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Abstract 

Lymph node metastasis (LNM) detection can be automated using artificial 

intelligence-based diagnostic tools. Only limited studies have addressed this task for 

colorectal cancer. The aim of this study was to develop of a clinical-grade digital 

pathology tool for LNM detection in colorectal cancer (CRC) using the original fast-

track framework. 

The training cohort included 432 slides from one department. A segmentation 

algorithm detecting 8 relevant tissue classes was trained. The test cohorts consisted 

of materials from five pathology departments digitized by four different scanning 

systems.  

A high-quality, large training dataset was generated within 7 days, and a minimal 

amount of annotation work using fast-track principles. The AI tool showed very high 

accuracy for LNM detection in all cohorts, with sensitivity, negative predictive value, 

and specificity ranges of 0.980-1.000, 0.997-1.000, and 0.913-0.990, 

correspondingly. Only 5 of 14460 analyzed test slides with tumor cells over all 

cohorts were classified as false negative (3/5 representing clusters of tumor cells in 

lymphatic vessels).  

A clinical-grade tool was trained in a short time using fast-track development 

principles and validated using the largest international, multi-institutional, multi-

scanner cohort of cases to date, showing very high precision for LNM detection in 

CRC. We are releasing a part of the test datasets to facilitate academic research.  
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Introduction 

Recent developments in digital and computational pathology are transforming our 

approaches to diagnostics within the field of pathology1,2. Numerous studies have 

highlighted the promising capabilities of artificial intellegence (AI) algorithms applied 

to common pathology diagnostic tasks, such as tumor detection, histological grading, 

subtyping, regression grading, and many others3–8. 

Lymph node metastasis detection is one of the most common and time-consuming 

manual tasks pathologists perform during the processing of lymphadenectomy 

specimens. Numerous slides must be analyzed, and all metastases, regardless of 

size, must be detected, which is crucial for cancer reporting, staging, and risk 

stratification. This area naturally lends itself to the application of diagnostic AI 

algorithms and has garnered early attention from computational pathology 

researchers. One of the most notable efforts to stimulate the development of lymph 

node metastasis detection tools was the CAMELYON16/17 Challenge9–11.  This 

challenge addressed the most critical issue in AI algorithm development, which 

remains relevant today: the absence of high-quality training datasets. 

Although breast cancer metastasis detection has received considerable attention 

due to the CAMELYON challenge, lymph node metastasis detection in other tumors 

remains understudied. Thus, only a few studies have addressed this task for 

colorectal cancer12–16, with only one study15 using a small external cohort to validate 

the results, which is of utmost importance for diagnostic AI tools. All of these studies 

utilized classification neural networks, analyzing slides in regions (tiles), rather than 

pixel-wise, which is outdated for a diagnostic tool in pathology. 

In this study, we developed a clinical-grade, precise segmentation computational 

pathology tool for the detection of lymph node metastasis in colorectal cancer. To 
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achieve this, we introduced and utilized the fast-track development framework, which 

addresses the major challenge of computational pathology – the creation of training 

datasets. We demonstrate how a high-quality, large training dataset can be created 

in less than one week with minimal expert time spent on annotations, utilizing pre-

existing tools. Finally, we validated our algorithm using the largest international 

external cohort of cases to date, consisting of thousands of slides from five 

pathology departments scanned by four different scanning systems approved for 

diagnostic use. Our algorithm exhibited very high sensitivity (1.00 sensitivity in 5 out 

of 7 cohorts) and specificity at a high analysis speed of single slides. Furthermore, 

we have publicly released part of our test datasets to facilitate research in this 

domain. 

 

Materials and Methods 

Training cohort 

Cologne, Germany (UKK), and were retrospectively identified from archived 

pathology cases of patients who underwent surgery between 2017 and 2019. These 

cases represented all stages, morphologic variants, and histological grades and 

contained only colorectal adenocarcinoma. Both benign and tumor-containing lymph 

node slides were identified by a board-certified pathologist for inclusion in the 

training dataset. Additionally, 61 archive slides representing only non-specific 

inflammatory altered/necrotic fatty tissue and associated resorption were included to 

enrich the training dataset for inflamed fatty tissue often seen in lymph nodes 

residing near the primary tumor. Furthermore, a round of hard-negative mining was 

carried out on 111 additional slides from the same cases (but non-annotated) 

included in the training dataset, automatically extracting and adding difficult regions 
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from the slides into the training dataset. Next, to further increase the accuracy of the 

classifier, lymph node classifier-relevant classes were extracted from our primary 

tumor dataset, published previously5. 

