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Abstract

Tissue imaging has become much more colourful in the past decade. 
Advances in both experimental and analytical methods now make it 
possible to image protein markers in tissue samples in high multiplex. 
The ability to routinely image 40–50 markers simultaneously, at 
single-cell or subcellular resolution, has opened up new vistas in 
the study of tumour biology. Cellular phenotypes, interaction, 
communication and spatial organization have become amenable 
to molecular-level analysis, and application to patient cohorts has 
identified clinically relevant cellular and tissue features in several 
cancer types. Here, we review the use of multiplex protein imaging 
methods to study tumour biology, discuss ongoing attempts to 
combine these approaches with other forms of spatial omics, and 
highlight challenges in the field.
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information exchange in the tumour microenvironment (TME) with 
spatial, single-cell-resolved methods will benefit the understanding 
of many hallmark traits of tumours and will reveal how intercellular 
communication in tumours can be therapeutically modulated.

Measurable tumour features
A tumour can be conceptualized as an ecosystem of heterogenous 
cell types that dynamically exchange information to influence one 
another. In this section, we will discuss the features of tumours that 
can be tackled with multiplex imaging, ranging from the phenotypes 
of single cells to larger-scale properties of the TME (Fig. 1a), and will 
provide an overview of the types of analyses that have so far been 
performed.

Cell phenotypes, states and functions in a tumour
To understand a tumour ecosystem, an important first step is to identify 
the cell phenotypes that are present. Single-cell-resolved multiplex 
imaging (Fig. 1b) is well suited for this purpose since it distinguishes 
dozens of markers (typically 10–50) rather than the 3 or 4 markers in 
standard fluorescence imaging. Such large marker panels are necessary 
to adequately characterize even a handful of cellular phenotypes, since 
one typically wishes to simultaneously define cell types (for example, 
CD3+ T cells, CD68+ macrophages, CD31+ endothelial cells and tumour 
cells), subtypes (for example, CD4+ or CD8+ T cells or forkhead box 
protein P3 (FOXP3)+ regulatory T (Treg) cells), and functional states 
(for example, dysfunctional versus active CD8+ T cells, proliferating, 
hypoxic or  apoptotic cells, or cells that show evidence of signalling 
pathway activation).

Marker panels in multiplex imaging studies are typically designed 
to identify known cellular subtypes and states of interest within the 
tumour, immune or stromal compartments. Given the tremendous 
interest in how the immune system may restrict or enable tumour 
growth, many studies have focused on immune cells. Immune 
landscapes have been imaged in breast cancer30,31, lung cancer32, 
brain cancer33, head and neck cutaneous squamous cell carcinoma 
(HNSCC)34, melanoma35,36, and colorectal cancer37 using various multi-
plex techniques. Panel design for immune cells typically draws heavily 
on prior knowledge but may also use data-driven approaches to further 
refine cell types. For instance, single-cell RNA sequencing (scRNA-seq) 
data was used to define a panel that could distinguish macrophage 
subtypes by multiplex immunofluorescence in breast and colorectal 
cancer38, and profiling of metabolic proteins (transporters, enzymes, 
regulators and transcription factors) was used in multiplexed ion beam 
imaging (MIBI) to refine T cell subtypes based on proposed functional 
states39.

In clinically well-characterized cohorts, cell phenotypes and states 
can be compared between samples that vary according to some prop-
erty of interest; for instance, between primary tumour and metastases, 
between samples with different genomic profiles, or according to 
pathogen infection or immune infiltration status (Fig. 2). Cell pheno-
types and states (or other imaged features) can also be statistically 
associated with clinical features like tumour grade, clinical subtype, 
response to therapy and patient outcome (Fig. 2). For instance, patient 
survival has been positively associated with B cell frequencies in lung 
adenocarcinoma32, with endothelial cells in glioblastoma33, and with the 
combination of lysosome-associated membrane glycoprotein (LAMP)+ 
dendritic cells and CD66B+ neutrophils in non-small-cell lung cancer40. 
Myeloid inflammation of tumours, in contrast, has been associated with 
poor overall survival of patients with HNSCC and pancreatic ductal 

Introduction
The persistence, spread and therapeutic response of tumours depend 
not only on the cell-autonomous properties of malignant cells but 
also on their interaction with many other cell types. Immune cells, 
stromal cells, endothelial cells of blood and lymph vessels, other 
cell types like adipocytes, and possibly even microbial cells can all 
have context-dependent tumour-promoting or tumour-suppressive 
functions1,2. It is likely that many of the hallmarks of cancer, the seminal 
heuristic of Hanahan and Weinberg1–3, are directly or indirectly affected 
by the interplay of tumour cells with their microenvironment. If we are 
to fully understand how cancer develops, spreads, and kills, and thus 
how to best treat it, we must understand the multidirectional inter-
actions of tumour cells with these other cell types and the signalling 
networks involved.

Tumour cells are neither uniform nor static, even within a single 
patient or tumour, but are dynamic and evolving entities4–7. This cel-
lular heterogeneity and plasticity contribute to the ability of a tumour 
to evade the immune system, to spread beyond its primary site and to 
develop resistance to therapy8–12. At each step of disease progression, 
tumour cells can be seen as learning systems that process information 
by continuous, reciprocal communication with each other and with 
other cell types of the microenvironment via a combination of direct 
contact and soluble factors. This information exchange, together with 
gradients of nutrients, oxygen and metabolites, shapes cellular com-
munities and environments that enable tumour-promoting functions 
like immune cell dysfunction or tumour cell migration. The task at 
hand can therefore be re-stated to embrace this complexity: we must 
understand which heterogeneous tumour cell phenotypes exist and 
how these dynamic populations communicate with each other and with 
equally complex non-tumour cell types in order to understand disease 
aetiology, progression and response to therapy.

Accordingly, omics studies in cancer biology have moved in recent 
years from analysis of bulk tumour tissues, which comprise many 
cell types and subtypes, to single-cell analyses of tumour cells and 
tumour-associated cells; for instance, we now have single-cell gene 
expression atlases of tumour, immune and stromal cells from multiple 
types of cancer9,13–25. However, a tumour, like any tissue, is an entity in 
space. The spatial relationship of cell types with one other as well as 
with other structures such as blood vessels is an inextricable part of 
tumour biology and, as such, influences cellular properties, functions 
and disease outcomes26. Tissue architecture based on microscopic 
and macroscopic patterns in haematoxylin and eosin (H&E) stains is 
an essential pathological indicator of malignancy. Despite their many 
important contributions, dissociated single-cell molecular profiling 
techniques are blind to key spatial information. Molecular studies 
that retain the spatial organization of the tumour and surrounding 
tissue are therefore important if we are to understand how intercellular  
communication shapes tumour growth and treatment response.

Here, we review the development and state-of-the-art of multiplex, 
protein-based, single-cell resolution imaging methods with a focus 
on their application to spatial tumour biology; other recent reviews 
have also discussed this topic27–29. Although our focus is on methods 
that profile proteins, we discuss their integration with techniques that 
profile other classes of molecules, in particular transcriptomes, as an 
upcoming area. We are primarily concerned with approaches that can 
be applied to human tissue, and methods that require genetic modifica-
tion are outside of the scope of this Review. However, the methods we  
describe can be equally well applied to model organism tissue or to 
ex vivo models such as organoids. The study of spatial architecture and 
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Fig. 1 | Multiplex protein imaging can interrogate a tumour and its 
microenvironment across scales. a, The schematic illustrates tumour features 
that can be studied using multiplex protein imaging techniques. Being able to 
target many markers enables the analysis of subcellular location, cell phenotypes 
(identity), active signalling or other processes within cells (state), interactions 
between pairs of cells (cell interaction) or with the extracellular matrix (ECM), 

local spatial enrichments of cell types (neighbourhood), or larger-scale spatial 
organization (landscape). Marker panels are typically designed to target the 
specific features of interest or combinations of these. b, Exemplary images to 
illustrate the nature of imaging mass cytometry data from tissue. DC, dendritic 
cell; DC2, type 2 dendritic cell; EMT, epithelial-to-mesenchymal transition; ER, 
endoplasmic reticulum.
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adenocarcinoma (PDAC)41 as previously seen in many types of cancer42, 
and myeloid cell types are also enriched in recurrent HNSCC tumours43.

The power of multiplex imaging is even more evident when 
such association analyses with cell phenotype are performed at 
high granularity. In lung adenocarcinoma, imaging mass cytometry 
(IMC) found that proliferating (Ki67+) endothelial cells and hypoxic 
(hypoxia-inducible factor 1α (HIF1α)+) neutrophils but not all endothe-
lial cells or neutrophils were associated with poor patient survival, 
emphasizing the need for many markers so that the relevant subsets 
of cells can be studied32. Similarly, a digital spatial profiling (DSP) study 
with a 44-plex antibody panel (though not strictly an imaging method 
and not conducted at single-cell resolution) reported that programmed 
cell death protein 1 ligand 1 (PDL1) expression on macrophages but not 
on tumour cells themselves was predictive of improved overall patient 
survival upon anti-programmed cell death protein 1 (PD1) therapy; 
furthermore, the study identified many potential predictive markers 
of immunotherapy response44.

Multiplex immune surveys can reveal interesting patterns even 
beyond associations with clinical features. Keren et al.30 used MIBI to 
propose a structured immune response in triple-negative breast cancer 
based on the observation that the immune composition varied with 
the level of immune infiltration: tumours with more immune cells sys-
tematically had higher proportions of T cells and lower proportions of 
macrophages. In our own work, by adapting RNA probes to IMC for the 
detection of secreted markers45, we saw that hot (that is, immune infil-
trated) metastatic melanoma contained many chemokine-secreting 
T cells and was associated with antigen presentation on tumour cells 
yet cold tumours were strongly depleted of these36.

The phenotypes of tumour cells themselves can also be profiled 
by multiplex imaging46–50. Despite tumour cell heterogeneity being 
a well-documented phenomenon4,11,12, functional understanding of 

tumour cell phenotypes lags behind that of immune cells, which rests 
on decades of immunological work. One way around this is to draw on 
prior knowledge, such as a recent cyclic immunofluorescence (CycIF) 
study that used well-defined markers of the cell cycle to define the 
proliferation states of tumour cells in several cancer types; notably, 
the multivariate proliferation index defined using these markers 
identified proliferating cells that are missed by the more typically 
used marker Ki67 and that correlated with prognostic clinical features 
(tumour type, grade and p53 status) in breast cancer47.

Alternatively, multiplex studies of tumour cell heterogeneity 
attempt to define cell phenotypic clusters in an unsupervised way and 
then link these clusters to orthogonal biological or clinical information. 
In our own 38-plex IMC work on breast cancer, we have used such a strat-
egy to show that the composition of tumour cell phenotypes, which we 
called single-cell pathology groups, provides a more refined prediction 
of patient prognosis than standard clinical categories48. In parallel IMC 
work on the genomically characterized Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) cohort, we found that 
both tumour and stromal cell phenotypes differ between breast tumours 
of different genomic subtypes and that the nature of the genomic 
lesion (that is, mutation versus copy number variation) can shape the 
tumour ecosystem49. In a separate IMC study of breast cancer, we found  
that tumour cell phenotypes diverge substantially between matched 
primary tumours and lymph node metastases. We identified 
poor-prognosis tumour cell phenotypes that are prone to disseminat-
ing and that frequently deviate from the clinical subtype, suggesting that 
these are an unused source of prognostic information for breast cancer50.

In summary, tumour, immune, stromal or any other cell pheno-
types can be studied to understand cellular heterogeneity in human 
tumours and how particular phenotypes may be associated with clinical 
or molecular features of interest.

Demographic data
• Sex
• Age

Clinical data

•
•

 Tumour grade
 Genomic features

• Tumour subtypes
• Tumour metastasis
• Disease stage
• Overall survival
• Drug response

TME features
• Cell phenotypes
• Cell states
• Cell frequency
• Cell clusters
• Cell–cell interaction
• Cell–ECM interaction
• Cellular neighbourhood
• Spatial pattern

…

…

Multiplex imaging
data analysis

Comparison between cohort groups Statistical correlation of
imaging and clinical features

Patient cohort

Fig. 2 | Multiplex protein imaging can be applied 
to clinical cohorts. In studies on well-characterized 
clinical cohorts, features of the tumour 
microenvironment (TME) quantified by multiplex 
protein image analysis (such as cell phenotypes, 
states, interactions or spatial patterns) can be 
statistically associated with demographic features 
like sex or age, with clinical features like tumour 
subtypes, response to therapy, or overall survival, or 
can be compared between cohort groups that differ 
in any defined demographic or clinical feature of 
interest. Such associations then identify stratifying or  
prognostic features that inform an understanding of  
clinical outcome. They could also form the basis 
of hypotheses on the spatial organization of cancer 
hallmark processes and their potential clinical 
relevance. ECM, extracellular matrix.
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The interactions between cell types in a tumour
Cells in a tumour are not isolated entities but sense their environment 
by constant physical and chemical contact with surrounding cells 
and matrix. In turn, cells integrate this information with their internal 
state and send signals to their environment. The ability to detect such 
interactions and infer such communication between diverse cellu-
lar phenotypes in situ and then relate them to essentially any aspect 
of cancer biology is an exciting aspect of multiplex protein imaging. 
Such analyses can enable the inference of molecular pathways, such 
as signalling pathways, that may be active within the tumour, help 
understand how the neighbours of a cell affect its state, and discern 
subtle organizational features of a tumour that may have functional 
consequences. In this section, we focus on the assessment of pairwise 
interactions between specific cell phenotypes.

