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Abstract
BACKGROUND Both medical care and observational studies in oncology require a thor-

ough understanding of a patient’s disease progression and treatment history, often elabo-

rately documented within clinical notes. As large language models (LLMs) are being

considered for use within medical workflows, it becomes important to evaluate their

potential in oncology. However, no current information representation schema fully

encapsulates the diversity of oncology information within clinical notes, and no compre-

hensively annotated oncology notes exist publicly, thereby limiting a thorough evaluation.

METHODS We curated a new fine-grained, expert-labeled dataset of 40 deidentified

breast and pancreatic cancer progress notes at the University of California, San Francisco,

and assessed the abilities of three recent LLMs (GPT-4, GPT-3.5-turbo, and FLAN-UL2)

in zero-shot extraction of detailed oncological information from two narrative sections of

clinical progress notes. Model performance was quantified with BLEU-4, ROUGE-1, and

exact-match (EM) F1 score metrics.

RESULTS Our team annotated 9028 entities, 9986 modifiers, and 5312 relationships. The

GPT-4 model exhibited overall best performance, with an average BLEU score of 0.73,

an average ROUGE score of 0.72, an average EM F1 score of 0.51, and an average accu-

racy of 68% (expert manual evaluation on subset). Notably, GPT-4 was proficient in

tumor characteristic and medication extraction and demonstrated superior performance

in advanced reasoning tasks of inferring symptoms due to cancer and considerations of

future medications. Common errors included partial responses with missing information

and hallucinations with note-specific information.

CONCLUSIONS By developing a comprehensive schema and benchmark of oncology-

specific information in oncology notes, we uncovered both the strengths and the limitations

of LLMs. Our evaluation showed variable zero-shot extraction capability among the GPT-

3.5-turbo, GPT-4, and FLAN-UL2 models and highlighted a need for further improvements,
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particularly in complex medical reasoning, before perform-

ing reliable information extraction for clinical research and

complex population management and documenting quality

patient care. (Funded by the National Institute of Health,

Food and Drug Administration and others.)

Introduction

C ancer care is complex, often involving multiple
treatments across different institutions. Most
of this complexity is only captured within the

textual format of an oncologist’s clinical note. Optimal
clinical decision-making, as well as research studies based
on real-world data, requires a nuanced and detailed
understanding of this complexity, naturally leading to
widespread interest in oncology information extraction
research.1 Recently, large language models (LLMs) have
shown impressive performance on several natural lan-
guage processing (NLP) tasks in medicine, including
obtaining high scores on United States Medical Licensing
Examination questions,2,3 medical question answering,4

promising performance for medical consultation, diagno-
sis, and education,5 identifying key findings from synthetic
radiology reports,6 biomedical evidence and medication
extraction,7 and breast cancer recommendations.8 However,
due to the lack of publicly available and comprehensively
annotated oncology datasets, the analysis of these LLMs for
information extraction and reasoning in real-world oncology
data remains fragmented and understudied.

To date, prior studies on oncology information extraction
have focused either on elements represented within ICD-O3
codes or cancer registries9,10 or on a subset of cancer- or
problem-specific information.11-15 No existing information
representation and annotation schema is adept enough to
encompass comprehensive textual oncology information in
a manner that is agnostic as to note type, problem, and dis-
ease. Although similar frameworks are being created for tab-
ular oncology data,16 efforts for textual data sources have
been limited to pilot studies,17 surveys of oncology elements
studied across different research contributions,18,19 and
domain-specific schemas.20

In this research, we aimed to develop an expert-labeled
oncology note dataset to enable the evaluation of LLMs in
extracting clinically meaningful, complex concepts and rela-
tions. We do this by developing a schema and guidelines for

comprehensively representing and annotating textual oncol-
ogy information, creating a dataset of 40 oncology progress
notes labeled according to this schema, and benchmarking
the baseline performance of the recent LLMs for zero-shot
extraction of oncology information (that is, extraction with-
out any previous training on the task). Sample workflow is
demonstrated in Figure S1 in the Supplementary Appendix.

