase 
the range of data available to its AI efforts—with a focus on “real-
world” data104—the agency faces hurdles in turning “big” data into 
“smart” data. Traditionally, the FDA has used a limited variety of data 
submitted by manufacturers in randomized clinical trials. These data 
involved small sample sizes, were collected intermittently, and were 
stored in highly structured formats. In contrast, the FDA’s AI-enabled 
postmarket surveillance plans will require the agency to collect data 
from a variety of sources—including real-world data collected directly 
from patients, in high volume, and on an ongoing basis.  

B. AI and the Rise of the FDA as an “Information Agency” 

The FDA has reached a significant fork in the road.105 With 
FAERS and other postmarket databases, the FDA collects “big,” high 
volume data on an ongoing basis.106 Will the FDA continue along its 
traditional path of collecting continuous data streams in unstructured 
formats, or will it instead chart an alternative path? In our view, the 
way forward for the FDA to realize its full potential as an “information 
agency” of the twenty-first century is to chart a new path, leveraging 

 
did not consider the NIST framework, which has the added benefit of being developed 
independently (and external to the FDA and the industry it regulates). 
 103.  About precisionFDA, PRECISIONFDA, https://precision.fda.gov/about [https://perma.cc/
R88E-V7FL]. The FDA has run a total of eighteen challenges under their precisionFDA 
program. precisionFDA Challenges, supra note 45. 
 104.  See supra notes 84–87 and accompanying text (highlighting the FDA leadership’s focus 
on collecting and analyzing real-world data). 
 105.  The 2020 Government by Algorithm Report uncovered an internal split in potential 
approaches for the future of regulatory AI at the FDA. See Sharkey, Regulatory Analysis at the 
FDA, supra note 4, at 56 (“The FDA may be at a crossroads with respect to whether it continues 
to use NLP to handle unstructured data, or whether it instead restructures its data collection.”). 
 106.  In 2021, 2.34 million reports were submitted to FAERS. See FAERS Dashboard, supra 
note 36. 
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AI technologies using “fit for purpose” data, i.e., data whose content 
and format are optimized for regulatory use. In order to leverage not 
only “big” but also “smart” data, the FDA should restructure its data 
collection protocols and collect structured “fit-for-purpose” data in the 
first instance rather than building out NLP-based tools to extract 
structured data from unstructured text, such as existing adverse event 
reports.107 

The FDA’s current data and AI approach to postmarket 
surveillance regulatory analytics—relying solely on NLP models 
applied to unstructured text data from databases such as FAERS—
raises concerns regarding causality analyses and data interoperability. 
Although the FAERS pilots reached modest positive results from 
prioritizing human review of postmarket adverse event reports and 
uncovering new relationships between drugs and medical conditions,108 
they have proved less successful when attempting to make causal 
inferences based on unrepresentative data.109 AI-based predictive 
analytics capabilities cannot substitute for conventional principles of 
causal inference, and Marks is thus right to warn that careless reliance 
on computer models could lead to flawed causation analysis.110 The 
FDA’s current reliance on unstructured data exacerbates these causal 
inference challenges. Whereas precision is critical in evaluating causal 
relationships between drugs and adverse health conditions, the first 
 

 107.  While the FDA has focused on NLP techniques, it also has considered adopting a data 
infrastructure relying on “fit-for-purpose” data. See Enabling More Efficient and Seamless 
Regulatory Review Processes, PRESIDENTIAL INNOVATION FELLOWS, 
https://presidentialinnovationfellows.gov/projects/fda-cio [https://perma.cc/HG4Z-J72Z] (listing 
“shor[ing] up [FDA’s] critical data assets to quality and ‘fit for purpose’ data” as one of the five 
challenges tackled by the project); Jacqueline Corrigan-Curay, The FDA Real-World Evidence 
(RWE) Framework and Considerations for Use in Regulatory Decision-Making, U.S. FOOD & 