The main approach being used to quantify cell interactions in 
tumours assesses the likelihood of interaction or avoidance between 
cell pairs, using permutations to control for whether this would occur at 
random51. Notably, a distinction should be made between analyses that 
report on a statistical association, in which simply whether the presence 
of cell types is correlated or anti-correlated in images is assessed (that 
is, without consideration of direct proximity), and those that report on 
a potential physical interaction, in which directly neighbouring cells 
are quantified49. Both analyses are useful but they report on different 
scales of organization: a correlation analysis assesses enrichment at the 
scale of the field of view (for example, hundreds of micrometres in a 
typical IMC study) whereas an interaction analysis examines proximity 
over one or two cell diameters.

Multiplex protein imaging studies on many cancer types (for exam-
ple, breast, lung adenocarcinoma and glioblastoma) have noted that 
tumour cells, for the most part, are near other tumour cells, in other 
words, that they show homotypic interactions32,33,48. Such homotypic 
effects have also been shown for tumour proliferation states, with pro-
liferating cells tending to form spatial domains in a CycIF study47, and 
for individual tumour cell phenotypes as we have shown in IMC48. How-
ever, such relationships can be variable across tumour types. Basal-like 
breast tumours, for instance, showed more homotypic interactions 
for both tumour and stromal cells than other breast tumour subtypes 
in an IMC study, indicating a more extreme separation between these 
compartments in this relatively aggressive breast cancer subtype49.

Despite being generally less frequent, heterotypic cell–cell inter-
actions are just as relevant, if not more so, in terms of their functional 
effects. Indeed, interactions between tumour cells and CD8+granzyme 
B+ T cells or between tumour cells and B cells, together with the pro-
liferative fractions of CD8+ T cell factor 1 (TCF1)+ T cells and major 
histocompatibility complex (MHC)-high tumour cells, were the 
best pre-treatment predictors of response to immune-checkpoint 
therapy in an IMC study of triple-negative breast cancer52. In a CycIF 
study of colorectal cancer (a cancer type known to be responsive to 
immune-checkpoint therapy), PD1+ T cells were found to interact with 
PDL1+ myeloid cells rather than with PDL1+ tumour cells in a small 
cohort53. In another multiplex fluorescence study, in this case, in 
patients with follicular lymphoma, cell types with predictive value 
for early relapse were identified and seen to be near tumour cells54. As a 
last example, an IMC study of pairwise cell interactions in glioblastoma 
identified interactions between endothelial cells and several other cell 
types, including astrocytes, as expected, but also tumour cells and 
monocyte-derived macrophages, both of which showed lower levels 
of a proliferation marker (Ki67-to-cleaved caspase 3 (CC3) ratio) when 
they were near endothelial cells compared to when they were further 

away33, suggesting a different microenvironment in the perivascular 
region.

Overall, by imaging many cell types within tumours at single-cell 
resolution, which cell types are more likely to be near each other, or 
indeed are often direct neighbours, and which cell types tend to avoid 
each other can be determined, providing insight into the functional 
effects that cells have on one another and how this may link to clinical 
and biological features of the disease.

Spatial patterns in a tumour
Beyond interactions between cell pairs, tumours harbour spatial pat-
terns that are likely to be important for the manifestation of disease 
and that both affect intercellular communication and depend on it. 
These structures range from smaller local accumulations of cells or 
molecules to large structures like blood or lymphatic vessels, the 
tumour–stromal interface, or other tissue elements, such as tertiary 
lymphoid structures (TLS), that may reflect function. Indeed, tissue 
architecture encompasses well-known prognostic features such as 
tumour grade, which reflects  cellular abnormality, or histological 
subtype, which has been defined for many cancer types. A part of the 
promise of multiplex imaging methods is that they will help to molecu-
larly elucidate such spatial features in tumours and other tissue. We 
discuss here a few spatial analysis approaches that have been applied 
to multiplex tumour imaging; for a more complete overview of current 
spatial analysis approaches, we refer the reader to recent reviews55–57.

Spatial analysis approaches for multiplex tumour imaging data 
(Fig. 3) may be broadly classified based on the number of cell types that 
are simultaneously profiled. Most simply, the spatial distribution of a 
single cell type within the whole tumour or with respect to some spatial 
landmark (for example, an intratumoural vessel or a tumour–stromal 
boundary) is determined; this has been referred to as a first-order 
analysis (Fig. 3a). For instance, we observed with RNA-IMC that cells 
expressing specific chemokines, in particular those encoded by the 
CXC-motif chemokine ligand 10 (CXCL10), CXCL9 and CXCL13 genes, are 
not randomly distributed but form patches in metastatic melanoma36. 
In a MIBI study on triple-negative breast cancer, Keren et al.30 quanti-
fied the distribution of several cell types and markers relative to the 
tumour–immune border, finding this region depleted for B cells across 
their cohort and observing, in some patients, a gradient in the ratio 
of histone H3 methylation-to-acetylation levels in tumour cells along 
the perpendicular axis to the border. Given the known functional asso-
ciations of these histone marks, this allowed speculation that tumour 
cells at or near the border are transcriptionally more active than those 
deeper within the tumour.

In a second-order analysis (Fig. 3b), the goal is to determine how 
pairs of cell types are distributed spatially with respect to each other 
and/or to the overall tissue structure. For instance, in their MIBI study 
on triple-negative breast cancer, Keren et al.30 grouped tumours into 
cold (few immune cells), compartmentalized (immune cells present but  
spatially segregated from tumour) or mixed (immune cells present  
and spatially mixed with tumour) based on the ratio of tumour cell–
immune cell interactions to immune cell–immune cell interactions, and 
showed that compartmentalized tumours had better prognosis than 
mixed ones. Interestingly, the spatial organization was also associated 
with cell type-specific patterns of immunoregulatory molecule expres-
sion. Compartmentalized tumours showed PD1 expression on CD8+  
T cells as well as PDL1 and indoleamine 2,3-dioxygenase (IDO) expression 
mostly on immune cells, whilst mixed tumours showed PD1 expression 
on CD4+ T cells and PDL1 and IDO expression mostly on tumour cells30. 
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A similar spatial analysis was used in a MIBI study on colorectal cancer 
to show that cells tend to spatially cluster with other metabolically 
similar cells, in some cases even across cell lineages (that is, tumour, 
immune or stromal), providing evidence for microenvironmentally 
defined metabolic niches39.

Higher-order analyses define local enrichment patterns of larger 
numbers of cell types, and we describe here the main approaches 
that have been used. Different terms have been used for the resulting 
local enrichment patterns (for example, neighbourhood, community 
and milieu). Since spatial analysis methods are still evolving, clear 

definitions of such terms according to the underlying analyses and the 
cellular relationships they describe are important.

In a co-detection by indexing (CODEX) study of colorectal cancer, 
Schürch et al.58 defined local areas enriched in particular cell types, 
which they called cellular neighbourhoods (Fig. 3c). Here, the spatial 
scale of interest, that is, the area or number of cellular neighbours 
that constitute the neighbourhood of a target cell, must be decided, 
although we note that a more recently developed approach allows 
analysis at different scales59. In their initial study, Schürch et al.58 
chose 10 cellular neighbours as the relevant scale and determined 
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Fig. 3 | An overview of spatial analysis approaches for multiplex protein 
imaging data. Schematically depicted (top row in each case) are first-order 
analyses that determine the spatial distribution of a single cell type (light blue) 
either across a tumour (left) or with respect to a spatial structure of interest 
(for example, the tumour–stromal boundary, right) (part a); second-order 
analyses that determine the spatial distribution of two defined cell types (blue 
and orange) (part b); and higher-order analyses that define spatial patterns 
of two or more cell types (parts c–f). Depicted are higher-order approaches 
that define cellular neighbourhoods, local cell type enrichment patterns 
(red, blue or pink) identified in an unsupervised manner around a target cell 

of interest (part c); cellular communities, areas of dense cell–cell interaction 
defined with a graph-based approach (part d); cellular milieus, cell types in the 
area surrounding a spatial patch of a target cell type (part e); and a top-down 
analysis, in which markers and cell phenotypes that correspond to orthogonally 
defined spatial patterns (for example, histology) are defined (part f). Example 
images of each class of analysis are shown in the bottom row. Part a, bottom  
row, left panel and part e, bottom panel reprinted with permission from  
ref. 36, AAAS. Part b, bottom row, left and right panels reprinted with permission 
from ref. 30, Elsevier. Part d, bottom panel reprinted from ref. 47, Springer 
Nature Limited.
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the fractions of each of 28 cell types within 10 cells of each target cell 
type. Cells were then clustered based on the cell type fractions in their 
neighbourhood, yielding 9 cellular neighbourhoods that could be 
annotated as, for example, T cell enriched, macrophage enriched, 
bulk tumour or immune-infiltrated stroma. When comparing tumours 
that did and did not have TLS at the invasive front, they interestingly 
observed that inclusion of information on cellular neighbourhoods 
(other than the TLS itself) improved the ability of a classifier to dis-
criminate between these groups, indicating differences in spatial 
organization between them58.

The same authors put cellular neighbourhoods to excellent use in 
a separate CODEX study of cutaneous T cell lymphoma60. In a compari-
son of responders and non-responders to anti-PD1 immunotherapy, 
they showed that, for the 21 (mainly immune) cell phenotypes that 
could be defined in a 51-plex study, cell type frequency showed no 
difference between the cohort groups but the spatial organization 
did: responders were enriched for a neighbourhood in which CD4+ 
T cells are near tumour cells, whereas in non-responders, CD4+ T cells 
are closer to Treg cells. Using a spatial score to capture these distances 
and deconvolution of bulk RNA-seq data from sequential sections, 
a model emerged where responders are primed for CD4+ T cell activa-
tion due to their spatial organization whereas non-responders have 
a relatively suppressed TME, thus possibly explaining the difference 
in their response to anti-PD1 therapy60. Yet again, a consideration of 
spatial features of the tumour ecosystem revealed a difference between 
two groups with very different clinical consequences that could not be 
seen with cellular phenotypes alone. CODEX was also used to define the 
cellular neighbourhoods of different macrophage subtypes in breast 
and colorectal cancer38.

In an IMC study of lung adenocarcinoma, B cell-enriched cellu-
lar neighbourhoods were positively associated with overall patient 
survival, with the presence of Treg cells within the cellular neighbour-
hood negating this advantage but CD4+ T cells further increasing it32. 
Furthermore, a deep learning model trained on spatial image data 
from a piece of tissue the size of a biopsy could predict progression 
in early-stage lung cancer whereas information on only cell pheno-
types could not32. A study of glioblastoma, again with IMC, identi-
fied a macrophage-enriched cellular neighbourhood associated with 
relatively better patient survival; based on this, the authors narrowed 
in on a specific macrophage phenotype that may be beneficial in this 
disease33. Recent work has also attempted to analyse the spatial disposi-
tion of cellular neighbourhoods with respect to each other to define 
higher-order motifs in human lymphoid tissue61.

An alternative approach for spatial analysis, which we have 
applied in our own work, is to represent the tissue as a graph, with cells 
as nodes and direct interactions as edges, and then use graph-based 
methods to detect communities, or areas of dense interaction, within 
the tissue48 (Fig. 3d). In this type of analysis, the distance at which 
cells are defined as direct neighbours must be specified. In our IMC 
study of breast cancer, communities defined based on tumour cells 
alone or on multiple cell types were associated with patient survival48. 
For example, a community of densely interacting tumour, stromal, 
endothelial and T cells, indicating vascularization together with 
immune cell involvement, was a negative prognostic factor for survival 
even though it was found within relatively good-prognosis hormone 
receptor (HR)+ breast tumours48. Recently, Danenberg et al.31 showed 
how such communities, again defined with a graph-based approach 
in IMC data, could be further grouped based on cell connectivity to 
define ten TME spatial subtypes within a breast cancer cohort. TME 

spatial subtypes were associated with patient prognosis as well as with 
genomic driver mutations and with clinical and molecular subtypes, 
further strengthening the case for spatial information in the study 
of tumour biology and disease outcome. In particular, a TME that 
represented a dysfunctional niche was associated with mutations 
in the BRCA1 and CASP8 (encoding caspase 8) genes and with poor 
prognosis in patients with oestrogen receptor (ER)+ tumours but was 
also enriched in ER− tumours31.