Methods

ONCOLOGY-SPECIFIC INFORMATION
REPRESENTATION SCHEMA

To holistically represent oncology information within clini-
cal notes, we developed a detailed schema based on a hier-
archical, conceptual structure of oncology information (also
called frame semantics),17,18,20 agnostic to cancer types and
note types under consideration. It comprises the following
broad concepts: patient characteristics, temporal informa-
tion, location-related information, test-related information,
test results–related information, tumor-related information,
treatment-related information, procedure-related informa-
tion, clinical trial, and disease state.

Broad concepts further encompassed expert-determined
fine-grained concepts. For example, radiology test, geno-
mic test, and diagnostic laboratory test were represented
within the “tumor test” category. The schema was imple-
mented through three annotation modalities: entities or
phrases of specific types, attributes or modifiers of entities,
and relations between entity pairs. These relations could
be descriptive (for example, relating a biomarker name to
its results), temporal (for example, indicating when a test
was conducted), or advanced (for example, relating a
treatment to resulting adverse events). Together, the
schema comprised 59 unique entities, 23 attributes, and
26 relations (Table S1 in the Supplementary Appendix).

The concepts and relationships annotated within this new
schema incorporate nuanced details such as symptom his-
tory attributed to the diagnosed cancer, clinical trials con-
sidered for patient enrollment, genomic findings, reasons
for switching treatments, and detailed social history of the
patient not otherwise represented in cancer registries or a
structured medical record. These concepts and relation-
ships are significantly more inclusive and specific than
those extracted by existing clinical NLP pipelines such as
cTakes21 and DeepPhe.22 An openly available clinical NLP
model, Stanza,23,24 was used to prehighlight problems,
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treatments, and tests within text to aid the annotators. Elab-
orate annotation guidelines are provided in the supplemen-
tary materials, and the annotation schema in the format of
an open-source annotation software, BRAT (https://brat.
nlplab.org/), is shared along with the source code at https://
github.com/MadhumitaSushil/OncLLMExtraction.

DATA

We collected data for 20 breast cancer patients and 20
pancreatic cancer patients from the University of Califor-
nia, San Francisco (UCSF) Information Commons, con-
taining patient data between 2012 and 2022, deidentified
as previously described.25 All dates within notes were
shifted by a random patient-level offset to maintain ano-
nymity.25 Only patients with corresponding tabular staging
data, documented disease progression, and an associated
medical oncology note were considered for document
sampling. Some gene symbols, clinical trial names, and
cancer stages were inappropriately redacted in our auto-
mated handling, and these were manually added back to
the clinical notes under the UCSF Institutional Review
Board numbers 18-25163 and 21-35084.

These two diseases were chosen for their dissimilarity.
Breast cancer is frequently curable and heavily reliant on
biomarker and genetic testing and treatment plans inte-
grating radiation, surgical, and medical oncology. Pancre-
atic cancer has high mortality rates, and its treatment
involves highly toxic traditional chemotherapy regimens.

All narrative sections except direct copy-forward of radiol-
ogy and pathology reports were annotated, using the
knowledge schema described above, by one of two oncol-
ogy fellows and/or a medicine student. This process pro-
duced a final corpus of 40 expert-annotated clinical notes,
which is available freely through the controlled-access
repository PhysioNet. (Note: Users will need to create an
account on https://physionet.org/ and sign a data use
agreement before downloading the dataset, which is avail-
able at https://physionet.org/content/curated-oncology-
reports/1.0/. A valid Collaborative Institutional Training
Initiative [CITI] certificate will need to be uploaded before
signing the data use agreement.)

An additional 100 notes each for breast and pancreatic
cancer were automatically labeled by GPT-4 using the
same prompts as the benchmarking tests in this study.