 

Test cohorts 

Archive lymphadenectomy specimens accompanying primary colorectal tumor 

resections were collected from five pathology departments: University Hospital 

Cologne (UKK; Germany; 2021-2022, using the concept of temporal validation, at 

least 3 years older than slides from the training dataset), State Hospital Wiener 

Neustadt (WNS; Austria), Charité University Hospital (CHA; Germany), Kameda 

Medical Center (KAM; Japan), and University Hospital Essen (ESS; Germany).  All 

series represented consecutive cases from routine diagnostics without any 

preselection, encompassing all grades, stages, and morphologies of colorectal 

adenocarcinoma. Manual and automated quality control was performed after 

digitization, and slides with large out-of-focus artifacts were excluded from the final 

analysis. Some slides could not be digitized by scanners due to mechanical defects 

or other reasons. These two factors accounted for differences in the number of slides 

in cohorts (UKK, WNS) digitized by several scanners. 

 

Digitization 

The training dataset from UKK was digitized using a Hamamatsu NanoZoomer 

S360 scanner (Hamamatsu Photonics, Japan). The training dataset of primary 

tumors from a previous publication was digitized using multiple Leica Aperio 

scanners5. The test datasets from UKK and WNS were digitized with two scanners 

each (Hamamatsu NanoZoomer S360 and Leica Aperio GT450, Leica, Wetzlar, 
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Germany) to account for heterogeneity due to the use of different scanning systems. 

The KAM test dataset was digitized using a Philips UltraFast scanner (Philips, 

Netherlands). The ESS test dataset was digitized using a 3DHISTECH Pannoramic 

250 scanner. For further details including slide micron-per-pixel (MPP) parameter, 

see Figure 1B. 

 

Annotation principles 

All annotations were performed in QuPath version 0.3.2. For pre-annotation 

purposes, representative rectangular regions from tumor-containing slides were 

selected by an experienced pathologist (YT) in QuPath and automatically extracted 

as JPEG files for all slides. These regions were then processed to create binary 

maps for all classes, except benign lymph node tissue, using an algorithm published 

elsewhere, outside of QuPath. These binary maps were automatically imported into 

QuPath, resulting in pre-annotations. These pre-annotations were then corrected by 

experienced human analysts (AG, YT). Annotations for benign lymph node tissue 

were created using the Thresholder function in QuPath, with parameters adapted to 

achieve better pre-annotation quality for individual slides. 

 

Algorithm development and training 

The algorithm development was conducted using the PyTorch framework version 

1.13 and Python version 3.9. For constructing the algorithm's segmentation models, 

the PyTorch package version 0.3.1 was employed. The final version of the algorithm 

is based on the UNet++ neural network architecture and utilizes the EfficientNetB0 

encoder pre-trained on ImageNet, serving as a segmentation network for pixel-wise 

classification of whole-slide images. Training was carried out using NVIDIA A100 and 
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V100 graphics processing units (NVIDIA, Santa Clara, CA, USA). A small validation 

subset of the training dataset (approximately 10%) was reserved for validation 

purposes and algorithm fine-tuning. Training involved balanced sampling of all 

classes within batches and oversampling of under-represented classes for up to 5 

times during single epochs. Extensive data augmentation techniques were employed 

during training, including flips, rotations, adjustments to brightness, contrast, gamma, 

hue, and saturation, following the approach outlined by Tellez et al17. No stain 

normalization was used at any development steps. The final version of the algorithm 

analyses images at the resolution 1.0 µm per pixel (patch size 512 pixels). 