In IMC of metastatic melanoma, we used a simple analysis of spatial 
patterns to infer signalling within tumours. We defined milieus as local 
environments around patches of chemokine transcript-expressing cells 
(up to 30 μm away) and then identified which cell types were present 
in these milieus and thus which intercellular signalling events might 
occur36 (Fig. 3e). Different immune and stromal cell types showed dif-
ferent patterns, for instance, CD8+ T cells were enriched most strongly 
in CXCL9 milieus, stromal cells in CXCL12 and CC-chemokine ligand 2 
(CCL2) milieus, and B cells in CXCL13 milieus. Furthermore, markers 
of T cell dysfunction and antigen experience were highly expressed 
in CXCL10 and CXCL9 milieus, which could indicate local areas of 
antitumour activity36.

The spatial analysis methods we have discussed so far start by iden-
tifying cell phenotypes and then asking whether and how one or more 
of these phenotypes are spatially organized. However, an analysis may 
also take a top-down strategy, by starting with spatial structures iden-
tified in a histological or classical fluorescence stain, and then using 
multiplex imaging to characterize the underlying cells and molecules 
in more detail (Fig. 3f). In our own study of type 1 diabetes, we used 
low-plex immunofluorescence imaging to identify and select pancre-
atic islets within larger sections, followed by 35-plex IMC and analysis 
of beta cell loss in the disease62. More recently, Lin et al.37 conducted 
a molecular characterization of large-scale, pathologist-selected tis-
sue patterns in colorectal cancer, using 20–30 plex marker panels for 
immunofluorescence imaging. They found mixed histology between 
mucinous, glandular, solid and normal tissue regions within some 
tumours, at length scales ranging from a few cell diameters to the whole 
imaged section. No histological pattern corresponded to just one of 
the measured markers but rather these patterns were represented by 
multiple markers.

By starting with histological data, Risom et al.63 analysed the 
early stages of cancer progression, examining the transition from 
ductal carcinoma in situ (DCIS) to invasive breast cancer. Here, H&E 
staining was used to first identify the DCIS and stromal areas; these 
were then analysed with 37-plex MIBI and with RNA-seq on microdis-
sected regions. A combinatorial analysis considering cell phenotype 
composition, cell type proximities and morphometric features of 
the myoepithelium and the stroma found that, besides the defining 
feature of myoepithelial loss, later-stage invasive cancer strongly 
differed from early-stage DCIS in the stromal compartment, with 
increased stromal cell proliferation and frequency and fibrillar col-
lagen deposition. By contrast, DCIS had a more complex profile, the 
most defining features being proliferating myoepithelial cells and 
the presence of stromal mast cells and CD4+ T cells. A comparison of 
patients diagnosed with DCIS who did or did not progress showed that 
loss of myoepithelial integrity, somewhat paradoxically, appears to 
be protective in DCIS, possibly because this is associated with greater 
immune and stromal cell activation63. Such a conclusion would have 
been difficult to draw with a study that ignored spatial aspects of 
the disease or did not include the many markers needed to examine 
multiple compartments.
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Cohort design to identify clinical associations
Together, multiplex imaging methods have demonstrated the potential to 
identify informative molecular, cellular, multicellular and spatial features 
in human tumour tissue. For association with clinical data, cohort design 
is a crucial element and, although this will vary with the particular study, 
a few general principles apply. Clinical data that are as well-annotated and 
complete as possible are important as are cohort groups that are balanced 
for age, sex, genetic ancestry and tumour subtype (where relevant) when 
a comparison is to be made between groups. For cohorts of patients with 
cancer, treatment history is often not under experimenter control but a 
similar history or, at minimum, complete annotation of the history will 
be essential for data interpretation. Cohort size will ideally be driven by 
an estimate of the expected effect size but this is also often unknown. 

Defined biological questions, possibly developed in a pilot study, are 
of tremendous help in assembling the final cohort; for specific clinical 
questions, especially regarding treatment response, samples from a 
controlled clinical trial are likely to be the most fruitful path.

Multiplex protein imaging methods
We provide here a brief overview of the principles, key features and most 
important practical considerations of the multiplex protein imaging 
methods that have been applied to the study of tumours. For a more 
detailed description of these methods, we refer the reader to recent 
reviews27,64,65. Multiplex single-cell-resolved protein imaging or profil-
ing methods can be grouped into four classes based on the readout and 
probes used (Fig. 4). This may be via mass spectrometry, fluorescence or  
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Each panel indicates whether the method is iterative or one-shot. The specific 
methods that belong to each class are listed below each panel. a, Mass cytometry- 
based methods rely on mass spectrometry to detect metal isotopes coupled  
to antibodies via a chelating polymer. The metal-labelled antibody cocktail is  
used to stain a sample of interest; for imaging, ionization of metal isotopes 
is achieved either with an ion beam or a laser coupled to an ionizing plasma 
source. b, Fluorescence or chromogenic methods rely on conventional 
imaging of fluorophores or of deposited chromogens. Typically, 1–3 antibodies 
are used at a time to stain the sample, followed by imaging of a fluorophore 
(for immunofluorescence) or chromogen (for immunohistochemistry (IHC)). 
Once imaging is complete, the signal is quenched by fluorophore inactivation, 

chromogen removal or antibody stripping and the cycle is iterated to reach the 
desired plex. c, Fluorescent oligonucleotide-based methods depend on antibodies 
conjugated to specific oligonucleotides (oligos), followed by detection of these 
oligos with complementary DNA imager probes. An oligo-tagged antibody  
cocktail is used to stain a sample; fluorescent imager probes are then allowed  
to hybridize, imaged and stripped off, and the process is iterated to reach 
the desired plex. 4i, iterative indirect immunofluorescence imaging; 
CODEX, co-detection by indexing; CycIF, cyclic immunofluorescence; 
IBEX, iterative bleaching extends multiplexity; IMC, imaging mass cytometry; 
MELC, multi-epitope-ligand cartography; MIBI-TOF, multiplexed ion 
beam imaging-time of flight; MxIF, multiplexed immunofluorescence; 
m/z, mass-to-charge ratio; SABER, signal amplification by exchange reaction.
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chromogenic imaging, oligonucleotide-based fluorescence imaging, 
or sequencing, all of which have distinct advantages and disadvan-
tages with respect to resolution, plex, throughput and signal-to-noise 
ratio (Table 1). The different methods vary also in terms of the level of 
tissue autofluorescence they must contend with, the possibility for 
signal amplification, and the ability to linearly quantify targets rather 
than simply give a binary positive or negative signal, all of which affect 
performance. We also illustrate a typical multiplex imaging analyti-
cal workflow (Fig. 5) and provide an overview of the functions of cur-
rently used open-source computational tools (Supplementary Table 1). 
A more detailed description of multiplex image analysis workflows 
may be found in a recent protocol from our laboratory66 and associ-
ated online documentation of IMC data analysis as well as in several 
recent reviews55–57,67–69.

Mass spectrometry readout
MIBI and IMC rely on mass spectrometry to detect metal isotopes 
coupled to antibodies, with ionization achieved either with an ion 
beam (MIBI)70,71 or a laser coupled to an ionizing plasma source (IMC)72 
(Fig. 4a). These techniques allow simultaneous staining with antibod-
ies against 40–50 markers, are also compatible with RNA and DNA 
detection36,45,73 and, since they are based on the detection of exog-
enously added non-biological metal isotopes, avoid the background 
signal that plagues fluorescence and chromogenic techniques. IMC has 
been extended to three dimensions by imaging of serial slices, allowing 
3D reconstruction of breast tumour samples at single-cell resolution74. 
It has been combined with signal amplification by exchange reaction 
(SABER) based on cyclic hybridization of metal-labelled oligonucleo-
tides, achieving up to 68-fold amplification while maintaining the 
signal-to-noise ratio, thus enabling the imaging of low abundance mol-
ecules that are difficult or impossible to see with standard approaches75. 
SABER-IMC is compatible with the standard non-amplified IMC work-
flow, making it possible to tune the imaging of each marker (that is, 
with or without amplification as well as the level of amplification), 
depending on its starting signal.

MIBI has also been applied to 3D serial-plane imaging of formalin- 
fixed paraffin-embedded (FFPE) tissue71 and of cultured cells at super 
resolution (30 nm lateral, 5 nm axial) allowing subcellular imaging 
of the distribution of the platinum drug cisplatin76. Both MIBI and 
IMC enable the detection of high-mass endogenous elements such 
as iodine and exogenously introduced metals (for example, cisplatin 
chemotherapy, or gadolinium in magnetic resonance imaging (MRI)). 
Both approaches were commercialized, with IMC instruments still com-
mercially available as the Hyperion instrument from Standard Biotools, 
both are applicable to frozen and FFPE tissue samples, and both have 
been applied in several studies on clinical cohorts30–33,36,48–50,63. A key 
challenge is that the relatively low scanning speed of these approaches 
means that they are typically used to image smaller areas compared to 
immunofluorescence or immunohistochemistry (IHC).

Fluorescence readout
Despite the challenges in using a fluorescence readout in a multiplex 
fashion, fluorescence microscopy is a relatively user-friendly approach 
and has been adapted for multiplex use. Multiplex fluorescence 
methods fall broadly into two classes. Multispectral imaging takes 
a computational spectral demixing approach to separate overlap-
ping fluorophore emission spectra and has achieved up to 20-plex 
imaging53,77; the PhenoImager HT (formerly known as Vectra Polaris) 
and more recently the Orion are commercially available multispectral 

instruments. A related one-shot, though lower-plex, approach is 
Histo-cytometry, which uses conventional high-resolution confocal 
microscopy with careful spillover correction and voxel gating to identify 
cells of interest expressing the appropriate marker combinations78. 
Alternatively, fluorescence imaging of 40–50 targets can be achieved 
using iterative methods, in which each staining and imaging round is fol-
lowed by antibody stripping or fluorophore inactivation, after which the 
next round of staining and imaging can take place (Fig. 4b). Fluorophore 
inactivation has been achieved by chemical quenching in multiplexed 
immunofluorescence microscopy (MxIF)46, by bleaching in iterative 
bleaching extends multiplexity (IBEX)79 and in multi-epitope-ligand 
cartography (MELC)80, or by a combination of the two in tissue-based 
CyCIF (t-CyCIF)37,81; several iterative fluorescence-based approaches 
have been commercialized (Table 1). Alternative strategies use the strip-
ping of antibodies themselves82, under mild elution conditions in the 
case of 4i (iterative indirect immunofluorescence imaging)83. Cyclic flu-
orescence methods can conveniently use commercially available anti-
bodies and have recently begun to be applied to patient cohorts37,84,85, 
but they are challenging because of the long times required to reach 
high-plex and because fluorescent signal removal can alter or destroy 
epitopes and tissue architecture.

Chromogenic readout
Classical IHC, a well-established clinical pathology technique, has also 
been used in an iterative mode to achieve multiplex protein imaging 
(Fig. 4b). Each antibody is detected by horseradish peroxidase (HRP)-
based chromogen deposition and imaging followed by de-staining with 
an organic solvent. In multiplexed immunohistochemical consecutive 
staining on single slide (MICSSS), effective staining and de-staining 
required blocking of the previous epitope to counter incomplete 
de-staining40. Multiplexed IHC has been applied to numerous patient 
cohorts17,40,41,86,87. However, even more so than iterative fluorescence 
imaging, these approaches are time intensive and image registration 
poses challenges.

Fluorescence or sequencing readout based on 
oligonucleotide-tagged antibodies
Multiplex imaging via sequential detection has also been achieved 
with oligonucleotide-tagged antibodies (Fig. 4c) in CODEX, which 
originally employed fluorescence labelling via primer extension and 
fluorophore removal by chemical reduction88, and was then upgraded 
to more rapid hybridization and stripping of complementary imager 
probes58,89. The approach requires antibody conjugation with DNA 
barcodes as well as validation of conjugated antibodies (see section 
on Technical challenges below), has been commercialized by Akoya 
Biosciences, and has been applied to patient cohorts58,60. Since CODEX 
lacks amplification, in contrast to secondary antibodies or HRP, but 
rather includes a single fluorophore per imager, sensitivity can be a 
challenge. The problem has been circumvented by the development 
of Immuno-SABER (immunostaining with SABER), which can amplify 
the fluorescent signal up to 188-fold while retaining multiplexity90. 
Oligonucleotide-tagged antibodies are also amenable to a sequencing 
readout91–95, as described below.

The rise of spatial multi-omics
In an ideal scenario, it would be possible to directly image cell phe-
notype, function, state and intercellular communication simultane-
ously within a tissue, which would most probably require merging the 
measurement of many types of molecules (that is, transcripts, proteins, 
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Table 1 | Features of multiplex protein imaging technologies

Technology Principle Typical 
resolutiona 
(μm)

Target 
types

Reported 
number 
of protein 
targets

Backgroundb 3D 
shown?

Protein signal 
amplification 
shown?

Tissue 
types

Commercialization Key ref.

