

Unlocking the Potential of Digital Pathology and AI through Regulatory Science

Le Méridien Arlington Day 1: June 27, 2023

Spread the message!

LinkedIn: @mdic

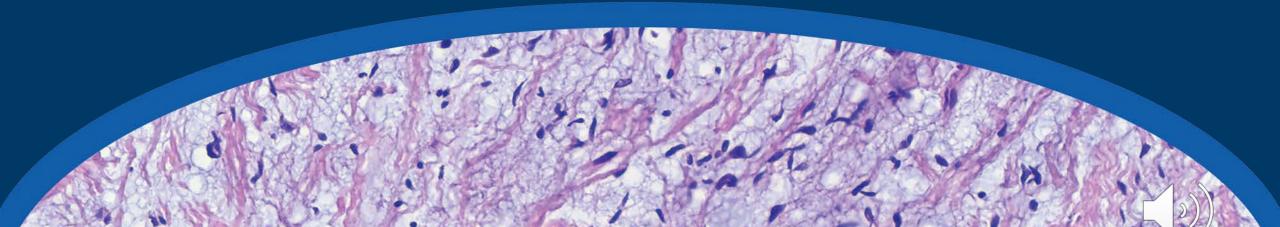
#Plcc #Cancer #Oncology #MedTech
#Innovation #patientsafety #regulation#FDA #biomarker
#oncology #digitalpathology #AI #CLIA #quality #technology

Welcome Remarks & Overview of MDIC

Andy Fish President & CEO, MDIC

Welcome Remarks & Overview of Plcc

Jochen K. Lennerz, M.D., Ph.D. Medical Director, Center for Integrated Diagnostics, MGH & Associate Professor, Harvard Medical School


Session 1: Updates from Organizations and Initiatives related to DP/AI

Moderated by: Joseph R Sapiente Vice President, Clinical Science & Technology, MDIC

Session 1: Updates from Organizations and Initiatives related to DP/AI

College of American Pathology (CAP): Pathology Innovation and Data Science

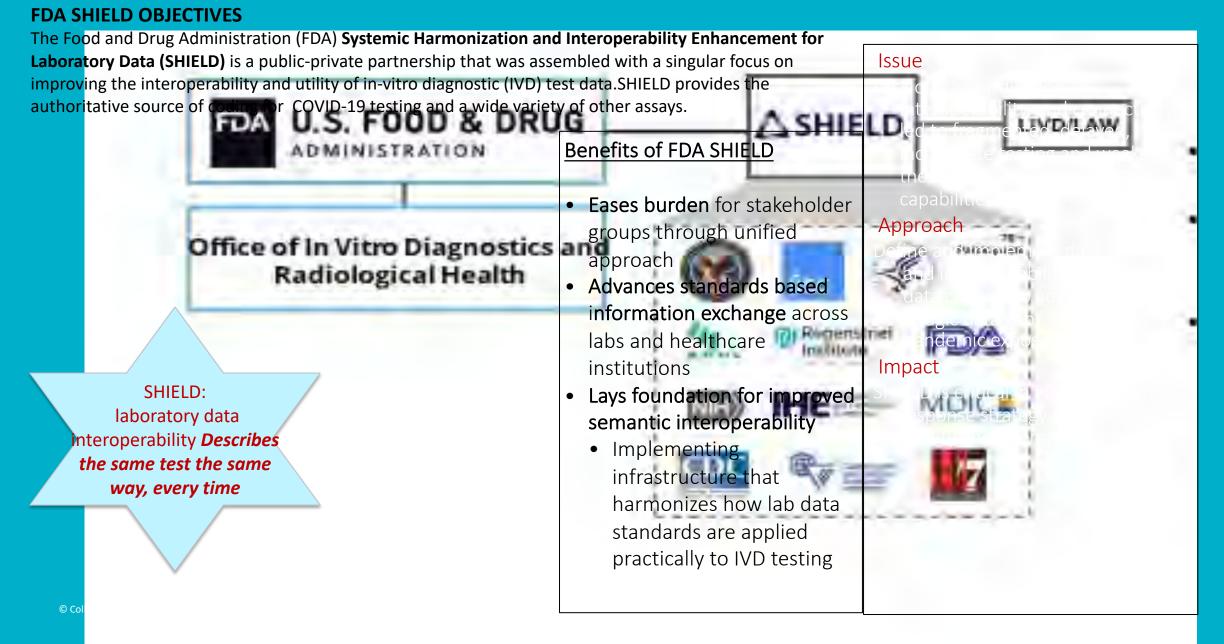
M. E. de Baca (Doc), MD Sysmex VP for Medical Affairs & CAP Board of Governors