 

Clinical validation  

For clinical validation purposes, each distinct lymph node section in the whole slide 

image was considered as a separate lymph node section to enable slide-level 

metrics. All the slides included were reviewed centrally once again by a board-

certified pathologist (YT). Technically, the images were read at the original resolution 

(whereby original resolution/MPP is known and can be extracted from the metadata) 

and the patches for processing with the algorithm (512x512 px at MPP 1.0) were 

extracted under original resolution of the slide (patch size under original resolution = 

MPP model / MPP original * 512) and then simply resized to 512 px. 

 

Statistical analysis 

All statistical tests for lymph node metastasis detection were conducted at the slide 

level using R version 4.1.3 (The R Foundation for Statistical Computing). Typical 

metrics were calculated, including specificity, sensitivity, negative and positive 

predictive values, overall accuracy, and F1 score. A post-hoc analysis of different 
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thresholds for slide classification was performed after the initial validation was 

completed. 

Results 

Fast-track algorithm development 

In this study, we applied several principles that enabled fast-track algorithm 

development, specifically for the creation of high-quality annotated training data, 

which was accomplished in approximately one week (the full pipeline is presented in 

Figure 1C). For comparison, the preparation of a high-quality training dataset 

typically takes 10-12 months5. Initially, we generated pre-annotations using a pre-

trained algorithm from the same domain (but for primary tumors, see Methods) 

capable of recognizing 7 out of 8 classes necessary for the lymph node metastasis 

detection task but in the context of primary tumors5. These classes show almost no 

visual differences in the context of metastases, which allowed for the generation of 

precise pre-annotations with only a need for minor corrections to achieve very high-

quality pixel-wise annotations. The only tissue class not available in the pre-trained 

algorithm is benign lymph node tissue, which was then automatically annotated 

using QuPath's native capabilities, resulting in very precise annotations that were 

minimally corrected by human analysts to remove any inconsistencies. To further 

improve accuracy, we enriched our dataset with inflamed adipose tissue (Figure 1C) 

and finally included regions with relevant classes from our primary tumor dataset 

(Figure 1C). 

These steps resulted in the training of a precise segmentation algorithm in a very 

short time. The principle of the algorithm is intuitive (Figure 2); it analyzes the tissue 

sections, detects different tissue classes, and identifies tumor tissue corresponding 

to metastasis. Pathologists are presented with a color map overlaid on the original 
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whole-slide image, allowing for easy identification of regions in the slide with a high 

possibility of being a tumor (Figure 2). 

 

Clinical validation of the algorithm  

To validate the algorithm, we created a large, multi-institutional cohort of lymph 

node slides consisting of consecutive mesenteric lymphadenectomy cases without 

pre-selection from five departments across three countries. This cohort 

encompassed 8,967 lymph node sections (Figure 1B). The slides were digitized 

using four different scanning systems (Figure 1B, Figure 3A), with two of them (UKK, 

WNS) digitized by two distinct scanning systems.  The validation results at the slide 

level demonstrated very high sensitivity (0.980-1.000) and negative predictive value 

(NPV, 0.997-1.000) for the algorithm, along with similarly high specificity (0.913-

0.990) across all tested cohorts (Figure 3B). In five out of seven tested cohorts, all 

tumor slides were accurately detected, resulting in a sensitivity and NPV of 1.000. 

We conducted an additional post-hoc evaluation of the different thresholds for areas 

with a high probability of being tumor tissue and its effect on the final slide 

classification across all cohorts (see Suppl. Fig. 1 for cohort-level metrics and Suppl. 

Table 1 for slide-level metrics). This analysis demonstrates that the initially selected, 

very small cutoff is optimal for the high sensitivity of the algorithm. 

 

Detailed evaluation of false negative and false positive detections 

Only individual slides with tumors in the CHA and KAM cohorts were not classified 

as such, due to an initially selected, very small area cutoff for whole-slide image 

classification (Figure 4C; corresponding to approximately the area of 5 tumor cells, 

see Methods). There were no false-negative detections in the UKK, WNS, and ESS 
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cohorts. Among these individual slides in CHA and KAM, the tumor was detected in 

all these slides (Figure 5A-D)  and would have been presented to the pathologist for 

visual evaluation. Three out of five of these regions were tumor cell clusters in 

sinuses without invasion, which we still considered as lymph node metastases in our 

metrics. 