ZERO-SHOT LLM EXTRACTION BASELINE

To establish the baseline capability of LLMs in extracting
detailed oncological history, we evaluated three recent
LLMs without any task-specific training (i.e., “zero-shot”
extraction): the GPT-4 model,26 the GPT-3.5-turbo model
(base model for the ChatGPT interface27), and the openly
available foundation model FLAN-UL228 on the following
tasks derived from two narrative sections of clinical pro-
gress notes for breast and pancreatic cancer: History of
Present Illness (HPI) and Assessment and Plan (A&P):

1. Symptom presentation: Identify all symptoms
experienced by the patient, symptoms present at the
time of cancer diagnosis, and symptoms experienced
due to the diagnosed cancer, all further related to the
date or time (datetime) of their occurrence.

2. Radiology tests: List radiology tests conducted for
the patient paired with their datetime, site of the test,
medical indication for the test, and the test result.

3. Genomic tests: List genetic and genomic tests
conducted for the patient paired with the corresponding
datetime and the test result.

4. First cancer diagnosis date: Infer the datetime for
the first diagnosis of cancer for the patient.

5. Tumor characteristics: Extract tumor characteristics
in the following groups: biomarkers, histology, stage
(using either of two common staging systems, numeric
or tumor–node–metastasis, commonly called TNM),
grade, and metastasis (along with the site of metastasis
and the procedure that diagnosed metastasis), all
paired with their datetime.

6. Administered procedures: Identify all interventional
procedures conducted for the patient paired with their
datetime, site, medical indication, and outcome.

7. Prescribed medications: List medications prescribed
to the patient, linked to the beginning datetime, end
datetime, reason for prescription, continuity status
(continuing, finished, or discontinued early), and any
hypothetical or confirmed adverse events attributed to
the medication.

8. Future medications: Infer medications that are
either planned for administration or discussed as a
potential option, paired with their consideration
(planned or hypothetical) and potential adverse
events discussed in the note.

We used the generative pretrained transformer (GPT) mod-
els via the Health Insurance Portability and Accountability

NEJM AI 3

For personal use only. No other uses without permission. Copyright © 2024 Massachusetts Medical Society.

NEJM AI is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from ai.nejm.org on March 31, 2024. For personal use only.
 No other uses without permission. Copyright © 2024 Massachusetts Medical Society. All rights reserved. 

https://brat.nlplab.org/
https://brat.nlplab.org/
https://github.com/MadhumitaSushil/OncLLMExtraction
https://github.com/MadhumitaSushil/OncLLMExtraction
https://physionet.org/
https://physionet.org/content/curated-oncology-reports/1.0/
https://physionet.org/content/curated-oncology-reports/1.0/


Act (HIPAA)–compliant Microsoft Azure OpenAI studio and
application programming interface, so that no data were
permanently transferred to or stored by Microsoft or
OpenAI. Separately, we implemented the openly available
FLAN-UL2 model on the internal computing environment.
Model inputs were provided in the format fsystem role
descriptiong fnote section text, promptg. GPT model settings
and task-specific prompts are provided in the Supplementary
Appendix. Examples of structured output format were pro-
vided with prompts to enable automated evaluation.

EVALUATION

An automatic quantitative evaluation compared the manu-
ally annotated, related entity pairs to the corresponding
model output. Because LLMs generate free-text outputs to
represent entity mentions and their relations, model per-
formance was quantified using two evaluation metrics for
comparing pairs of text: BLEU-4 with smoothing29 and
ROUGE-1.30 BLEU and ROUGE metrics quantify the
overlap between sequences of n words (or n-grams) in
the generated output and the reference annotations (see
the Supplementary Appendix). The BLEU score quantifies
the precision of n-grams between the model output and
reference annotations while also penalizing very short out-
puts compared with references, and the ROUGE score
similarly quantifies the recall of n-grams by comparing
annotated snippets to model-generated answers to penal-
ize the model when annotations are not included in
outputs.