COLLEGE of AMERICAN PATHOLOGISTS

CAP Update:

SHIELD & Council on Informatics and Pathology Innovation

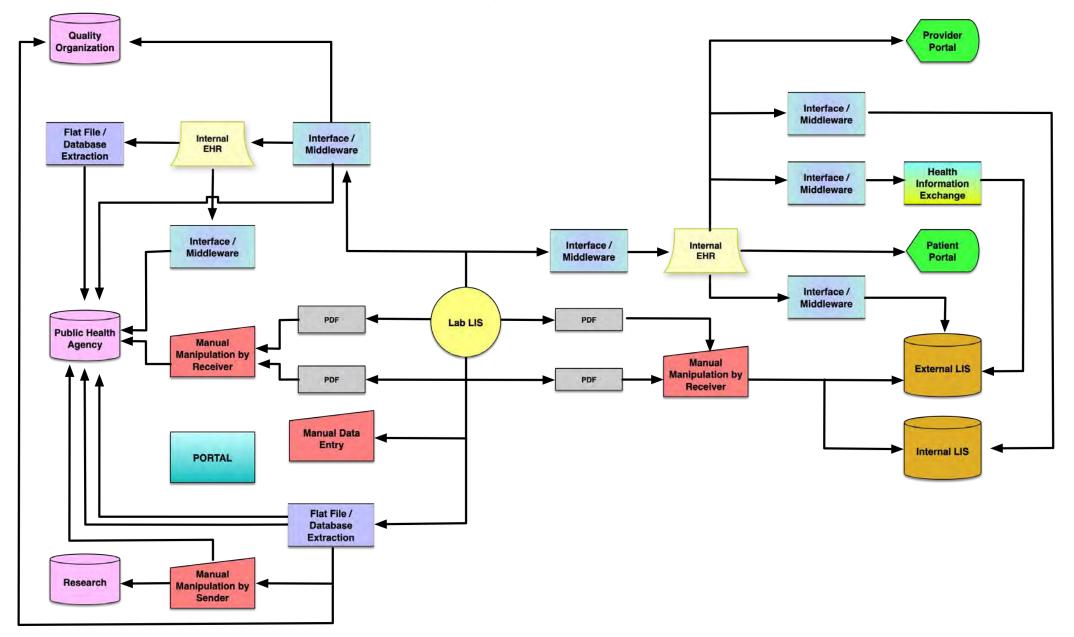
June 27 2023

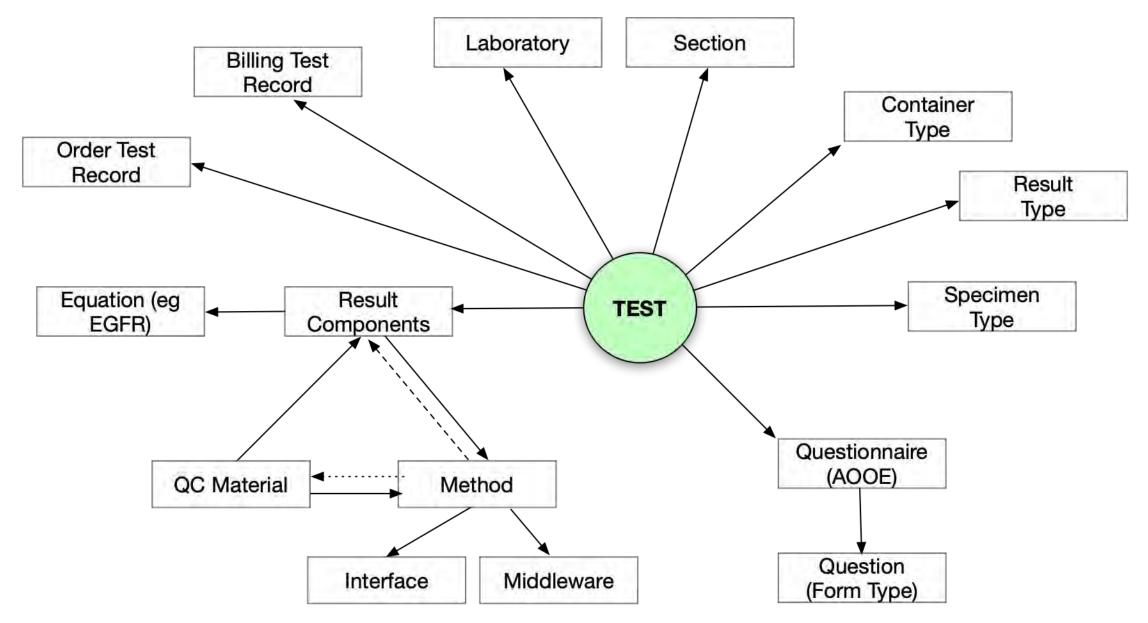


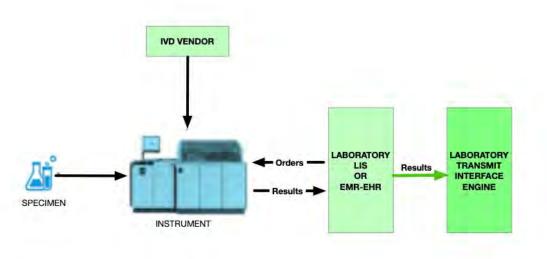
FDA SHIELD OBJECTIVES

The Food and Drug Administration (FDA) **Systemic Harmonization and Interoperability Enhancement for Laboratory Data (SHIELD)** is a public-private partnership that was assembled with a singular focus on improving the interoperability and utility of in-vitro diagnostic (IVD) test data.SHIELD provides the authoritative source of coding for COVID-19 testing and a wide variety of other assays.