DRUG ADMIN. 11 (May 12, 2021) https://www.fda.gov/media/148543/download [https://perma.cc/
8HT9-48AS] (mentioning a project to “[d]evelop[] a Reusable Framework for transforming raw 
data in fit-for-purpose data”). NLP could still be used on top of fit-for-purpose data to perform 
predictive or causality analyses and would operate on “clean,” standardized, and directly 
actionable data, instead of “messy,” freeform unstructured text data requiring pre-processing. 
 108.  See supra notes 37–41 and accompanying text. 
 109.  FAERS submissions do not require demonstrating causation. See Tobenkin, supra note 
74, at 25 (FAERS reports can be submitted “even if causality is uncertain”); Q&A on FAERS, 
supra note 9 (“FDA does not require that a causal relationship between a product and event be 
proven, and reports do not always contain enough detail to properly evaluate an event.”). FAERS 
reports also suffer from quality (duplicate data), completeness (missing data), and reliability 
(unverified data) issues. See Tobenkin, supra note 74, at 26 (“Quality of the reports is variable 
and often incomplete; Duplicate reporting of the same case occurs.”); Q&A on FAERS, supra 
note 9 (listing same issues). 
 110.  See Marks, supra note 5, at 1243–44 (“[I]nstead of being surrogates for direct 
observation of clinical effects, models and simulations are surrogates for evidence of causation. 
Consequently, they may be even less reliable than traditional surrogates.”). 
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step of translating unstructured data into actionable data labels (such 
as drug name or medical condition) leaves much room for error. Not 
surprisingly, then, the hepatic failure FAERS pilot fell short in terms 
of uncovering causal relationships between drugs and hepatic failures 
based on the available unstructured data.111 Relying on unstructured 
data also poses significant challenges to data interoperability, as it is 
difficult to “join” different data sources that contain unstructured 
data.112 

Training and using its AI models, instead, on fit-for-purpose data 
would alleviate—if not fully resolve—these causal inference and 
interoperability challenges. Structured data labels would make it easier 
to verify and enforce data quality, completeness, and reliability.113 The 
FDA has taken some preliminary steps in this direction. Its Technology 
Modernization Action Plan emphasizes interoperability across 
multiple data sources and between the FDA and external 
stakeholders.114  

The FDA has the means to transform most of the data it collects 
to structured data. Ninety-five percent of FAERS reports come from 
manufacturers on which the FDA could impose structured data 
submission requirements.115 And, its Real World Data Enterprise 
Proposal involved a $100 million budget to expand the volume and 
variety of real-world data collected by the FDA to assist postmarket 
monitoring.116 Despite a more significant investment required in the 
short term, the “fit-for-purpose” data approach provides superior 
prospects for powerful regulatory analytics use cases in the long term. 
Moving further along this path, moreover, would strengthen the FDA’s 
regulatory role as an “information agency” of the twenty-first century. 
 

 111.  See supra note 40 and accompanying text. 
 112.  “Join” is a database operation performed to establish a connection between two or more 
database tables based on matching columns, thereby creating a relationship between the tables. 
 113.  Based on structured data, the FDA could run straightforward analyses to identify 
duplicates and missing data and run quality assurance protocols to check for unexpected values. 
 114.  See TMAP, supra note 62, at 4 (“FDA’s action plan [includes] communication and 
collaboration between FDA and stakeholders, including the technology industry and other 
government agencies, to drive technological progress that is interoperable across the system and 
delivers value to consumers and patients.” (emphasis added)); id. at 7 (mentioning the benefits of 
building “[c]lear technical interfaces for external stakeholders”); id. at 8 (“As FDA builds out 
increasingly advanced technologies, FDA will work with external partners to build appropriate 
application programming interfaces (APIs) and other tools to allow for the efficient submission 
of high-quality data to FDA.”). 
 115.  See Tobenkin, supra note 74, at 24. 
 116.  Scott Gottlieb, FDA Budget Matters: A Cross-Cutting Data Enterprise for Real World 
Evidence, U.S. FOOD & DRUG. ADMIN. (June 10, 2018), https://www.fda.gov/news-events/fda-
voices/fda-budget-matters-cross-cutting-data-enterprise-real-world-evidence [https://perma.cc/62RC-L5X5]. 



112  DUKE LAW JOURNAL ONLINE [Vol. 72:86 

CONCLUSION 

AI holds huge promise for the administrative state—not just for 
private industry. The question facing federal agencies is not whether, 
but how and in which domains, to adopt AI for their regulatory 
purposes. The FDA’s early engagement with AI could serve as a model 
for other agencies. The agency has effectively built internal AI 
capacity; proactively outlined a regulatory framework tailored to novel 
AI medical devices featuring “dynamic AI”; and seen some moderate 
success with its use of NLP to analyze postmarket FAERS adverse 
safety event data.  

The FDA’s accelerating transition to a robust postmarket 
surveillance regime showcases the ability of AI technologies to 
accelerate regulatory paradigm shifts. The FDA is poised to further 
refine its data-driven regulatory approach to embrace “fit-for-
purpose” data, thereby securing its transformation into an 
“information agency” of the twenty-first century and providing a 
window into the future promise of AI in the administrative state. 

 