IMC Mass spectrometry 1 Protein, 
nucleic 
acid

40+ N Y y FF, FFPE Standard BioTools 72

MIBI Mass spectrometry 0.26 Protein, 
nucleic 
acid

40+ N Y Y FF, FFPE – 70

DSP DNA sequencing 50 Protein, 
nucleic 
acid

70+ N N N FF, FFPE NanoString 92

CODEX Iterative DNA 
hybridization

0.25 Protein 56+ Y N N FF, FFPE Akoya Biosciences 58

Immuno-SABER Iterative DNA 
hybridization

0.32 Protein 10+ Y Y Y FF, FFPE – 90

CycIF Iterative 
fluorescence 
inactivation

~0.2 Protein 60 Y Y N FF, FFPE – 136

IBEX Iterative 
fluorescence 
inactivation

~0.2 Protein 65+ Y N N FFPE – 79

MxIF Iterative 
fluorescence 
inactivation

~0.2 Protein, 
nucleic 
acid

61 Y N N FFPE – 46

MELC Iterative 
fluorescence 
inactivation

~0.2 Protein 90+ Y Y N FF, FFPE – 80

4i Iterative antibody 
removal

0.165 Protein 40+ Y N N NAc – 83

MICSSS Iterative antibody 
removal

~0.4–0.7 Protein 10 Y N Y FFPE – 40

mIHC Iterative antibody 
removal

~0.2 Protein 29 Y N Y FFPE – 43

MACSima Iterative 
fluorescence 
removal

0.17 Protein 60 Y N N FF, FFPE Miltenyi 162

InSituPlex DNA hybridization ~0.2 Protein 12 Y N N FFPE Ultivue 163

Vectra Iterative antibody 
removal

0.25 Protein 6 Y N Y FFPE Akoya 164

MultiOmyx Iterative 
fluorescence 
inactivation

~0.2 Protein, 
nucleic 
acid

9 Y N N FFPE Leica 165

Orion Computational 
spectral demixing

~0.2 Protein 18 Y N N FF, FFPE Rarecyte 53

COMET Iterative antibody 
removal

~0.2 Protein 40 Y N N FFPE Lunaphore 166

CellScape Iterative 
fluorescence 
inactivation

0.182 Protein 18 Y N N FF, FFPE Canopy 167

Values are current as of November 2023 but are likely to change over time. 4i, iterative indirect immunofluorescence imaging; CODEX, co-detection by indexing; CycIF, cyclic 
immunofluorescence; DSP, digital spatial profiling; FF, fresh frozen; FFPE, formalin-fixed paraffin-embedded; IBEX, iterative bleaching extends multiplexity; IMC, imaging mass cytometry; 
Immuno-SABER, immunostaining with signal amplification by exchange reaction; MELC, multi-epitope-ligand cartography; MIBI, multiplexed ion beam imaging; MICSSS, multiplexed 
immunohistochemical consecutive staining on single slide; mIHC, multiplexed immunohistochemistry; MxIF, multiplex immunofluorescence; N, no; NA, non-applicable; Y, yes. aNote that 
resolution for all methods depends on the strength of the imaged signal and on the instrument used. bBackground refers to autofluorescence in most cases. c4i has only been reported on 
cell samples.
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glycans, metabolites and lipids) that provide complementary infor-
mation about biological systems. Multi-omics analyses are accord-
ingly now at the forefront of in situ studies of tumour ecosystems,  
with most studies so far focusing on merging transcript-level data with 
protein-level data96 (Fig. 6). Single-cell transcriptomes can, in principle, 
provide a more comprehensive and nuanced view of the cell types in 
a tumour since they measure thousands of features rather than the 
dozens accessed by multiplex protein imaging. In practice, however, 
the relative sparsity of spatially resolved single-cell transcript data 
means that this potential has not yet been achieved.

Multi-omics may be achieved experimentally (that is, via 
co-detection of two or more classes of molecules) or through data 
integration. There are so far only a few demonstrations of experimental 
multi-omics data, where different readouts are obtained on the very 
same sample and more than one type of molecule is measured for 
the same single cells. Typically, this requires that all types of molecules 
being detected are read out in the same way. For instance, we have 
achieved simultaneous protein and RNA imaging by rendering RNA 
detectable by metal isotope-labelled probes, such that RNA-IMC can 
then be used for both proteins and mRNA on the same sample (Fig. 6a). 
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Fig. 5 | Canonical pipeline for multiplex protein image processing. The wealth 
of information generated by multiplex protein imaging cannot be fully exploited 
by general image analysis tools; for example, Fiji168, Qupath169 and Napari. The 
schematic briefly illustrates a typical multiplex image analysis workflow; details 
have been covered in recent reviews55–57,67–69 and in online documentation of IMC 
data analysis from our laboratory66. Open-source computational tools and their 
uses are summarized in Supplementary Table 1. After image acquisition, raw data 
files (typically CZI, TIFF, OME-TIFF or MCD formats) are first visualized using 
standard tools for quality inspection. Images from iterative methods (typically 
fluorescence based) are then denoised using tools like BaSiC170 and spatially 
registered across all imaging cycles. Images from one-shot methods are denoised 
by imaging mass cytometry (IMC)171 or ‘hot pixel-filtered’ to remove artefactual 
high-intensity spots and converted to common imaging formats (for example, 
OME-TIFF or TIFF)66. This is followed by cell segmentation using random forest-
based pixel classification with Ilastik172 or deep learning-based methods such 
as Mesmer141 and CellPose140. Image features, including signal intensities of all 
imaged markers and cell morphology descriptors (for example, cell area and axis 

lengths), are then computed per cell or per region. Finally, the resulting spatially 
resolved single-cell feature table is used for visualization by dimensionality 
reduction and various quantitative analyses, such as cell phenotyping, differential 
analyses of marker expression, cell interaction analysis, and various higher-order 
spatial analyses66. There are increasing numbers of graphical user interface (GUI) 
software or script-based pipelines dedicated to multiplex imaging data analysis, 
but the need in the field is for open-source, universal, end-to-end frameworks 
that are compatible with multi-platform file formats, supportive of big data 
storage and handling, and that can allow for the implementation of existing 
packages or software as well as ongoing method development, for example, 
Multiple Choice MICROscopy (MCMICRO)173 or SpatialData174. 4i, iterative 
indirect immunofluorescence imaging; CODEX, co-detection by indexing;  
CycIF, cyclic immunofluorescence; IBEX, iterative bleaching extends multiplexity;  
MIBI, multiplexed ion beam imaging; mIHC, multiplex immunohistochemistry; 
MxIF, multiplexed immunofluorescence microscopy; SABER, signal amplification 
by exchange reaction; TMA, tumour microarray. The image for subcellular states 
is reprinted with permission from ref. 82, AAAS.
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We applied this dual RNA–protein imaging, of up to 12 transcripts and 
21 proteins (plus another 39 proteins on sequential sections), to FFPE 
samples of metastatic melanoma36. This allowed spatial profiling of 
cell phenotypes that express various chemokines that, being secreted 
molecules, are difficult to study and to associate with single cells based 
solely on protein imaging.

In the protein and nucleic acid in situ imaging (PANINI) approach for 
simultaneous detection of proteins and up to two different RNA or DNA 
molecules, Jiang et al.73 alternatively used tyramide-based amplification 
to deposit haptens, rendering nucleic acids sensitively detectable 
by antibodies and thus compatible with antibody-based protein  
detection methods. PANINI was applied to 33-plex protein imaging and 
2-plex nucleic acid imaging, detecting single viral integration events 
to reveal the interplay between human immunodeficiency virus (HIV) 
infection, viral transcription and cellular immune neighbourhoods in 
simian lymph nodes73. Alternatively, spatial molecular imaging (SMI), 
commercialized as the Nanostring CosMX platform, measures RNA 
(directly) or protein (via oligonucleotide-tagged antibodies) by sequen-
tial hybridization of fluorescently barcoded oligonucleotide probes97 
(Fig. 6b). SMI has been reported to detect around 1,000 transcripts 
or 100 proteins in FFPE tissue, but simultaneous imaging of both spe-
cies has not yet been shown; rather, protein and RNA are imaged on 
sequential sections that do not typically allow confident cell–cell 
matching. Notably, SMI has been reported to detect, on average, 
200–300 transcripts per cell in the context of FFPE tissue97; given this 
sparsity, targeted approaches are still a sensitive and cost-effective 
means for spatial single-cell profiling.

Another approach for simultaneous protein and transcript profil-
ing has been to render both types of molecules detectable by sequenc-
ing, with different strategies used to spatially map the sequencing 
readout. In deterministic barcoding in tissue-sequencing (DBiT-seq) 
and spatial cellular indexing of transcriptomes and epitopes by 
sequencing (spatial-CITE-seq), spatial barcoding is achieved by con-
trolled microfluidic delivery of the probes used to generate sequenc-
ing libraries, with sequencing used to detect both transcripts and 
antibody-linked DNA oligonucleotide tags91,94 (Fig. 6c). In DBiT-seq, 
whole transcriptomes and 22 proteins were profiled in mouse embryos 
at pixel sizes down to 10 μm (ref. 91). This was then extended, as 
spatial-CITE-seq, to map about 200 surface proteins together with 
whole transcriptomes at pixel sizes of 25 μm in mouse and human 
tissue94. Although these methods are approaching the dimensions of 
single cells, they still fall short of true single-cell resolution within tis-
sue; combination with scRNA-seq data, H&E or immunofluorescence 
data can be used to help annotate single cells91,94. Other potentially 
higher-resolution spatial barcoding approaches such as Light-seq, 
which uses light to crosslink barcodes to cDNAs in cells of interest98, 

or Zip-seq, which prints barcodes directly on cells99, have so far only 
been used to read out transcriptomes from the barcoded cells but could 
possibly be extended to protein measurements in the future.

The spatial multi-omics (SM-Omics) approach, also based on a 
sequencing readout, achieves spatial barcoding via immobilization of 
barcoded oligonucleotides on glass slides, that is, a spatial transcrip-
tomics workflow93 (Fig. 6d). SM-Omics was applied in proof-of-principle 
work to measure six DNA-tagged antibodies and whole transcriptomes 
simultaneously in mouse spleen. DNA-tagged antibodies have also 
been combined with spatial transcriptomics in spatial protein and 
transcriptome sequencing (SPOTS) for simultaneous profiling of whole 
transcriptomes and 32 proteins, achieving differential localization of 
macrophage subtypes in mouse breast tumours95, and more recently 
in Stereo-CITE-seq with the goal of improving spatial resolution100. 
These approaches have so far been used on fresh frozen tissue and 
performance in FFPE tissue remains to be assessed.

The DSP method92,101,102, which uses patterned light to achieve spa-
tial barcoding, has been commercialized by Nanostring as the GeoMX 
platform. In DSP, photocleavable oligonucleotides are linked either to 
antibodies for protein detection or to nucleic acid probes for transcript 
detection, photocleaved off in the desired pattern, collected, and then 
sequenced or counted to identify the target molecules in the selected 
region (Fig. 6e). The approach has typically been used so far to profile 
up to 70–80 proteins92,102–106, in some cases with up to 1,400–2,100 tran-
scripts in sequential sections of FFPE tissue92,102. Recently, optimization 
of sample preparation has achieved co-detection of 100+ proteins and  
whole transcriptomes in FFPE samples107. For abundant proteins 
and high-quality antibodies, DSP can achieve single-cell sensitivity92 
but, in studies of tumour tissue, it has so far been applied to much larger 
regions of interest (that is, several hundreds of micrometres in length 
or diameter), thus profiling many hundreds of cells.

Data integration between transcript-level and protein-level data 
has also been achieved computationally, without co-detection in the 
same sample. The prerequisite for any such data integration is that 
shared molecular features exist and that these molecular features show 
a relationship to other non-shared molecular features within a given 
dataset. The STvEA and MARIO approaches achieve data integration by 
using reference data from CITE-seq, an existing integrated method108. In 
these approaches, single-cell proteomic data from a multiplex imaging 
dataset are integrated with data from a parallel CITE-seq experiment 
using an overlapping antibody panel and the same tissue type. This then 
allows the single-cell transcriptomes from CITE-seq to be mapped onto 
the imaged cell types, thus enriching and improving cell type annotation 
in multiplex imaging data109,110. The two methods use different math-
ematical principles for data integration, with MARIO being designed 
for single-cell proteomic data with fewer overlapping features between 
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Fig. 6 | The principles of spatial multi-omics techniques. The schematic 
shows techniques that have been used for multiplex imaging or profiling 
of both proteins and RNA. From top to bottom, the panels depict: a, Imaging of 
RNA, by rendering this molecule detectable with metal isotopes (RNA imaging 
mass cytometry (RNA-IMC). b, Imaging of RNA or protein with fluorescent 
and barcoded reporter oligonucleotides (oligos), either directly binding a 
barcoded oligonucleotide to RNA or via oligo-tagged antibodies (for protein). 
This spatial molecular imaging (SMI) technique is iterative and has not been 
demonstrated simultaneously for RNA and protein detection. c–e, In these 
panels, we represent sequencing-based profiling to measure RNA (directly) or 
protein (via oligo-tagged antibodies). Illustrated are different ways of achieving 

spatial barcoding. In deterministic barcoding in tissue-sequencing (DBiT-seq) 
and spatial cellular indexing of transcriptomes and epitopes by sequencing 
(spatial-CITE-seq), this is achieved by spatially controlled microfluidic delivery 
of probes that are ligated together to generate a unique barcode per position 
(c). In spatial multi-omics (SM-Omics) and spatial protein and transcriptome 
sequencing (SPOTS), spatial barcoding is achieved via immobilization of 
barcoded oligos on slides. Barcoded oligo spots are shown schematically 
(d). In digital spatial profiling (DSP), light is used to photocleave light-labile 
oligos in the desired pattern (e). Ab, antibody; m/z, mass-to-charge ratio; NGS, 
next-generation sequencing; RT, reverse transcription; UV, ultraviolet.
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datasets than transcriptomics data; it can be used for data integration 
across experiments and species as long as the datasets have sufficient 
marker and biological overlap110. The principles behind MARIO were 
further extended to develop MaxFuse, which can integrate datasets 
with even fewer overlapping features111. MaxFuse does not require the 
reference CITE-seq dataset for transcriptome and proteome integration 
and has been applied to integrate multiplex CODEX data with single-cell 
RNA-seq and single nucleus transposase-accessible chromatin with 
sequencing (snATAC-seq) data with good performance111.