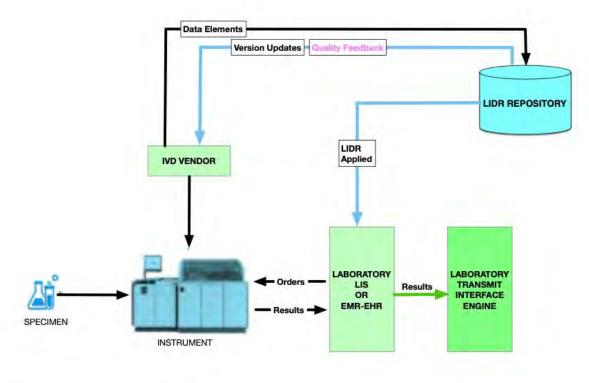
ne 2023


SHIELD

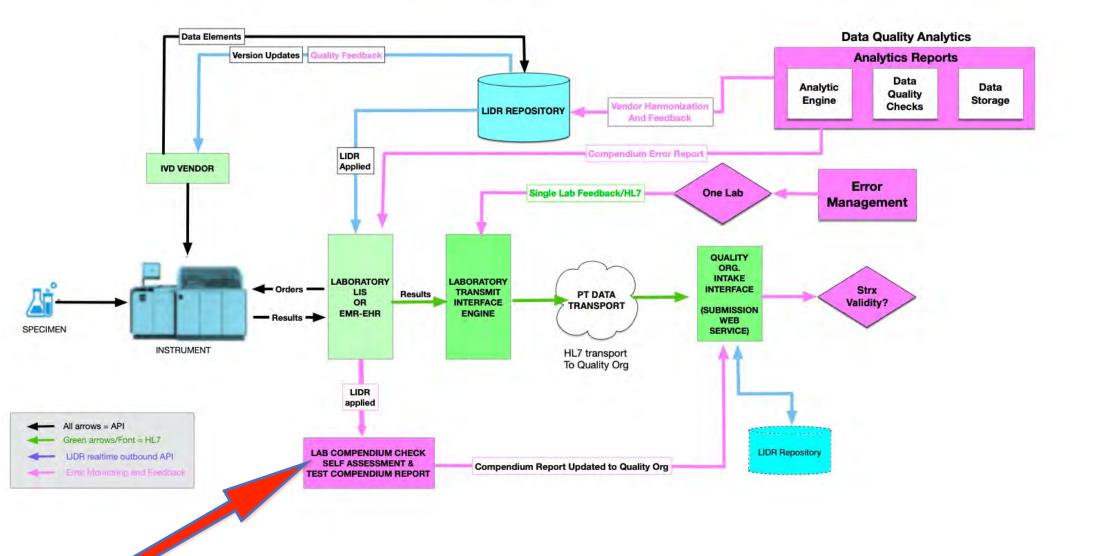

CAP:


We proposed the strategic design of a quality assurance program and supporting infrastructure to support in vitro diagnostic (IVD) test result data quality.