All false positive results were reasonable. There were no misclassifications where 

the underlying algorithm decision was not understandable. Most false positive 

regions were small and served as valuable alerts that could enhance the confidence 

of the diagnostic process (Figure 6A-C). Such areas included hyperactivated 

histiocytes, where immunohistochemical clarification might be necessary, and severe 

mechanical artifacts (crush artifacts) where the tissue was not evaluable and might 

conceal metastasis, as well as regions of fibrosis suspicious of desmoplastic tumor 

stroma. Occasionally, blood vessels were detected as areas with a high probability of 

being a tumor. In the KAM cohort, the algorithm produced slightly more false positive 

misclassifications related to activated germinal centers (Figure 6F). 

 

Time-to-analysis metrics 

The algorithm facilitated rapid analysis of whole slide images. The average 

(median) processing time per lymph node section ranged from 23 to 50 (18 to 30) 

seconds, enabling efficient processing of the entire case through parallelization. For 

instance, a consumer-grade GPU unit, such as the RTX 4090, can process up to 10 

whole slide images simultaneously. Further details are provided in Figure 4D. 

 

Discussion 
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Developing clinical-grade assistive AI tools for diagnostic pathology presents 

significant challenges for several reasons. First, creating a robust diagnostic tool that 

can generalize to unseen data requires large, diverse training datasets with highly 

accurate annotations. Securing the necessary volume of high-quality annotations is a 

laborious process that involves expert pathologists and can take several months of 

meticulous effort. Furthermore, the tool must undergo rigorous clinical validation with 

previously unseen cases to prove its reliability and effectiveness. 

In this study, we introduce our fast-track development principle that capitalizes on 

existing domain knowledge and previous advancements (Figure 1C). Utilizing this 

principle, we were able to develop a highly effective, clinical-grade diagnostic 

algorithm for detecting lymph node metastasis in colorectal cancer in a remarkably 

short period (Figure 1C, Figure 2). Our fast-track method required less than 7 days 

of hands-on time to compile a high-quality training dataset with highly precise 

annotations. For context, the development of a recently reported accurate, clinical-

grade tool for processing primary colorectal cancer specimens took 16 months of 

annotation work5. This approach holds potential for application across various other 

domains. 

We validated our algorithm using a multi-institutional, international cohort (Figure 

1B, Figure 3A) comprised of consecutive lymphadenectomy specimens from five 

pathology departments (three in Germany, one in Austria, and one in Japan), 

digitized with the four most common scanning systems18. This continuous cohort, 

without pre-selection, captures cases of varying complexity, quality, and morphology. 

Our cohort is among the largest to date in published research. Our algorithm 

demonstrated very high sensitivity (0.980-1.000; with five out of seven cohorts 

showing a sensitivity of 1.000), negative predictive value (0.997-1.000), and 

Jo
urn

al 
Pre-

pro
of



 13 

specificity (0.913-0.990), regardless of the cohort, digitization system, or cancer 

morphology (including mucinous), as illustrated in Figures 2 and 3. A detailed 

analysis of the few false negative results (Figure 4,5; five false negative 

misclassifications out of 14,460 analyzed lymph node sections) revealed that almost 

all tumor deposits were correctly detected. The misclassifications were due to a pre-

defined, very small area threshold for positive slide classification. Three of the five 

"false negative" results were clusters of tumor cells in lymph vessels without invasion 

(Figure 5). 

Interestingly, in two test cohorts scanned by the Hamamatsu scanner, a slightly 

lower specificity was observed (Figure 4B, cohorts WNS A and UKK B), underscoring 

the importance of incorporating various scanning systems into validation studies. 

Based on our experience, Hamamatsu scanners generate images with a darker color 

scheme compared to other scanners. In our specific task of metastasis detection, for 

the algorithm, "dark" could potentially serve as an additional signal leaning towards 

the "tumor" class. In our study, these slight drops in specificity were deemed 

acceptable. 