Several studies also simply use two or more orthogonal tech-
niques, for instance, multiplex protein imaging and transcriptomics, 
on the system of interest but do not attempt true data integration. 
For example, multiplex protein imaging has been used to visual-
ize transcriptomics-defined cell types or TMEs in breast cancer23,112, 
small-cell lung cancer113, ovarian cancer114 and squamous cell 
carcinoma115. Alternatively, it has provided a detailed view of cell type 
distribution within tumour areas mapped with lower-resolution spatial 
transcriptomics116.

Also, the levels of glycans, lipids or metabolites can reflect func-
tional events or phenotypes that can only be indirectly inferred from 

protein or transcript measurements. However, measurement of lipids 
and metabolites in combination with spatial protein analysis is cur-
rently not possible because tissue preparation protocols are incompat-
ible or relevant binders do not exist. The method of choice to measure 
these classes of molecules in a spatially resolved manner is mass spec-
trometry imaging (MSI), a set of label-free approaches that can detect 
a range of molecules based on their mass-to-charge ratio117–119. Recent 
technical developments have improved the performance of MSI meth-
ods to single-cell or near-single-cell resolution (5–10-μm pixel size) in 
tissues120–122, but true single-cell studies are still largely restricted to 
isolated cells in vitro123,124. In the tissue context, MSI has been combined 
with H&E staining to define metabolite or lipid profiles in histologically 
different areas of patient tumours in several types of cancer125–127 or to 
measure changes in glycan profiles during breast cancer metastasis128. 
Combined with immunostaining, MSI has been used to determine lipid 
distributions in the pancreas129, to profile human epidermal growth fac-
tor receptor 2 (HER2)+ versus HER2– cells in human gastric tumours130, 
to image the lipid environment of different macrophage subtypes in 
mouse atherosclerotic plaque77, and to study metabolic changes during 
tissue repair in a mouse kidney injury model131. While many challenges 

Glossary

Cell segmentation
An image processing step that  
delineates the boundaries of  
individual cells.

Chromogen
A compound that can be converted 
into a coloured product that can be 
detected by light microscopy.

Co-detection by indexing
(CODEX). A highly multiplex 
protein imaging technique that 
uses iterative hybridization and 
stripping of fluorophore-tagged 
DNA oligonucleotide probes to 
image samples stained with DNA 
barcode-tagged antibodies.

Cyclic immunofluorescence
(CycIF). A highly multiplex imaging 
technique using iterative staining 
with fluorophore-tagged antibodies 
coupled with chemical inactivation of 
fluorophores between staining cycles 
to build a multiplex image of a labelled 
sample.

Digital spatial profiling
(DSP). A highly multiplex profiling 
technique for mRNA or protein 
that uses patterned light to release 
UV-photocleavable oligonucleotide 
tags attached to antibodies or to RNA 

probes in a defined spatial region, 
followed by sequencing or single 
molecule counting as a readout.

Dimensionality reduction
A data-processing approach whereby 
high-dimensional data are projected into 
a low number of dimensions represented 
by a smaller subset of variables with 
essentially the same information content 
as the full measured set.

Expansion microscopy
An approach that uses polymer-based 
physical expansion of a sample to 
improve the resolution of fluorescence 
microscopy beyond the diffraction limit 
of light.

Haptens
Small molecules that are not intrinsically 
antigenic but become so in combination 
with a macromolecule such as a protein.

Image registration
Data processing steps that bring two 
or more different images into a single 
coordinate system such that the images 
can be aligned.

Imaging mass cytometry
(IMC). A highly multiplex protein or 
RNA imaging technique that couples 
mass cytometry by time of flight with 

high-resolution laser ablation to image 
samples labelled with metal isotope 
reporter-tagged antibodies.

Imputation
An approach for handling missing data, 
typically by replacement with substitute 
values.

Multiplexed ion beam imaging
(MIBI). A highly multiplex protein 
imaging technique that uses secondary 
ion mass spectrometry to image 
samples labelled with metal isotope 
reporter-tagged antibodies.

Raman microscopy
Spatially resolved chemical analysis 
of a sample based on the detection of 
vibrational modes by scattered light.

Signal amplification by 
exchange reaction
(SABER). A signal amplification 
approach based on hybridization of 
imager DNA strands to concatemerized 
DNA barcodes assembled on antibodies 
used to label a sample; compatible 
with fluorescence and mass cytometric 
multiplex imaging.

Spillover correction
Data processing steps that compensate 
for fluorescent or metal signals 

from one channel that are detected 
artefactually in a different channel.

Synchrotron
A machine that accelerates charged 
particles (electrons) to almost the  
speed of light and thereby generates 
very intense light, mostly in the X-ray 
region.

Tertiary lymphoid structures
(TLS). Structured multicellular 
aggregates of immune cells found 
outside of lymph nodes, in peripheral 
tissue, and that reflect inflammatory 
signalling in the tissue.

Tyramide-based amplification
A signal amplification approach  
in which horseradish peroxidase 
(typically coupled to an antibody) 
catalyses the conversion of labelled 
tyramide to a reactive molecule that 
covalently labels nearby proteins at 
high density.

Voxel gating
Data processing steps to identify a cell 
of interest based on selecting voxels 
that are positive for expected markers 
and negative for incorrect or irrelevant 
markers.
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remain, including achieving true single-cell resolution and robust 
chemical identification of large numbers of molecular species within 
tissue, multimodal approaches that incorporate MSI could provide 
an exciting alternative to the more typical protein-centric view of 
tissue function and dysfunction and bring us closer to a functional 
understanding of tumours and their microenvironment.

Technical challenges
Like all methods, multiplex protein imaging methods have inherent 
assumptions and limitations that must be considered if the results they 
generate are to be meaningful. Here, we address the main technical 
challenges that apply generally across many of these approaches.

The challenge of undersampling
An ideal multiplex tumour imaging method would be fast enough 
and cheap enough to rapidly image many whole tumours, in three 
dimensions, at single-cell resolution without compromising multi-
dimensionality. However, no existing method fits this bill. Even ignor-
ing the issue of three-dimensionality, since there is as yet no scalable 
multiplex 3D approach, decisions must be made about how much of 
a patient tumour to sample in 2D to measure representative cell and 
tissue features, how many tumours to sample, and how the sampling 
should be spatially distributed.

Typical imaged areas for MIBI and IMC are small (in the millime-
tre squared range) mainly due to speed limitations, and fluorescence 
microscopy methods, although faster, face similar problems. Large 
cohort analyses of whole tumour sections are thus prohibitive and many 
studies make use of tumour microarrays (TMAs), in which punches of 
tumours are sectioned and arrayed on glass slides that can be processed 
and imaged together and in high throughput. TMAs are routinely used in 
pathology research and have yielded many biomedical findings; their use 
makes multiplex imaging applicable to large patient cohorts30,32,48,58,92. 
However, recent work using whole-slide imaging with CycIF as the ground 
truth concluded that, for spatially correlated samples (that is, samples 
where cellular and supracellular features are not homogenous) from a 
colorectal cancer cohort, single TMA cores could not capture representa-
tive cell abundances or interactions37. The extent to which this is generally 
true will strongly depend on the abundance, spatial distribution and 
length scales of the feature in question as well as on the tumour type. 
The area of a tumour that should be imaged therefore depends on the 
properties of the tissue, and the question to be answered (for example, 
cell phenotype detection versus characterizing spatial structures).

The most rigorous determination of the appropriate sampling 
strategy would be based on a matched whole-slide reference sample. 
However, even if such a sample is not available or measurable, there are 
approaches that can be taken to increase the likelihood of obtaining 
representative results. Several groups, including our own, are develop-
ing statistical frameworks to help define the best sampling strategies 
based on known or pilot-experiment determined properties of tis-
sues132,133. Given the results of such models, close collaboration with 
pathologists enables the preparation of TMAs focused on regions of 
interest to avoid undersampling associated with a given number and 
size of cores. The number of punches per tumour can also be increased, 
which further allows direct assessment of intratumour variability of the 
feature of interest48. Furthermore, whole-tissue sections can be imaged 
first with a low-plex immunofluorescence panel to determine regions 
of interest; in a second step, informative regions are imaged in high 
multiplex62. Otherwise, if sufficient imaging resources are available 
and for a question that can be answered using few patient samples, 

highly multiplexed whole-tissue imaging can be performed. Finally, key 
findings from multiplex imaging studies should ideally be tested with 
orthogonal approaches, whether that be whole-slide imaging using a 
large field-of-view imaging method or transcriptomics data when the 
spatial element is not relevant50.

The need for marker choice
Powerful though multiplex protein imaging methods are, in their pre-
sent iteration, they typically still detect only several dozens of markers. 
The imaged markers must therefore be judiciously chosen since what 
can be learned depends directly on this choice. Marker panel design 
typically strikes a balance between answering specific questions and 
enabling discovery. For instance, while it is easy to design a marker 
panel to determine the abundance and spatial distribution of defined 
immune cell types in a given cohort, it would be advisable to also use 
valuable patient samples for more exploratory work. When the type 
of cancer or the cell type being studied is not well characterized — for 
instance, in our recent work on cancer-associated fibroblasts — it may 
be expedient to use gene expression patterns as measured by single-cell 
transcriptomics to help guide antibody panel design22. Although tran-
script levels are far from perfectly predictive of the corresponding 
protein-level expression134,135, transcriptomes measure thousands of 
features rather than dozens, which is a substantial advantage for an 
initial exploration of cell phenotypes and states where the degree and 
nature of heterogeneity are not known a priori.

The need for antibody validation
As a technology that depends directly on the sensitive and specific bind-
ing of antibodies to targets, all current protein-based multiplex imaging 
methods require antibody validation136,137. Commercially available 
antibodies cannot be assumed to target the advertised antigens and  
must be tested in the specific preparation (for example, FFPE tissue)  
and technology of interest. Furthermore, the specific modification  
needed to enable any given technique (for example, conjugation 
of a metal, fluorophore or oligonucleotide) can affect antibody 
performance. The assembly of validated antibody panels and their opti-
mization for a tissue of interest is therefore time-consuming and expen-
sive yet absolutely necessary for multiplex imaging methods to yield 
reliable information. The higher the plex, the greater the challenge, as 
evidenced by approaches that use hundreds of oligonucleotide-labelled 
antibodies to increase plex but where antibody validation data on FFPE 
specimens is typically only shown for a few reagents92,94,97. In our labora-
tory, antibodies are validated before and after metal conjugation by 
testing for expected expression patterns in well-characterized positive 
and negative control samples prepared with relevant methods. We also 
compare to expression patterns reported in other resources, such as 
the Human Protein Atlas, test certain markers (for example, for epi-
dermal growth factor (EGF) signalling) in stimulated and/or inhibited 
cell lines and, where possible, compare antibodies directed against 
different epitopes or different markers of the same cell type. Once anti-
bodies have been validated, their use must be optimized, for example, 
by titrating their concentration for an optimal signal-to-noise ratio. 
The reader is referred to recent papers for a more detailed discussion 
of antibody validation64 and a resource of 200+ validated antibodies 
targeting markers in several human organs138.