Current State of Laboratory Data

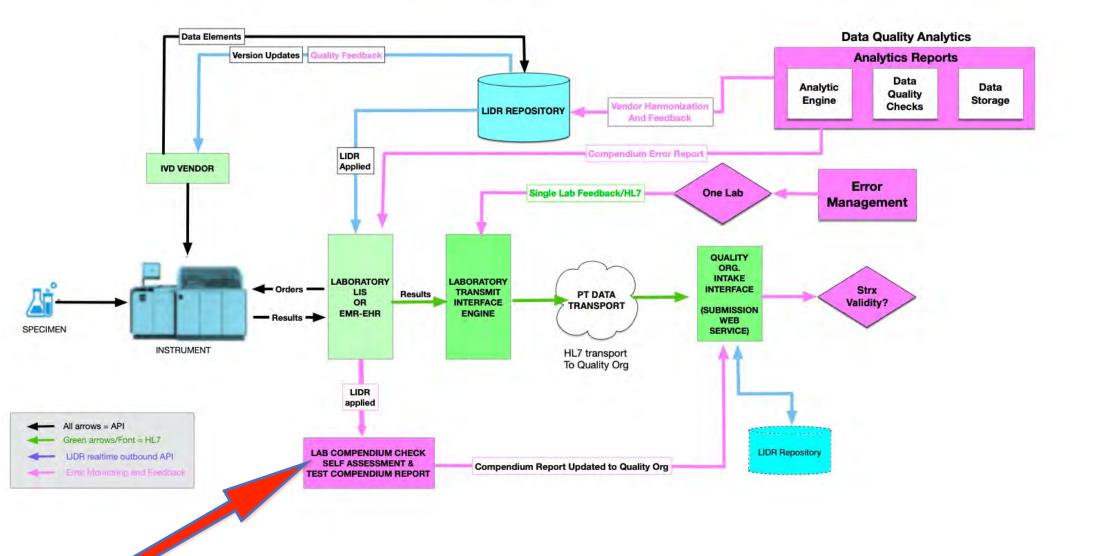


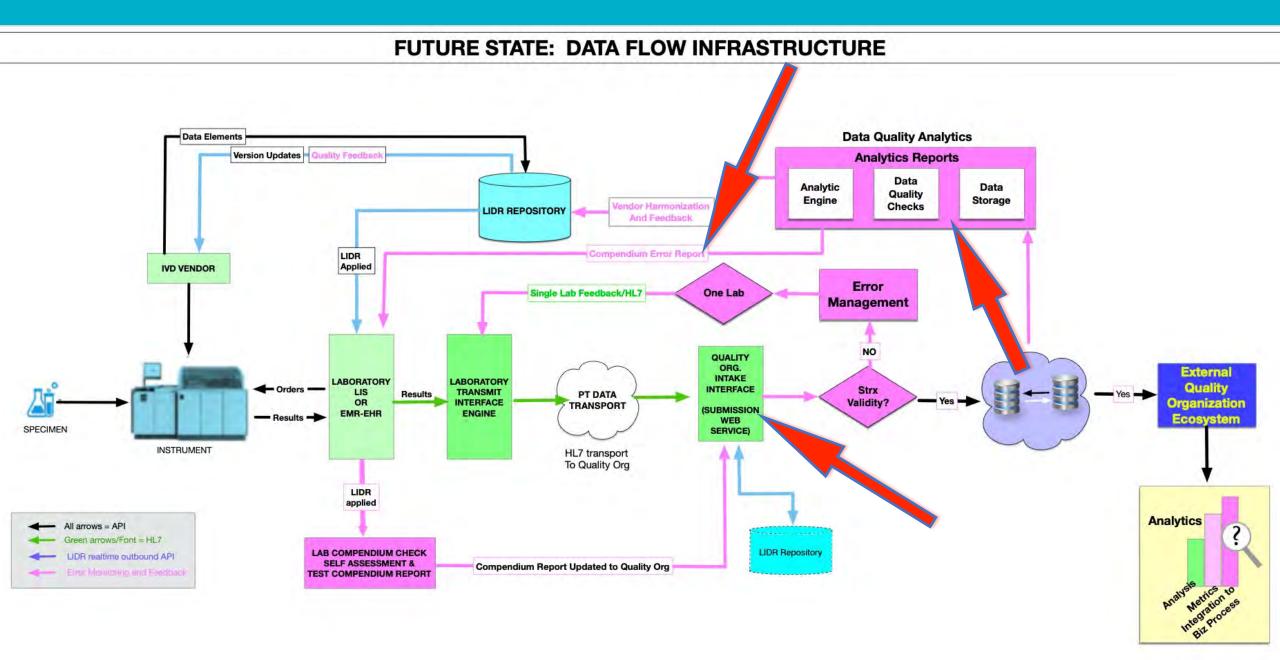
Current State of Laboratory Data



All arrows = API Green arrows/Font = HL7 UDR realtime outbound API