The exact-match F1 score between model outputs and
annotated phrases was quantified to evaluate the model’s
ability to generate lexically identical outputs. Of note is
that the exact-match metric is overly strict; for example,
ER1: 2020 and ER positive: 2020 are considered separate
answers for exact-match scores. Additionally, the accuracy
of the best-performing model was quantified for 11 entity
extraction tasks and 20 relation extraction tasks on a ran-
dom subset of half of the notes — 10 notes from breast
cancer and 10 from pancreatic cancer — through review
by an independent oncologist. Model outputs were pre-
sented to the oncologist as tables of the requested infor-
mation by first parsing the GPT-4 model output
automatically to populate the table. For example, the table
for radiology test included columns for test name, date-
time of the test, site of the test, reason for the test, and the
test results. The expert assessment divided each output
into three broad categories, correct, partially correct, and
incorrect, which were aggregated to compute model

accuracy. Partially correct or incorrect outputs were fur-
ther subcategorized based on types of errors (see the Sup-
plementary Appendix).

Results

BENCHMARKING DATASET CREATION

Across 40 breast and pancreatic cancer progress notes,
9028 entities, 9986 entity attributes, and 5312 relation-
ships were annotated, demonstrating the high density of
clinically relevant information in the complex medical
oncology narratives. Patient demographics are presented
in Table 1, and a sample of the annotated documentation
is presented in Figure 1. Manual annotation was time-
consuming; it took the oncology fellows 88hours to anno-
tate 27 documents, the medical student 50hours to anno-
tate 17 documents (4 of which were also annotated by a
fellow), and the independent reviewer 116hours to review
potential errors in annotating all 40 documents. The
mean interannotator agreement of entities — computed as
the mean F1 score of overlap between their entity spans31

— was 0.81, indicating high agreement.

Description of initial cancer diagnosis and disease and
treatment progression were elaborately represented within
the annotations (Fig. 2). As anticipated, pancreatic cancer
notes presented more palliative and supportive treatment
entities and more symptoms attributable to cancer. Con-
versely, breast cancer notes contained more diagnostic
and staging tests, as well as laterality, lymph node involve-
ment, and biomarkers, reflecting the more complex diag-
nostic and staging workup required for this disease.
Temporal relations were common (1200 relations), as
were indications of findings from a test or procedure (566
relations) and relations attributing adverse events to pre-
existing conditions or treatments (232 relations).

INFORMATION EXTRACTION

GPT-4 Outperforms the GPT-3.5 Model and the
FLAN-UL2 Model

The GPT-4 model performed better than the GPT-3.5-
turbo and FLAN-UL2 models (Fig. 3), demonstrating an
average BLEU score of 0.73, an average ROUGE score of
0.72, and an average exact-match F1 (EM-F1) score of
0.51 compared with the average BLEU, ROUGE, and
EM-F1 scores of 0.61, 0.58, and 0.29 respectively, for the
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GPT-3.5-turbo model and 0.53, 0.27, and 0.06, respec-
tively, for the FLAN-UL2 model. We additionally experi-
mented with the clinical-T5-large model32 and LLaMA 7B,
LLaMA 13B, and LLaMA-2 13B models.33 However, we
did not obtain reasonable outputs from these models for
our task, presumably because they are not tuned on task
descriptions, which is known to improve the instruction-
following abilities of LLMs.34

Performance differences were notable for tasks requiring
advanced reasoning, for example, inferring symptoms pre-
sent at the time of cancer diagnosis and hypothetical dis-
cussions of future medications.

Best Synthesis of Tumor Characteristics and
Medication History

High scores — 0.95 BLEU, 0.93 ROUGE, 0.91 EM-F1 —

were obtained by the GPT-4 model when extracting tumor
grade paired with temporal information. High perfor-
mances were also obtained in extracting cancer summary
stage (0.85 BLEU, 0.80 ROUGE, 0.69 EM-F1), TNM

stage (0.82 BLEU, 0.78 ROUGE, 0.71 EM-F1), and future
medication (0.88 mean BLEU, 0.84 mean ROUGE, 0.70
mean EM-F1), suggesting promising capabilities in the
automated extraction of these parameters.