Although it impacted the specificity metric, the majority of false positive 

misclassifications represented very useful alerts that drew the attention of 

pathologists, ensuring that all suspicious areas were thoroughly investigated. Most of 

these misclassifications involved severely artifactually altered lymph node tissue and 

over-activated histiocytes (Figure 6). This issue can be mitigated by enriching the 

training dataset with such cases. 

Few recent studies have addressed the detection of colorectal cancer metastasis in 

lymph nodes12,14–16,19. Tan et al.16 tackled the problem of lacking annotations through 

a Multiple Instance Learning (MIL) approach. MIL-based methods produce 
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algorithms that allow only regional (so-called "patch-level") classification, not pixel-

wise, precise segmentation maps, which are outdated for diagnostic tools. The 

authors demonstrated an accuracy of 0.953 at slide-level classification for the 

training cohort but did not perform external validation. Chuang et al.14 used a weakly-

supervised approach similar to MIL with only slide-level labels (tumor/benign). 

However, both development and testing were performed on a dataset from a single 

department. In this dataset, the authors detected tumors through the generation of 

so-called class activation maps (pseudo-segmentation) and received an area under 

the receiver operating curve (AUROC) parameter of 0.9476-0.9944, depending on 

metastasis size. Kindler et al.12 developed a segmentation algorithm based on pixel-

level annotations, which was then tested using slides from the same department 

(288 whole slide images covering 1,517 lymph node sections, of those with tumor 

103). The authors reported a sensitivity of 0.990 on the slide level for the internal 

cohort. 

A recent study by Khan et al. presents the most advanced study to date regarding 

external validation. The authors used one external cohort (1,033 slides) and three 

internal cohorts (2,803, 172, and 217 slides), achieving a sensitivity of 0.872-1.000 

for tumor detection. The lower bound of this range is substantially lower than that of 

our model (0.872 vs. our 0.980). The algorithm of Khan et al. 15 is an ensemble of the 

Xception network and Vision Transformer, which may imply high computational costs 

and longer analysis times. This algorithm is also a patch-level classification that 

produces relatively rough pseudo-segmentation masks of tumor and tumor-

associated tissue (tumor, stroma, mucin) as a single class. Our algorithm separately 

detects all tumor-related tissue classes, which is crucial, as necrosis, mucin, and 

tumor stroma/suspicious fibrosis may appear outside of the tumor tissue concept and 
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in the perilymphatic tissue, potentially resulting in false positive misclassifications. 

Our algorithm is resistant to this source of false positives. Moreover, it is a shallow 

network with very quick analysis times, averaging approximately 30 seconds per 

lymph node section (Figure 3D). Using external validation is of utmost importance for 

diagnostic tools, as poor generalization and overfitting to the training dataset is a 

common issue. In terms of external validation, our study is superior by a margin to 

the aforementioned studies (excluding UKK B and UKK C, four large external 

cohorts scanned by four different scanning systems). 

Another study by Bandi et al.19 deserves mention for its similarities to our fast-track 

principle, specifically its use of the continuous learning concept to decrease the 

number of annotations necessary for training the algorithm. This is achieved by 

transferring domain knowledge and materials from lymph node metastasis detection 

tasks for other tumors, such as breast and head-neck cancer. However, the aim of 

this study is to serve as a proof-of-concept for continual learning. The authors 

utilized a small dataset of 119 slides for colorectal cancer from a single department 

and demonstrated metrics that were inferior to those of our study. 

Our study is not without limitations. One such limitation is the retrospective analysis 

of the cohorts. The algorithm should be validated prospectively and integrated into 

the diagnostic routines of pathology departments. This requires digitizing the sign-out 

process upfront. The principle of the algorithm dictates running it immediately after 

scanning the slides, ensuring that pathologists have all necessary outputs by the 

time diagnostics begin. This approach should save time, particularly in departments 

where colorectal resection specimens constitute a major part of the diagnostic 

workload, given the algorithm's very high sensitivity levels. 
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In conclusion, in this study, we propose fast-track principles for algorithm 

development by leveraging domain knowledge and previously collected data. 