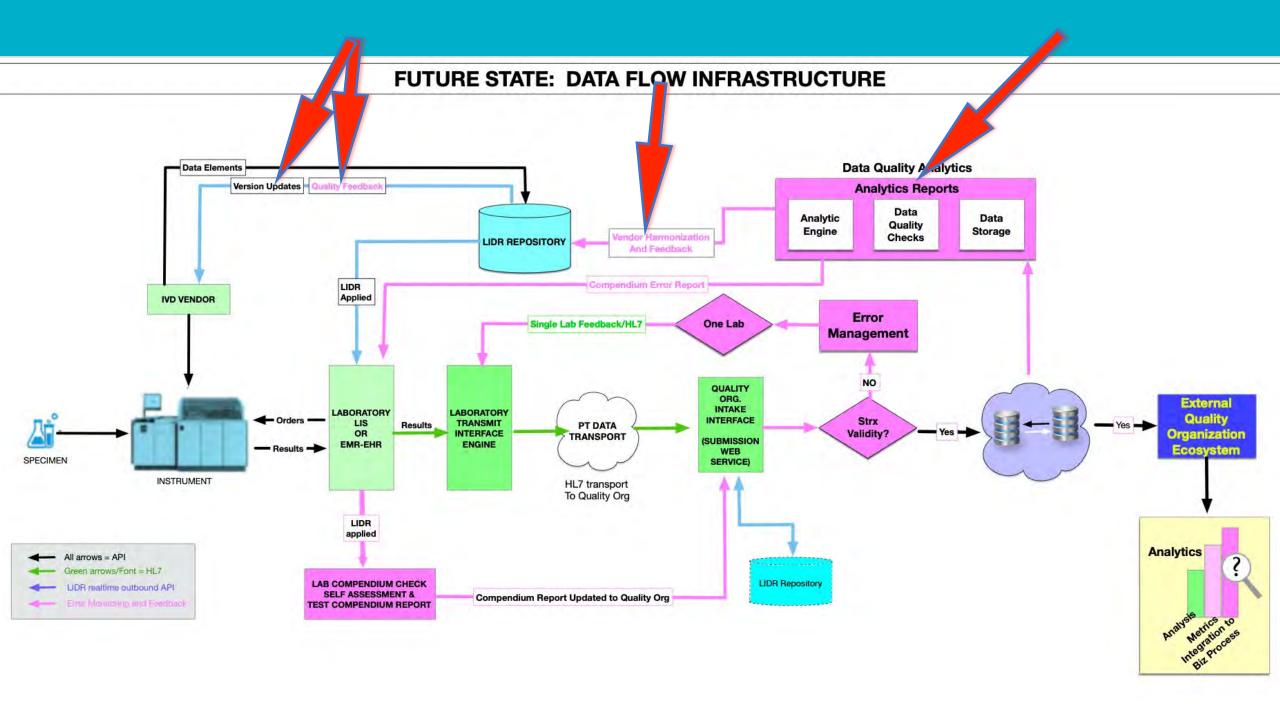
Self Assessment Toolkit




THE ROSETTA STONE KEY TO DECIPHERING HIEROGLYPHICS WITH THE SAME DERREY IN 3 SCRIPTS HIEROGLYPHIC AIIRING AND ANTIC DEMOTIC INSTRATION DEMOTIC INSTRATION DETOTINAITA