The GPT-4 model demonstrated good performance with
potential for further improvements in extracting genomics
datetime and results (0.81 mean BLEU, 0.80 mean
ROUGE, 0.68 mean EM-F1), radiology tests with their
datetime (0.80 BLEU and ROUGE, 0.52 EM-F1), the pre-
scribed medications with their start datetime, end date-
time, current continuity status, potential adverse events,
and adverse events experienced due to the medication
(0.80 mean BLEU, 0.76 mean ROUGE, 0.57 EM-F1),
symptoms with their datetime (0.71 BLEU, 0.74 ROUGE,
0.45 EM-F1), metastasis extraction (0.64 mean BLEU,
0.65 mean ROUGE, 0.44 EM-F1), and for identifying
symptoms that occurred due to cancer (0.67 BLEU, 0.75
ROUGE, 0.5 EM-F1). Lexical differences between anno-
tated information and model outputs were common when
extracting longer phrases, such as reasons for tests or test

Table 1. Demographic Distribution for the Annotated Data Cohort Comprising 40 Patients, Additionally Stratified by Disease Group.

Demographic Property and Category Breast Cancer Pancreatic Cancer All

Race/ethnicity

Native Hawaiian or Other Pacific Islander 2 0 2

Latinx 3 3 6

Native American or Alaska Native 1 0 1

Southwest Asian and North African 1 0 1

Black or African American 4 4 8

Asian 4 4 8

Multirace/ethnicity 0 3 3

Other 1 2 3

White 4 4 8

Unknown/declined 0 0 0

Sex

Male 0 10 10

Female 20 10 30

Age group, yr

Under 30 0 0 0

31–40 6 0 6

41–50 3 1 4

51–60 6 4 10

61–70 2 8 10

71–80 2 6 8

81–89 1 1 2

89þ 0 0 0
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Figure 1. A Sample of the Annotated, Deidentified Medical Oncology Progress Notes.
The colored highlights refer to different types of entity spans within text. The arrows indicate the relations between the pair of entities
linked. Within the box next to entity types, the corresponding modifier values for those entities are listed.
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results, compared with short responses such as cancer
grade or stage. The open-source FLAN-UL2 model and
the GPT-3.5 model demonstrated higher lexical differ-
ences than the GPT-4 model, as evident from significantly
lower EM-F1 scores. When extracting histological sub-
types and treatment-relevant tumor biomarkers, the mod-
els frequently provided more information than necessary,

for example providing grade, stage, and biomarkers of a
tumor in addition to the requested histological subtype.
The poorest quantitative performance was obtained for
procedure extraction (0.58 mean BLEU, 0.57 mean
ROUGE, 0.33 EM-F1). GPT-4 model performance was
comparable across the two cancer types, although the
model demonstrated marginally better performance in
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Figure 2. Distribution of (Panel A) the Annotated Entity Mentions and the Attribute Values for
These Entities and (Panel B) Temporal, Descriptive, and Advanced Relations in the Annotated Corpus of

Breast and Pancreatic Cancer Medical Oncology Progress Notes.
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medication and biomarker extraction for breast cancer
and in genomic and procedure extraction for pancreatic
cancer (Fig. S2).

We did not find any significant differences in model
performance across either male and female genders or
different races and ethnicities for any of the three
models for any of the three metrics, as computed with the
Kruskal–Wallis test with false-discovery-rate correction
by the Benjamini–Hochberg method (Tables S2 and S3).