The challenge of cell segmentation
Analysis of imaging data at the single-cell level requires an initial seg-
mentation step where the spatial boundary of each cell is identified. 
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The resulting cellular masks then serve as the foundation for most other 
quantitative analyses, such that errors in cell segmentation can affect 
the quality of the results. Tumour tissue is particularly challenging to 
segment. Tumours often have densely packed cells, some with irregular 
shapes (for example, fibroblasts), and z-dimension overlap will not be 
apparent in the x–y plane, although recently described pixel-based 
methods may help with these aspects and enable the study of extra-
cellular features in less dense tissue139. Furthermore, many multiplex 
imaging methods operate at a resolution that only just resolves single 
cells within tissues, and signal bleed-through can also occur. Segmen-
tation must therefore be conducted with care. State-of-the-art cell 
segmentation now uses machine learning models (CellPose140 and 
Mesmer implemented in DeepCell141) that perform as accurately as 
a human compared with manually segmented ground truth data. If 
needed, more than one segmentation approach may be tested and 
segmentation masks varied by a few pixels to check the robustness of 
the results. Additionally, there is no substitute for human visualization 
of images, both to assess unlikely marker combinations that may be 
due to errors as well as to visually check key results.

Research challenges
The high-dimensional data that results from multiplex protein imaging 
is complex, difficult to visualize in its entirety and typically provides 
unprecedented views of tumour tissue. Deriving biological and clinical 
insight from this novel data type is thus an ongoing research chal-
lenge, and we discuss here a few of the interpretative difficulties in 
the field. Some of these issues are not exclusive to multiplex protein 
imaging but apply more generally to single-cell analysis or work on 
human samples.

Defining meaningful cell phenotypes
Multiplex imaging looks at single cells in biological samples with many 
more dimensions than earlier protein-level work (that is, 30–50 protein 
markers compared to 1–3). The combinations in which these mark-
ers can potentially be found are consequently very many indeed, and 
quickly leading to the problem of deciding which combinations are 
likely to represent stable phenotypes or sub-phenotypes, dynamic 
biological states, or stochastic groups that arise due to biological 
or technical fluctuations that are not inherently meaningful. This is 
less of a challenge in fields with deep biological knowledge, such as 
immunology, but defining heterogeneous tumour cell phenotypes in 
multiplex imaging, where biological understanding is more rudimen-
tary, can easily fracture cells into myriad small clusters of unknown 
biological importance. There is no single solution to this problem. The 
definition of phenotypes can be entirely avoided by focusing simply on 
marker patterns but this loses the critical link to cellular-level function.  
A pragmatic path can usually be found through some combination of  
assessment of cluster stability across samples and cohorts, attention 
to the statistical power engendered by different cluster sizes, incor-
poration of prior knowledge by separating classical cell phenotype 
markers (for example, cytokeratins) from markers of cell state (for 
example, protein phosphorylation), and association of phenotypes 
with orthogonal clinical or biological information. Additionally, ex vivo 
or model organism experiments may be needed to understand which 
phenotypes are stable and meaningful.

Inferring function
When multiplex imaging is applied to carefully designed cohorts with 
good clinical annotation, a functional role can be suggested for specific 

features at the level of human outcome, which is arguably the most 
relevant. Nevertheless, since these methods are applied to fixed sam-
ples that are also not amenable to perturbation, the resulting data 
are temporal snapshots that do not allow functional interrogation. 
Apart from some well-established markers of cell state or function (for 
example, Ki67 for cell division, carbonic anhydrase 9 (CAIX) to infer a 
hypoxic state, cleaved poly(ADP-ribose) polymerase (PARP) to indicate 
apoptosis or phospho-ribosomal protein S6 to indicate signalling), the 
most obvious path towards functional understanding is to work in par-
allel in patient-derived xenografts in mice or in ex vivo models such as 
organoids. A less direct but also fruitful approach is the design of panels 
to include the detection of markers known to have functional effects. 
In our IMC study of metastatic melanoma, for instance, we identified 
cell types that secrete chemokines, which suggested signalling events 
that could affect spatial tissue organization36, although such findings 
should be treated as hypotheses that need orthogonal testing.

Identifying clinically relevant spatial features
Based on both first principles and the quotidian work of tumour pathol-
ogists, it is clear that multiscale tumour architecture is important for 
tumour biology and therefore for patient outcome and treatment. 
Recent multiplexed tissue imaging work, as we have discussed in this 
Review, has detected associations of spatial patterns with clinical fea-
tures. However, it is frequently observed that non-spatial information, 
such as cellular phenotype, is at least partially redundant to spatial 
features in predicting clinical outcome (for example, dysfunctional 
T cells are often redundant to T cells residing within a tumour). There are 
many reasons why uncovering the molecular spatial correlates of dis-
ease and treatment response is very challenging. Current multiplexed 
imaging studies only look at single-cell phenotypes but ignore overall 
cellular shape as well as intracellular shapes and patterns142; a possible 
solution to this may lie in recent developments rendering expansion 
microscopy compatible with MIBI and IMC, thus improving x–y resolu-
tion nearly fourfold143. Furthermore, multiplex imaging techniques are 
typically limited either in the area they can image, thus not sampling 
large tissue structures, or in the number of patients they can sample, 
thus reducing their power to detect generalizable patterns. Inherent 
tumour heterogeneity and the absence of ideal patient cohorts further 
complicate the picture. A meaningful solution most probably does not 
lie along the path of ever-more complex but biologically uninterpret-
able spatial analysis approaches but rather in careful cohort design  
(as in the recent identification of predictors of immunotherapy 
response in triple-negative breast cancer52), in refinement and reas-
sessment of existing methods and, as recently argued in a study combin-
ing multiplex immunofluorescence with classical histology53, in more 
actively combining the rich historical knowledge of tumour pathology 
with multiplex molecular data.

Future perspectives
A decade or two into its existence, the field of multiplex protein imag-
ing is maturing. Numerous experimental and analytical methods are 
available, some convergence is evident on the basic data processing 
pipelines, the main technical challenges have been recognized and 
are being addressed and, as we have summarized in this Review, these 
approaches are beginning to prove their worth for the study of tumour 
biology in model systems and clinical samples. However, there remains 
a great deal of work still to be done.

There will continue to be technical developments on many fronts. 
New physical principles for detecting proteins in a multiplex manner 
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are emerging, with advantages or complementarities vis-a-vis existing 
ones. We have shown that X-ray fluorescence imaging can be used to 
read out lanthanide metal-conjugated antibodies in high multiplex, 
with the advantage of being non-destructive and potentially applicable 
to large 3D tumour volumes; the disadvantage is that the approach 
currently requires a synchrotron and is less sensitive than IMC144. In 
separate work, the design of photocleavable peptide mass tags linked 
to antibodies has rendered MSI applicable to direct and targeted visu-
alization of proteins145,146. Although this MSI-IHC approach has so far 
only been shown at up to 12-plex, it could be extended in the future 
to hundreds of readouts and would thus overcome the current upper 
limit of approximately 60 metal isotopes available for mass spectrom-
etry and approximately 100-plex for fluorescent methods. Another 
approach with inherent multiplexity is Raman microscopy, and recent 
technical developments have shown multiplex Raman imaging of cells 
and tissues with good sensitivity147 and in 3D on thick (1 mm) tissue 
sections148. However, as for all methods that require immunostaining, 
3D imaging is limited by the efficiencies of antibody penetration into 
thick samples.

On the computational front, approaches for imputation have been 
described for single-cell protein imaging data, which can allow more 
markers to be profiled than are actually measured, either by training 
deep learning models to learn relationships for imputation or by using 
approaches that compress marker signals into combinations of a smaller 
number of reporters149,150. However, even very good performance in 
these approaches is likely to introduce additional uncertainty into 
already complex biological datasets, such that their value will depend on 
the tolerance of the study to error. Separately, several recently described 
machine learning approaches harness prior knowledge about marker 
expression and spatial patterns to achieve automatic cell type annota-
tion in multiplex imaging data and thus reduce the labour involved in 
this step as well as dependence on manual clustering151–153.

Moving away from targeted analyses entirely, the Mann group154 
has harnessed high-sensitivity mass spectrometric instruments to 
achieve untargeted and spatially mapped proteome profiling of 
single laser-captured cells from tumour samples. Although such 
high-resolution untargeted spatial profiling will likely remain the 
domain of specialized laboratories for some time yet, combining 
rapid targeted approaches, such as MSI-IHC, to identify cells or areas 
of interest with untargeted proteomic profiling of these cells or their 
environs, as recently shown146, could be a route towards deep insight 
into specific biological questions.

We expect methodological developments for multi-omics meas-
urements that include multiplex protein imaging as one of their modes 
(see also the section on Spatial multi-omics). Spatial transcriptomics 
and MSI, for measurement of RNA and metabolites or lipids, respec-
tively, do not yet perform at single-cell resolution when applied to tis-
sue, thus limiting many types of analyses. However, once this resolution 
is achieved and compatible tissue processing protocols are developed, 
cellular-level insights from combined measurements of transcrip-
tomes, proteomes, metabolomes and lipidomes will increase. Expan-
sion microscopy that is compatible with multiple types of molecules 
is an interesting development in this direction155.

Computationally, efforts are being made in the development of 
true data integration methods between measurement modes such as 
the StabMap approach, which is expressly intended for multimodal 
data and can integrate different types of datasets at the single-cell 
level without requiring overlapping features156. StabMap requires that 
a network can be built from the multimodal data, and then uses the 

topology of this network for integration; initial work has already shown 
its application to spatial single-cell data156. Alternatively, bridge inte-
gration methods use a reference multimodal dataset as a ‘dictionary’ 
to then bring data from different analysis modes into a shared space157; 
the approach has been used to map multiple (non-spatial) data types, 
including single-cell transposase-accessible chromatin with sequenc-
ing (scATAC-seq), single-cell histone modification and DNA methylation 
profiles, and cytometry by time of flight (CyTOF) onto a scRNA-seq 
reference, and could, in principle, be extended to spatial data as well.

Most multiplex protein imaging studies of tumours have so far 
been on FPPE patient samples and such work will doubtless continue. 
Multiplex tissue imaging is destined, in our view, to become an essential 
analytical tool for clinical studies at any stage and ultimately a diagnostic 
method in the clinics. However, these studies only reveal correlations 
between tumour tissue and patient features, but the biological pro-
cesses and mechanisms that underlie these correlations cannot be ana-
lysed. Application of multiplexed tissue imaging techniques to cancer 
models that are amenable to chemical or genetic perturbation and that 
can be imaged live, specifically mouse or other animal models, tumour 
organoids, and ex vivo tumour cultures, will overcome this limitation. 
These models are more tractable for probing function and dynamic cel-
lular processes than fixed patient samples, will be valuable for unbiased 
perturbation screens, and will offer the possibility to test hypotheses 
formulated in multiplex imaging studies of patient tumours in situ.

Finally, analysis of many hallmark traits of tumour biology should 
benefit from spatial, single-cell-resolved methods such that the impact 
of these methods has the potential to go well beyond the studies of 
tumour–immune interactions and tumour cell phenotypic plasticity 
discussed here. Most evidently, spatial processes, like invasion and 
extravasation during metastasis or the induction of angiogenesis, 
must be studied using methods with spatial capabilities; the study 
of such processes in particular will benefit from developments in 3D 
approaches. Furthermore, intratumoural microbes are now recognized 
as an integral component of the TME across human cancer types and  
play important roles in cancer progression, immunosurveillance 
and treatment158,159; multiplex imaging of RNA and protein targets of 
both bacteria and tumour cells are poised to probe this exciting new 
area of tumour biology. For instance, recent work used spatial transcrip-
tomics to map the location of bacterial genera within oral and colorectal 
tumours, combined with 77-plex DSP to show that tumour areas with 
bacterial presence have higher expression of immunosuppressive 
markers, lower proliferation and higher vascularization160. More gener-
ally, studies of tumour–microorganism and tumour–immune cell inter-
actions, particularly when combined with functional studies, will reveal 
how intercellular communication can be therapeutically modulated.

However, even cancer hallmarks that are less obviously spatially 
organized, namely replicative immortality, cell death avoidance, met-
abolic reprogramming, sustained proliferative signalling, growth 
suppression avoidance and genomic instability, may be influenced 
by cellular interactions and by spatial features of tumours and may 
therefore benefit from multiplexed protein and multimodal imag-
ing. Antibodies or RNA probes against relevant players of a hallmark 
process of interest could be used in multiplex fashion to ask relatively 
simple questions about its spatial distribution within the tumour or to 
relate the process to other cellular or spatial features. Antibody-based 
imaging of oxidative damage161, for instance, could be used to infer 
the distribution of an inducer of genome instability within tumours. 
Intercellular signalling using probes against ligands, receptors and 
secreted molecules could be used to examine proliferative signalling. 
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Even whole signalling loops could be mapped if markers for extra-
cellular and intracellular events are included simultaneously. In the 
absence of robust methods for single-cell and deep phenotypic pro-
filing of tumour tissue, it has simply not been possible to probe such 
questions so far, especially in human samples. Single-cell-resolved and 
multiplex protein and multimodal imaging will change this. We envision 
increasingly colourful and exciting times ahead.

Published online: xx xx xxxx

References
1. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 

646–674 (2011).  
The second iteration of this seminal review of the hallmarks of cancer, synthesizing 
evidence for immune evasion, inflammation and the TME as important features of the 
disease.