Laboratory Personnel

LIS/EHR Templates

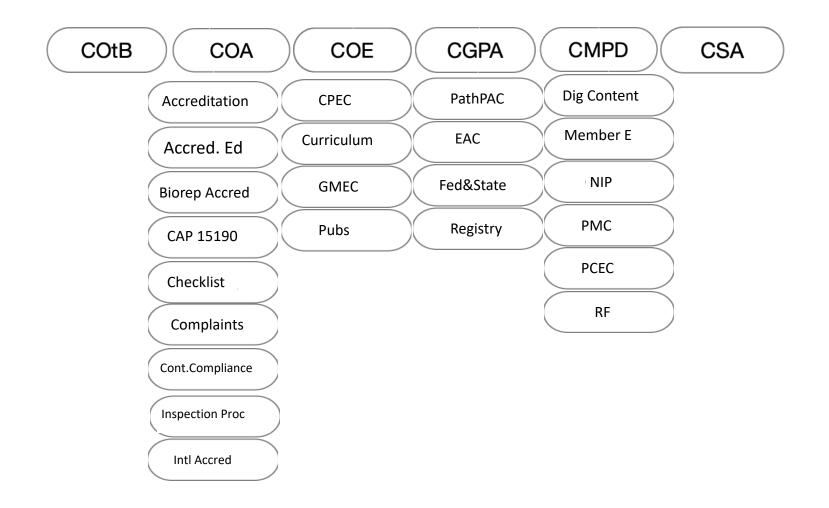

LIS Analysts

Laboratory Data Quality External Assessment

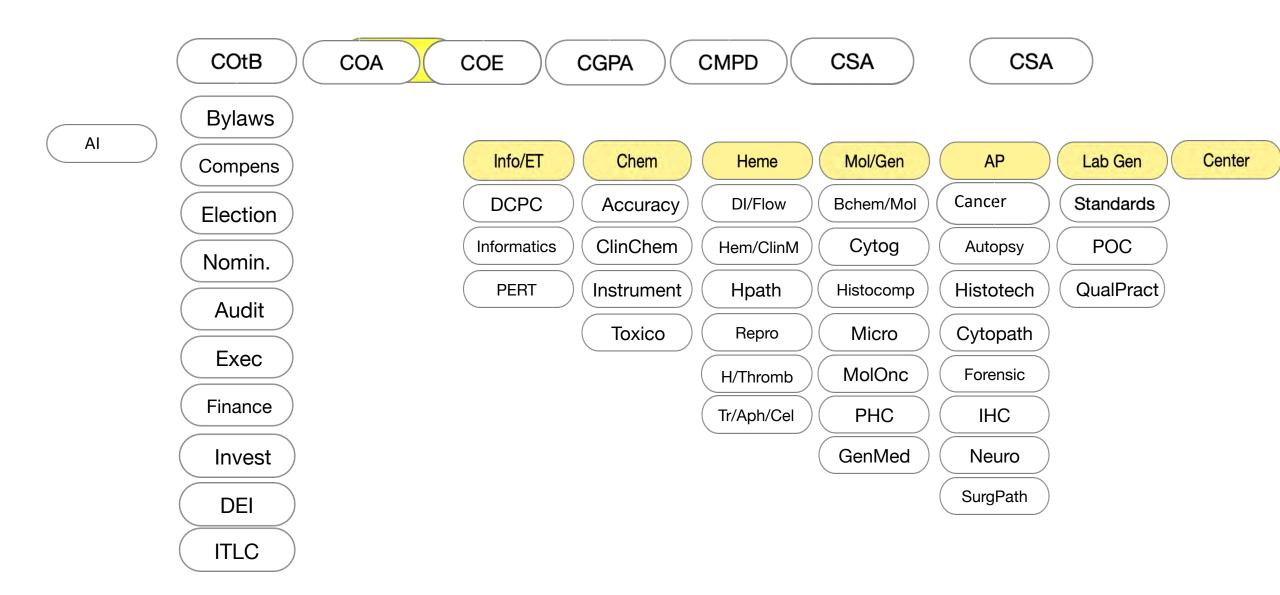
Auswandererhallen der Hamburg-Amerika Linie, Hamburg. Sanierungskarte. Befördernde Linie: Akte No. Name des Passagiers: Akte Mo. Mame des Passagiers: Akte Mo. Mame des Passagiers: Akte Mo. Mame des Passagiers: Akte Mo. Mame des Passagiers: Mame des Passagiers: Mam de	HAMBURG-AMERIKA LINIE JOINT SERVICE WITH UNITED AMERICAN LINES (NCORPORATED) DATE OF DEPARTURE HAMBURG Name of ship MOUNT Class Name of ship MOUNT Class Name of Ship MOUNT Class Name of
Name des Passagiers	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O

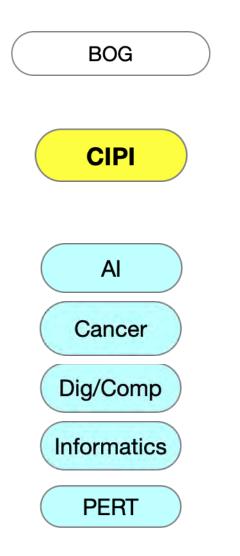
... Next Steps...

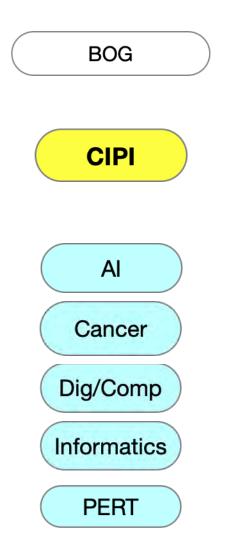
Year 2 Approved Objectives


Laboratory Coding Transmission Feasibility
 Test Menu Coding Education & Training
 Analysis Normal Form Clinical Narrative
 Development and Roundtrip Testing

Whew!


... (almost) Complete Pivot...