Expert Evaluation Confirms Superior Oncologic
Information Extraction Ability

A medical oncologist additionally evaluated GPT-4 model
outputs on a subset of 10 breast cancer and 10 pancreatic
cancer notes for the first cancer diagnosis date, symptoms,
radiology tests, procedures, histology, metastasis, and
future medications (Table 2). It took the oncologist nearly
90hours to quantify GPT-4 model accuracy across 31 cat-
egories for the 20 notes. The expert evaluations showed
that the GPT-4 model outputs were overall 68% accurate.
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An additional 3% of the cases were correct but missing
some desired information. Another 1% of the cases were
deemed to be uncertain due to linguistic ambiguity. These
findings support the automated quantitative evaluations,
highlighting the excellent oncologic information extrac-
tion ability of the GPT-4 model. The most common error
(22%) occurred in cases in which the model produced
output from note text that did not correspond to the
requested information (hallucinations 1; Table 2, error cat-
egory 3b). Of the remaining errors, in 6% of the cases, the
model returned “Unknown” instead of correct answers,
and in 1% of the cases the model fabricated information
(hallucinations 2; Table 2, error category 3c).

Partial correct answers with some missing information
were most frequent for tumor histology and radiology test
results. Hallucinations from note text included incorrectly
categorizing biomarkers, genomic tests, procedures, and
radiology tests and incorrect inferences of information
such as symptoms present at the time of cancer diagnosis
or symptoms caused due to the diagnosed cancer. The
model produced information without direct references
in text most frequently when inferring whether a medica-
tion was considered hypothetically or was planned for
administration and in identifying the reasons for tests
and procedures, for example specifying that positron emis-
sion tomography/computed tomography was conducted
to evaluate metabolic activity.

Finally, the most common cases in which the model pro-
duced “Unknown,” despite the correct information being
present in the note, were mentions of cancer histology,
future medications, and symptoms due to cancer.

Discussion
The schema presented in this article, coupled with its asso-
ciated annotated dataset, offers a robust benchmark for
assessing LLM performance against human specialist cura-
tors in extracting complex details from medical oncology
notes. Across 40 patient consultation notes, we manually
annotated 9028 relevant entities, 9986 attributes, and
5312 relations, highlighting the information-dense nature of
these notes. Our schema facilitated capturing the nuanced
rhetoric in medical oncology narratives, spanning informa-
tion such as family history, disease-relevant objective and
temporal data, social determinants of health factors, causal-
ity between diagnoses, treatments, and symptoms, and
treatment intent and response, including potential and cur-
rent adverse events. This new, rich dataset of real-world
oncology progress notes will enable several follow-up
advances in language models for oncology.

The dataset facilitated the benchmarking of the zero-shot
capability of LLMs in oncologic history summarization. It
demonstrated the surprising zero-shot capability of the
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GPT-4 model in synthesizing oncologic history from the
HPI and A&P sections, including tasks requiring advanced
linguistic reasoning, such as extracting adverse events for
prescribed medications and the reason for their prescrip-
tion. The model, however, also showed room for improve-
ment in causal inference, such as inferring whether a
symptom was caused by cancer. An open-source counter-
part, the FLAN-UL2 model, demonstrated high precision
but low recall, suggesting that it may be a promising alter-
native to the proprietary GPT-4 model if fine-tuned fur-
ther on in-domain data.

Although current zero-shot performances are impressive
because no task-specific fine-tuning was performed, the

obtained accuracy may not be directly usable in clinical
settings. Meanwhile, manual information extraction from
notes is time-consuming, which contributes to an under-
utilization of NLP in electronic health record (EHR)-based
observational research.35 To obtain research-usable capa-
bility for oncology information extraction with minimal
manual involvement, it is promising to explore strategies
such as few-shot learning, where a few annotated exam-
ples are provided to the model to learn better,36 advanced
prompt designs such as chain-of-thought prompting37 to
benefit reasoning and selection-inference prompting38 to
first select the relevant entities before inferring more
advanced relations and entity attributes, and in-domain
fine-tuning for adapting open-source models to clinical
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domains. This dataset would be a critical resource for
follow-up benchmarking studies, reducing the need for
prior extensive domain-specific annotations for validating
the performance of novel clinical LLMs and prompting
strategies. Although the annotations in the dataset may be
less verbose than model outputs, and annotator fatigue
may contribute to additional errors, expert manual evalua-
tions corroborated the findings of automated evaluations,
demonstrating the reliability of the findings.