3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
4. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 

473–483 (2015).
5. Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct 

paths to malignancy in human colorectal polyps. Cell 184, 6262–6280.e26 (2021).
6. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
7. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).
8. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal 

cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).
9. Bhaduri, A. et al. Outer radial glia-like cancer stem cells contribute to heterogeneity 

of glioblastoma. Cell Stem Cell 26, 48–63.e6 (2020).
10. Wang, L. et al. A single-cell atlas of glioblastoma evolution under therapy reveals 

cell-intrinsic and cell-extrinsic therapeutic targets. Nat. Cancer 3, 1534–1552 (2022).
11. Vegliante, R., Pastushenko, I. & Blanpain, C. Deciphering functional tumor states at 

single-cell resolution. EMBO J. 41, e109221 (2022).
12. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity 

and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018).
13. Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 

1271–1279 (2020).
14. Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. 

Mol. Syst. Biol. 16, e9682 (2020).
15. Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and 

immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 
6322 (2020).

16. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid 
cells. Cell 184, 792–809.e23 (2021).

17. Chen, Y. et al. Predicting response to immunotherapy in gastric cancer via multi- 
dimensional analyses of the tumour immune microenvironment. Nat. Commun. 13, 
4851 (2022).

18. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 
1913–1926 (2021).

19. Bolis, M. et al. Dynamic prostate cancer transcriptome analysis delineates the trajectory 
to disease progression. Nat. Commun. 12, 7033 (2021).

20. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 
374, abe6474 (2021).

21. Kumar, V. et al. Single-cell atlas of lineage states, tumor microenvironment, and 
subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670–691 
(2022).

22. Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial 
proteomics data. Nat. Commun. 14, 4294 (2023).

23. Tietscher, S. et al. A comprehensive single-cell map of T cell exhaustion-associated 
immune environments in human breast cancer. Nat. Commun. 14, 98 (2023).

24. Chijimatsu, R. et al. Establishment of a reference single-cell RNA sequencing dataset for 
human pancreatic adenocarcinoma. iScience 25, 104659 (2022).

25. Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to 
immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).

26. Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions 
across space and time at single-cell resolution. Cell 181, 236–249 (2020).

27. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology.  
Nat. Methods 18, 997–1012 (2021).

28. Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor 
microenvironment. Cancer Cell 41, 404–420 (2023).

29. de Vries, N. L., Mahfouz, A., Koning, F. & de Miranda, N. Unraveling the complexity of the 
cancer microenvironment with multidimensional genomic and cytometric technologies. 
Front. Oncol. 10, 1254 (2020).

30. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast 
cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018). 
A MIBI study of triple-negative breast cancer that defines immune cell patterns, 
immunoregulatory protein expression and spatial features of tumour tissue.

31. Danenberg, E. et al. Breast tumor microenvironment structures are associated with 
genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022).  
An IMC study of the TME in breast cancer that identifies spatial patterns associated 
with specific driver mutations and with patient survival.

32. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune 
microenvironment. Nature 614, 548–554 (2023).

33. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain 
tumours. Nature 614, 555–563 (2023).

34. Ferguson, A. L. et al. High-dimensional and spatial analysis reveals immune 
landscape-dependent progression in cutaneous squamous cell carcinoma. Clin. Cancer 
Res. 28, 4677–4688 (2022).

35. Xiao, X. et al. Multiplexed imaging mass cytometry reveals distinct tumor-immune 
microenvironments linked to immunotherapy responses in melanoma. Commun. Med. 2, 
131 (2022).

36. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma 
characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).  
A RNA-IMC study of metastatic melanoma that identifies local patches of 
chemokine-secreting cells together with the phenotypes of the cells in the 
surrounding milieus.

37. Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in 
colorectal cancer. Cell 186, 363–381.e19 (2023).  
A CycIF study of colorectal cancer that identifies molecular features underlying 
large-scale histological patterns and highlights the limitations of imaging small fields 
of view such as those in tumour microarrays.

38. Matusiak, M. et al. A spatial map of human macrophage niches reveals context- 
dependent macrophage functions in colon and breast cancer. Res. Sq. https://doi.org/ 
10.21203/rs.3.rs-2393443/v1 (2023).

39. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. 
Biotechnol. 39, 186–197 (2021).  
A MIBI and mass cytometry study that examines metabolic programmes of different 
cell types in colorectal cancer and maps their spatial organization.

40. Remark, R. et al. In-depth tissue profiling using multiplexed immunohistochemical 
consecutive staining on single slide. Sci. Immunol. 1, aaf6925 (2016).

41. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals 
myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 
19, 203–217 (2017).

42. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and 
immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

43. Banik, G. et al. High-dimensional multiplexed immunohistochemical characterization of 
immune contexture in human cancers. Methods Enzymol. 635, 1–20 (2020).

44. Toki, M. I. et al. High-plex predictive marker discovery for melanoma 
immunotherapy-treated patients using digital spatial profiling. Clin. Cancer Res. 25, 
5503–5512 (2019).

45. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with 
subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 
25–36.e5 (2018).

46. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, 
paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

47. Gaglia, G. et al. Temporal and spatial topography of cell proliferation in cancer. Nat. Cell 
Biol. 24, 316–326 (2022).

48. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 
615–620 (2020).  
An IMC study of breast cancer showing that multiplex imaging-defined single-cell 
pathology groups correlate with patient survival beyond the information provided by 
clinical subtypes.

49. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the 
phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

50. Fischer, J. R. et al. Multiplex imaging of breast cancer lymph node metastases identifies 
prognostic single-cell populations independent of clinical classifiers. Cell Rep. Med. 4, 
100977 (2023).  
An IMC study showing cell phenotypic divergence between paired primary breast 
tumours and lymph node metastases, and identifying prognostic phenotypes in 
metastatic tumours.

51. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex 
image cytometry data. Nat. Methods 14, 873–876 (2017).

52. Wang, X. Q. et al. Spatial predictors of immunotherapy response in triple-negative breast 
cancer. Nature 621, 868–876 (2023).  
An IMC study conducted on a cohort of patients with breast cancer within a clinical trial 
and identifying cell phenotypic and spatial predictors of immunotherapy response.

53. Lin, J. R. et al. High-plex immunofluorescence imaging and traditional histology of 
the same tissue section for discovering image-based biomarkers. Nat. Cancer 4, 
1036–1052 (2023).

54. Radtke, A. J. et al. A multi-scale, multi-omic atlas of human normal and follicular 
lymphoma lymph nodes. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494716 
(2022).

55. Milosevic, V. Different approaches to imaging mass cytometry data analysis. 
Bioinform Adv. 3, vbad046 (2023).

56. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue 
biology. Nat. Biotechnol. 40, 308–318 (2022).



Nature Reviews Cancer

Review article

57. Zhang, M. et al. Spatial molecular profiling: platforms, applications and analysis 
tools.Brief. Bioinform. 22, bbaa145 (2021).

58. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral 
immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).  
A CODEX study on colorectal cancer illustrating the definition of cellular neighbourhoods 
and showing that spatial organization differs in samples with and without TLSs.

59. Chen, Z., Soifer, I., Hilton, H., Keren, L. & Jojic, V. Modeling multiplexed images with 
spatial-LDA reveals novel tissue microenvironments. J. Comput. Biol. 27, 1204–1218 
(2020).

60. Phillips, D. et al. Immune cell topography predicts response to PD-1 blockade in 
cutaneous T cell lymphoma. Nat. Commun. 12, 6726 (2021).  
A CODEX study on cutaneous T cell lymphoma showing that spatial organization but 
not cell phenotypes is associated with patient response to immunotherapy.

61. Bhate, S. S., Barlow, G. L., Schürch, C. M. & Nolan, G. P. Tissue schematics map the 
specialization of immune tissue motifs and their appropriation by tumors. Cell Syst. 13, 
109–130.e6 (2022).

62. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass 
cytometry. Cell Metab. 29, 755–768.e55 (2019).

63. Risom, T. et al. Transition to invasive breast cancer is associated with progressive 
changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022). 
A MIBI study of early-stage breast cancer that used histological staining to define 
areas of interest for multiplex imaging and identifies features prognostic for disease 
progression.

64. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization:  
a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022).  
A detailed practical guide to many aspects of multiplex protein imaging.

65. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling 
technologies. Nat. Rev. Genet. 23, 741–759 (2022).

66. Windhager, J. et al. An end-to-end workflow for multiplexed image processing and 
analysis. Nat. Protoc. 18, 3565–3613 (2023).

67. Liu, C. C. et al. Multiplexed ion beam imaging: insights into pathobiology. Annu. Rev. 
Pathol. 17, 403–423 (2022).

68. Kuswanto, W., Nolan, G. & Lu, G. Highly multiplexed spatial profiling with CODEX: 
bioinformatic analysis and application in human disease. Semin. Immunopathol. 45, 
145–157 (2023).

69. Baharlou, H., Canete, N. P., Cunningham, A. L., Harman, A. N. & Patrick, E. Mass 
cytometry imaging for the study of human diseases-applications and data analysis 
strategies. Front. Immunol. 10, 2657 (2019).

70. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 
436–442 (2014).  
The first methodological report of MIBI applied to human breast tumours.

71. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and 
tissue structure. Sci. Adv. 5, eaax5851 (2019).

72. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution 
by mass cytometry. Nat. Methods 11, 417–422 (2014).  
The first methodological report of IMC applied to human breast tumours.

73. Jiang, S. et al. Combined protein and nucleic acid imaging reveals virus-dependent B 
cell and macrophage immunosuppression of tissue microenvironments. Immunity 55, 
1118–1134.e8 (2022).

74. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed 
molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 
3, 122–133 (2022).

75. Hosogane, T., Casanova, R. & Bodenmiller, B. DNA-barcoded signal amplification for 
imaging mass cytometry enables sensitive and highly multiplexed tissue imaging.  
Nat. Methods 20, 1304–1309 (2023).

76. Rovira-Clavé, X. et al. Subcellular localization of biomolecules and drug distribution by 
high-definition ion beam imaging. Nat. Commun. 12, 4628 (2021).

77. Goossens, P. et al. Integrating multiplex immunofluorescent and mass spectrometry 
imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metab. 
34, 1214–1225.e6 (2022).

78. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: 
a method for highly multiplex quantitative tissue imaging analysis applied to dendritic 
cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).

79. Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep 
phenotyping and spatial analysis of cells in complex tissues. Proc. Natl Acad. Sci. USA 
117, 33455–33465 (2020).  
A methodological paper describing the rapid, flexible and highly-multiplex IBEX 
method for cyclic immunofluorescence imaging.

80. Schubert, W. et al. Analyzing proteome topology and function by automated 
multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).

81. Lin, J. R. et al. Highly multiplexed immunofluorescence imaging of human tissues and 
tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).  
An early methodological report of highly multiplex CycIF applied to tissue.

82. Wählby, C., Erlandsson, F., Bengtsson, E. & Zetterberg, A. Sequential 
immunofluorescence staining and image analysis for detection of large numbers of 
antigens in individual cell nuclei. Cytometry 47, 32–41 (2002).  
The first multiplex imaging paper, showing that immunofluorescence signals can be 
sequentially removed without destroying antigenicity in fixed and paraffin-embedded 
tissue.

83. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular 
organization to cellular states. Science 361, eaar7042 (2018).

84. Gaglia, G. et al. Lymphocyte networks are dynamic cellular communities in the 
immunoregulatory landscape of lung adenocarcinoma. Cancer Cell 41, 871–886.e10 
(2023).

85. Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary 
melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

86. Li, K. et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic 
adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 
40, 1374–1391.e7 (2022).

87. Chen, M. et al. Spatiotemporal analysis of B cell- and antibody secreting cell-subsets 
in human melanoma reveals metastasis-, tumor stage-, and age-associated dynamics. 
Front. Cell Dev. Biol. 9, 677944 (2021).

88. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed 
imaging. Cell 174, 968–981.e15 (2018).

89. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies.  
Nat. Protoc. 16, 3802–3835 (2021).  
A methodological paper describing the CODEX workflow.

90. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein 
imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

91. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding 
in tissue. Cell 183, 1665–1681.e18 (2020).

92. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. 
Nat. Biotechnol. 38, 586–599 (2020).

93. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial 
multi-omics. Nat. Commun. 13, 795 (2022).

94. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution 
with spatial CITE-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01676-0 
(2023).

95. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein 
markers. Nat. Biotechnol. 41, 788–793 (2023).

96. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 
24, 550–572 (2023).

97. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed 
tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

98. Kishi, J. Y. et al. Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells 
and tissues for spatially indexed sequencing. Nat. Methods 19, 1393–1402 (2022).

99. Hu, K. H. et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. 
Nat. Methods 17, 833–843 (2020).

100. Sha, L. et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen 
tissue based on stereo-seq. Preprint at: bioRxiv https://doi.org/10.1101/2023.04.28.538364 
(2023).