Utilizing this approach, we demonstrate the creation of a high-quality training dataset 

in less than 7 days and the training of a clinical-grade, precise algorithm for detecting 

lymph node metastasis in colorectal cancer within a short timeframe.  Our algorithm 

was validated using the largest multi-institutional, international dataset to date, 

comprising thousands of lymph node sections. It exhibits very high, clinical-grade 

sensitivity and specificity for metastasis detection. Additionally, we are releasing part 

of our test datasets to facilitate further research. 
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Figure legends 

Figure 1. Study cohorts and fast-track algorithm development principles 

A. Principle of the AI Diagnostic Tool for Lymph Node Metastasis Detection in 

Colorectal Specimens. B. Study Cohorts. Comments: *This number does not include 

an additional 111 slides that were not manually annotated and were only used for 

hard negative mining to automatically extract often small, difficult regions to enrich 

the training dataset. #Total number of unique slides excluding those scanned twice 

by two different scanners. C. Fast-Track Development Framework. In brief, a pre-

trained algorithm5  from the same domain but for primary tumors was used to 

generate precise pre-annotations, which were corrected by human analysts. After the 

first training, the training dataset was enriched through difficult regions (hard-

negative mining, slides with inflamed fatty tissue) and relevant regions from the 

primary tumor dataset. With the fast-track framework, the annotation process saves 

several months. For details, see Methods. Abbreviations: MPP – micron per pixel. 

 

Figure 2. Principle of lymph node metastasis detection in whole slide images.  

Shown are two cases with mucinous and conventional morphology. The developed 

AI algorithm allows for precise segmentation of seven different tissue classes (the 

eighth class is slide background). The legend provides an explanation of the color 

coding for different classes.  

 

Figure 3. Further examples of lymph node metastasis detection in whole slide 

images. The AI algorithm we developed allows for precise segmentation of seven 

different tissue classes (the eighth class is slide background). The legend provides 

an explanation for the color coding of the different classes. Comments: *-Naturally, 
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signet ring cell carcinomas represent the most challenging cases. In this case, 

indicated by (*) a tumor region was detected as tumor stroma. This was sometimes 

evident focally in the signet ring carcinoma cases, as presented here; however, no 

single slide was falsely negatively misclassified due to this effect. 

 

Figure 4. Clinical validation of the AI algorithm using international multi-

institutional cohort of cases. 

A. Principles of Construction of the Test Cohort (more details in Figure 1B). B. 

Statistical Metrics of Algorithm Performance in Different Cohorts. Note that in 5 out of 

7 cohorts, the algorithm achieved a sensitivity and NPV (Negative Predictive Value) 

of 1.000. C. Single Slide Level Confusion Matrices Involving Ground Truth 

(Tumor/Benign) and AI Algorithm Evaluation Results. Detailed analysis of false 

negative and false positive misclassifications is provided in Figures 5 and 6. D. 

Analysis of the inference speed of the algorithm. All metrics are provided per slide, 

showing very high speed of single slide analysis.  

 

Figure 5. Analysis of false-negative misclassifications.  

All regions with tumors that were formally classified as false negatives were correctly 

detected by the AI algorithm, but they fell below the initially selected, very small 

tumor area threshold. Three of the five misclassified slides contained only 

lymphangiosis, as shown in (C, D), while two contained a single gland invasive tumor 

component, as shown in (A, B).  Cohort information is provided near each image with 

a brief description of the reason for misclassification. 

 

Figure 6. Analysis of false positive misclassifications. 
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Most of the false positive misclassifications were considered very useful alerts (A-C) 

in cases of severely artificially altered tissue, suspicious fibrosis, or overactivated 

histiocytes, where immunohistochemistry might be necessary. A few 

misclassifications (D-F) were less useful and represented areas that might be 

included in the training dataset at a later stage to further improve the algorithm. 
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Figure 2 Tumor tissue Tumor stroma Lymph node tissue Necrosis Mucin Perilymphatic tissue Blood
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Figure 3

Examples of lymph node metastasis detection
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Figure 4
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Figure 5
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Figure 6

Analysis of false positive results
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