Although our study did not uncover any statistically signif-
icant disparities in model performance across sex and
race/ethnicity, sample sizes in this study may be insuffi-
cient for this analysis, and there may be systematic biases
in model performance that need to be studied further on
larger datasets. Finally, small changes in prompts can
result in a big impact on model performance. Further stud-
ies are needed to establish detailed guidelines with regard
to prompt design and to quantify the impact of prompt
engineering on model performance.

The current capability of LLMs in extracting tumor char-
acteristics, medication, and adverse drug events demon-
strated promise for enhanced postapproval real-world
drug and device safety monitoring from unstructured
data, automatically populating population-wide cancer
registries, text-based cohort selection for EHR-based
research studies, and speeding up the matching of patients
to clinical trial criteria. Easier access to text data, poten-
tially facilitated by LLMs in a human-in-the-loop setting,
will improve research on patients’ outcomes and public
health by providing evidence for better data-driven guide-
lines and incorporating text-based variables in previously
unutilized ways.

Although this dataset represents a small number of
patients, the number of annotated sentences and onco-
logic concepts is large, making it comparable in sample
size to existing benchmarking clinical NLP datasets, but
much larger in breadth. An additional set of 200 GPT-
4–labeled notes would facilitate larger benchmarking
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Table 2. Expert Manual Evaluation of GPT-4 Outputs for a Subset of Inference Categories on a Subset of 10 Breast Cancer Notes and 10 Pancreatic
Cancer Notes.*

Correct
Partially Correct Incorrect

Entity/Relation and Inference Category Sample Size 1 2a 2b 2c 3a 3b 3c 3d

Entity

FirstCancerDiagnosis 40 0.88 0.00 0.05 0.00 0.00 0.08 0.00 0.00

Symptoms 140 0.84 0.04 0.01 0.00 0.00 0.06 0.00 0.04

SymptomsDueToCancer 129 0.83 0.00 0.01 0.01 0.02 0.08 0.00 0.05

FutureMedication 91 0.77 0.04 0.02 0.00 0.00 0.05 0.00 0.11

SymptomsAtDiagnosis 63 0.76 0.00 0.00 0.00 0.00 0.24 0.00 0.00

Metastasis 51 0.63 0.14 0.00 0.00 0.00 0.20 0.00 0.04

RadiologyTest 116 0.53 0.27 0.00 0.00 0.00 0.13 0.00 0.07

Procedure 107 0.51 0.15 0.01 0.01 0.01 0.27 0.01 0.03

Biomarker 154 0.51 0.05 0.01 0.01 0.00 0.40 0.00 0.03

GenomicTestName 84 0.50 0.00 0.00 0.00 0.00 0.46 0.00 0.04

Histology 73 0.25 0.01 0.58 0.00 0.00 0.03 0.00 0.14

Relation

Metastasis - Datetime 51 0.90 0.00 0.00 0.00 0.00 0.06 0.00 0.04

SymptomsAtDiagnosis - Datetime 63 0.87 0.00 0.00 0.00 0.00 0.11 0.00 0.02

Metastasis - Site 51 0.86 0.02 0.00 0.00 0.00 0.08 0.00 0.04

Histology - Datetime 72 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.14

Metastasis - Procedure 51 0.80 0.06 0.04 0.00 0.00 0.06 0.00 0.04

Symptoms Datetime 140 0.77 0.00 0.06 0.00 0.01 0.09 0.00 0.06

RadiologyTest - Datetime 116 0.76 0.00 0.00 0.00 0.03 0.14 0.00 0.07

FutureMedication - PotentialAdverseEvent 91 0.74 0.00 0.02 0.00 0.04 0.09 0.00 0.11