101. McNamara, K. L. et al. Spatial proteomic characterization of HER2-positive breast tumors 
through neoadjuvant therapy predicts response. Nat. Cancer 2, 400–413 (2021).

102. Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer 
determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).

103. Martinez-Morilla, S. et al. Digital spatial profiling of melanoma shows CD95 expression 
in immune cells is associated with resistance to immunotherapy. Oncoimmunology 12, 
2260618 (2023).

104. Gavrielatou, N. et al. Digital spatial profiling links beta-2-microglobulin expression with 
immune checkpoint blockade outcomes in head and neck squamous cell carcinoma. 
Cancer Res. Commun. 3, 558–563 (2023).

105. Schoenfeld, D. A. et al. Immune dysfunction revealed by digital spatial profiling of 
immuno-oncology markers in progressive stages of renal cell carcinoma and in brain 
metastases. J. Immunother. Cancer 11, e007240 (2023).

106. Carter, J. M. et al. Distinct spatial immune microlandscapes are independently associated 
with outcomes in triple-negative breast cancer. Nat. Commun. 14, 2215 (2023).

107. Bonnett, S. A. et al. Ultra high-plex spatial proteogenomic investigation of giant cell 
glioblastoma multiforme immune infiltrates reveals distinct protein and RNA expression 
profiles. Cancer Res. Commun. 3, 763–779 (2023).

108. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single 
cells. Nat. Methods 14, 865–868 (2017).

109. Govek, K. W. et al. Single-cell transcriptomic analysis of mIHC images via antigen 
mapping. Sci. Adv. 7, eabc5464 (2021).

110. Zhu, B. et al. Robust single-cell matching and multimodal analysis using shared and 
distinct features. Nat. Methods 20, 304–315 (2023).

111. Chen, S. et al. Integration of spatial and single-cell data across modalities with weakly 
linked features. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01935-0 (2023).

112. Strand, S. H. et al. Molecular classification and biomarkers of clinical outcome in breast 
ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell 40, 
1521–1536.e7 (2022).

113. Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas 
of human small cell lung cancer. Cancer Cell 39, 1479–1496.e18 (2021).

114. Vázquez-García, I. et al. Ovarian cancer mutational processes drive site-specific immune 
evasion. Nature 612, 778–786 (2022).

115. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human 
squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

116. Ravi, V. M. et al. Spatially resolved multi-omics deciphers bidirectional tumor-host 
interdependence in glioblastoma. Cancer Cell 40, 639–655.e13 (2022).



Nature Reviews Cancer

Review article

117. Müller, W. H., De Pauw, E., Far, J., Malherbe, C. & Eppe, G. Imaging lipids in biological 
samples with surface-assisted laser desorption/ionization mass spectrometry: a concise 
review of the last decade. Prog. Lipid Res. 83, 101114 (2021).

118. Balluff, B., Hanselmann, M. & Heeren, R. M. Mass spectrometry imaging for the 
investigation of intratumor heterogeneity. Adv. Cancer Res. 134, 201–230 (2017).

119. Ma, X. & Fernández, F. M. Advances in mass spectrometry imaging for spatial cancer 
metabolomics. Mass Spectrom. Rev. 2022, e21804 (2022).

120. Spraggins, J. M. et al. High-performance molecular imaging with MALDI trapped 
ion-mobility time-of-flight (timsTOF) mass spectrometry. Anal. Chem. 91, 14552–14560 
(2019).

121. Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 
mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 
16, 925–931 (2019).

122. Zavalin, A., Yang, J., Hayden, K., Vestal, M. & Caprioli, R. M. Tissue protein imaging 
at 1 μm laser spot diameter for high spatial resolution and high imaging speed 
using transmission geometry MALDI TOF MS. Anal. Bioanal. Chem. 407, 2337–2342 
(2015).

123. Neumann, E. K., Comi, T. J., Rubakhin, S. S. & Sweedler, J. V. Lipid heterogeneity 
between astrocytes and neurons revealed by single-cell MALDI-MS combined with 
immunocytochemical classification. Angew. Chem. Int. Ed. Engl. 58, 5910–5914  
(2019).

124. Cuypers, E. et al. ‘On the Spot’ digital pathology of breast cancer based on single-cell 
mass spectrometry imaging. Anal. Chem. 94, 6180–6190 (2022).

125. Bien, T. et al. MALDI-2 mass spectrometry and immunohistochemistry imaging of 
Gb3Cer, Gb4Cer, and further glycosphingolipids in human colorectal cancer tissue. 
Anal. Chem. 92, 7096–7105 (2020).

126. O’Neill, K. C., Liapis, E., Harris, B. T., Perlin, D. S. & Carter, C. L. Mass spectrometry imaging 
discriminates glioblastoma tumor cell subpopulations and different microvascular 
formations based on their lipid profiles. Sci. Rep. 12, 17069 (2022).

127. Andersen, M. K. et al. Spatial differentiation of metabolism in prostate cancer tissue by 
MALDI-TOF MSI. Cancer Metab. 9, 9 (2021).

128. Ščupáková, K. et al. Clinical importance of high-mannose, fucosylated, and complex 
N-glycans in breast cancer metastasis. JCI Insight 6, e146945 (2021).

129. Prentice, B. M. et al. Imaging mass spectrometry enables molecular profiling of mouse 
and human pancreatic tissue. Diabetologia 62, 1036–1047 (2019).

130. Prade, V. M. et al. De novo discovery of metabolic heterogeneity with 
immunophenotype-guided imaging mass spectrometry. Mol. Metab. 36, 100953 
(2020).

131. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair.  
Nat. Metab. 4, 1109–1118 (2022).

132. Baker, E. A. G., Schapiro, D., Dumitrascu, B., Vickovic, S. & Regev, A. In silico tissue 
generation and power analysis for spatial omics. Nat. Methods 20, 424–431 (2023).

133. Bost, P., Schulz, D., Engler, S., Wasserfall, C. & Bodenmiller, B. Optimizing multiplexed 
imaging experimental design through tissue spatial segregation estimation. Nat. 
Methods 20, 418–423 (2023).

134. Edfors, F. et al. Gene-specific correlation of RNA and protein levels in human cells and 
tissues. Mol. Syst. Biol. 12, 883 (2016).

135. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA 
abundance. Cell 165, 535–550 (2016).  
A paper discussing the imperfect relationship between transcript and protein levels 
and arguing that protein-level measurements are needed to understand biological 
systems in many contexts.

136. Du, Z. et al. Qualifying antibodies for image-based immune profiling and multiplexed 
tissue imaging. Nat. Protoc. 14, 2900–2930 (2019).  
A methodological paper that describes a pipeline for antibody validation.

137. Uhlen, M. et al. A proposal for validation of antibodies. Nat. Methods 13, 823–827 
(2016).

138. Quardokus, E. M. et al. Organ mapping antibody panels: a community resource for 
standardized multiplexed tissue imaging. Nat. Methods 20, 1174–1178 (2023).

139. Liu, C. C. et al. Robust phenotyping of highly multiplexed tissue imaging data using 
pixel-level clustering. Nat. Commun. 14, 4618 (2023).

140. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for 
cellular segmentation. Nat. Methods 18, 100–106 (2021).

141. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level 
performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 
555–565 (2022).

142. Spitzer, H., Berry, S., Donoghoe, M., Pelkmans, L. & Theis, F. J. Learning consistent 
subcellular landmarks to quantify changes in multiplexed protein maps. Nat. Methods 
https://doi.org/10.1038/s41592-023-01894-z (2023).

143. Bai, Y. et al. Expanded vacuum-stable gels for multiplexed high-resolution spatial 
histopathology. Nat. Commun. 14, 4013 (2023).

144. Strotton, M. et al. Multielement Z-tag imaging by X-ray fluorescence microscopy for 
next-generation multiplex imaging. Nat. Methods 20, 1310–1322 (2023).

145. Yagnik, G., Liu, Z., Rothschild, K. J. & Lim, M. J. Highly multiplexed immunohistochemical 
MALDI-MS imaging of biomarkers in tissues. J. Am. Soc. Mass Spectrom. 32, 977–988 
(2021).

146. Claes, B. S. R. et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and 
untargeted MSI combined. Anal. Chem. 95, 2329–2338 (2023).

147. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

148. Shi, L. et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue 
clearing. Nat. Biotechnol. 40, 364–373 (2022).

149. Wu, E. et al. 7-UP: generating in silico CODEX from a small set of immunofluorescence 
markers. PNAS Nexus 2, pgad171 (2023).

150. Ben-Uri, R. et al. Escalating high-dimensional imaging using combinatorial channel 
multiplexing and deep learning. Preprint at: bioRxiv https://doi.org/10.1101/ 
2023.09.09.556962 (2023).

151. Zhang, W. et al. Identification of cell types in multiplexed in situ images by combining 
protein expression and spatial information using CELESTA. Nat. Methods 19, 759–769 
(2022).

152. Brbić, M. et al. Annotation of spatially resolved single-cell data with STELLAR.  
Nat. Methods 19, 1411–1418 (2022).

153. Amitay, Y. et al. CellSighter: a neural network to classify cells in highly multiplexed 
images. Nat. Commun. 14, 4302 (2023).

154. Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. 
Nat. Biotechnol. 40, 1231–1240 (2022).

155. Cui, Y. et al. Expansion microscopy using a single anchor molecule for high-yield 
multiplexed imaging of proteins and RNAs. PLoS One 18, e0291506 (2023).

156. Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data integration 
using unshared features. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01766-z 
(2023).

157. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell 
analysis. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01767-y (2023).

158. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 
(2021).

159. Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. 
Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

160. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular 
heterogeneity in cancer. Nature 611, 810–817 (2022).

161. Ozeki, M. et al. Susceptibility of actin to modification by 4-hydroxy-2-nonenal.  
J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 827, 119–126 (2005).

162. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved 
hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

163. Montanari, N. R. et al. Multi-parametric analysis of human livers reveals variation in 
intrahepatic inflammation across phases of chronic hepatitis B infection. J. Hepatol. 77, 
332–343 (2022).

164. Hoyt, C. C. Multiplex immunofluorescence and multispectral imaging: forming the 
basis of a clinical test platform for immuno-oncology. Front. Mol. Biosci. 8, 674747 
(2021).

165. Hurov, K. et al. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell 
agonist™ (Bicycle TICA™) induces tumor localized CD137 agonism. J. Immunother. 
Cancer 9, e002883 (2021).

166. Rivest, F. et al. Fully automated sequential immunofluorescence (seqIF) for hyperplex 
spatial proteomics. Sci. Rep. 13, 16994 (2023).

167. Jarosch, S. et al. Multiplexed imaging and automated signal quantification in 
formalin-fixed paraffin-embedded tissues by ChipCytometry. Cell Rep. Methods 1, 
100104 (2021).

168. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.  
Nat. Methods 9, 676–682 (2012).

169. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. 
Sci. Rep. 7, 16878 (2017).

170. Peng, T. et al. A BaSiC tool for background and shading correction of optical microscopy 
images. Nat. Commun. 8, 14836 (2017).

171. Lu, P. et al. IMC-Denoise: a content aware denoising pipeline to enhance imaging mass 
cytometry. Nat. Commun. 14, 1601 (2023).

172. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 
16, 1226–1232 (2019).

173. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for 
multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

174. Marconato, L. et al. SpatialData: an open and universal data framework for spatial omics. 
Preprint at bioRxiv https://doi.org/10.1101/2023.05.05.539647 (2023).

Acknowledgements
We thank Nils Eling and Daniel Schulz for critical reading and feedback on the manuscript. We 
thank all Bodenmiller laboratory members for helpful discussions. B.B. was funded by two 
SNSF grants (310030_205007, 316030_213512), an NIH grant (UC4 DK108132), the CRUK 
IMAXT Grand Challenge, and the European Research Council (ERC) under the European 
Union’s Horizon 2020 Program under the ERC grant agreement no. 866074 (“Precision Motifs”).

Author contributions
N.d.S. and S.Z. researched data for the article. All authors contributed substantially to 
discussion of the content. N.d.S. wrote and revised the article. S.Z. prepared and revised 
the figures and tables with input from the other authors. N.d.S. and B.B. reviewed and edited the 
manuscript before submission.

Competing interests
B.B. has founded and is a shareholder and member of the board of Navignostics, a precision 
oncology spin-off from the University of Zurich. N.d.S. and S.Z. declare no competing 
interests.



Nature Reviews Cancer

Review article

Additional information
Supplementary information The online version contains supplementary material available at  
https://doi.org/10.1038/s41568-023-00657-4.

Peer review information Nature Reviews Cancer thanks Sizun Jiang who co-reviewed with 
Hendrik Michel, Christian Schürch and Sean Bendall for their contribution to the peer review 
of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 
article under a publishing agreement with the author(s) or other rightsholder(s); author 

self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

Related links
Human protein atlas: https://www.proteinatlas.org/
Napari: https://zenodo.org/record/7276432
Online documentation of IMC data analysis: https://bodenmillergroup.github.io/
IMCDataAnalysis/

© Springer Nature Limited 2024