SymptomsDueToCancer - Datetime 129 0.73 0.01 0.07 0.00 0.02 0.09 0.00 0.09

FutureMedication - Consideration 91 0.73 0.00 0.00 0.00 0.00 0.09 0.08 0.11

Procedure - Datetime 107 0.67 0.00 0.07 0.00 0.02 0.19 0.00 0.05

Biomarker - Datetime 141 0.65 0.00 0.00 0.00 0.00 0.32 0.00 0.03

Procedure - Site 107 0.61 0.00 0.01 0.00 0.01 0.34 0.01 0.03

RadiologyTest - Reason 116 0.52 0.02 0.06 0.00 0.03 0.29 0.01 0.08

RadiologyTest - Result 116 0.52 0.02 0.23 0.00 0.00 0.16 0.00 0.07

GenomicTestName - Datetime 84 0.49 0.00 0.00 0.00 0.00 0.46 0.00 0.05

Procedure - Result 107 0.49 0.00 0.15 0.00 0.00 0.30 0.04 0.03

GenomicTestName - Result 84 0.46 0.00 0.00 0.00 0.00 0.46 0.04 0.04

Procedure - Reason 107 0.42 0.04 0.07 0.00 0.03 0.42 0.00 0.03

RadiologyTest - Site 116 0.40 0.01 0.01 0.00 0.03 0.47 0.01 0.09

Total/mean 2872 0.66 0.03 0.05 0.00 0.01 0.19 0.01 0.05

* Each note was first divided into the History of Present Illness and Assessment and Plan sections, thereby resulting in inference over 40 note
snippets. Each cell represents the model outputs as a fraction of GPT-4 outputs in that category. When only one entity is mentioned, for example in
Procedure, the scores represent the extraction of that entity by itself. When two entities are separated with a hyphen, for example in Procedure -
Datetime, the scores represent an evaluation of correctly linking the entities together, for example pairing the procedure with the right date or time of
the procedure. Partially correct answer categories are defined as follows: 2a, The output contains more information than necessary, and the extra
information is correct; 2b, The output is correct, but some information is missing from the output; 2c, The output contains more information than
necessary, but the extra information is incorrect. Incorrect answer categories are defined as follows: 3a, Independent expert reviewer determines that
the note text is ambiguous, where either manual annotation or model answer could be considered correct; 3b, Hallucinations 1: the model answers
from the information mentioned in the note, but the answer is incorrect for the question asked; 3c, Hallucinations 2: the model fabricates information
not discussed in the text; 3d, Correct output is present in the input text, but the model returns unknown.
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studies through further expert analysis and would also
enable fine-tuning of open-source models with weak labels
(model distillation). Finally, although we used the data
from only two cancers within a single academic institu-
tion, the information representation and annotation
schema were designed to be both cancer and institution
agnostic, which will facilitate an extension of the analysis
to large multicenter, multicancer studies to obtain gener-
alizable conclusions.

Conclusions
We successfully created a benchmarking dataset of 40
expert-annotated breast and pancreatic cancer medical
oncology notes by validating a new detailed schema for
representing in-depth textual oncology-specific information,
which is shared openly for further research. This dataset
served as a testbed to benchmark the zero-shot extraction
capability of three LLMs: GPT-3.5-turbo, GPT-4, and
FLAN-UL2. We found that the GPT-4 model showed the
best performance with an average of 0.73 BLEU, 0.72
ROUGE, and 0.51 EM-F1 scores, highlighting the promising
capability of language models to summarize oncologic
patient history and plan without substantial supervision and
aid future research and practice by reducing manual efforts.
With further prompt engineering and model fine-tuning,
combined with minimal manual supervision, LLMs will
potentially be usable to extract important facts from cancer
progress notes needed for clinical research, complex popula-
tion management, and documenting quality patient care.
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