8



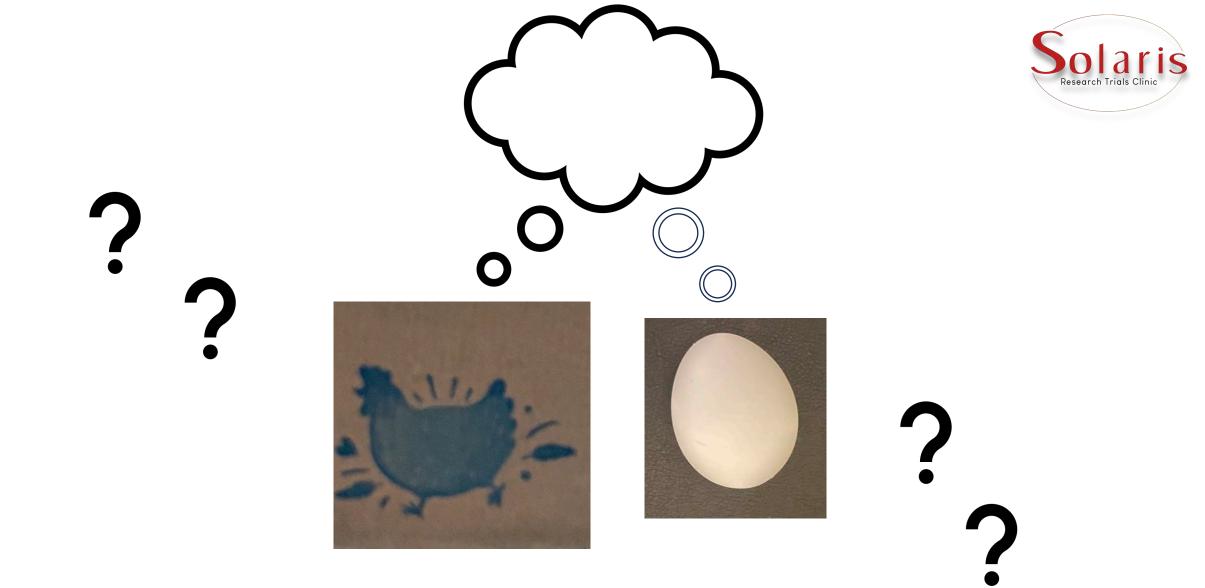
BOG

1947

CAP Founded

4

Digital Pathology Association (DPA) & DPA Foundation: Current scope of the work


Esther Abels BioMedical Regulatory Health Science Expert SolarisRTC LLC

DPA and DPA Foundation What do we do

SolarisRTC LLC Esther Abels | BioMedical Regulatory Health Science Expert info@solarisRTC.com 20230627

Digital Pathology Growth Opportunities

Precision medicine is rapidly changing

Budget, reimbursement and workforce are decreasing

Demand for personal approaches is growing

Increasing need for targeted Dx and Tx

Acceleration through efficiency gains and showing effectiveness early on is needed

DIGITAL PATHOLOGY

Mission: facilitate awareness, education and adoption of digital pathology and AI applications in healthcare and life sciences.

DPA fosters an exchange of ideas helping members understand, navigate, and influence the future of pathology.

digitalpathologyassociation.org

Join our community & connect with **3,000+** digital pathology professionals!

in

Beyond the Scope

DIGITAL PATHOLOGY

DIGITAL ANATOMIC PATHOLOGY ACADEMY (DAPA) WSI EDUCATIONAL PLATFORM PROVIDED BY THE DPA FOR ITS MEMBERS

connect, innovate, and learn.

DPA COLLABORATE

Share ideas, pose questions, and network with your peers

The online community for members to

Cloud-based platform provides annotated digital slides with diagnosis and relevant information of morphology and ancillary testing

MEMBER LOGIN

TING DIGITAL OCT 29-31 | HYATT REGENCY | ORLANDO, FL

Spoti

LOG IN

a podcast focusing on the hot topics in digital pathology

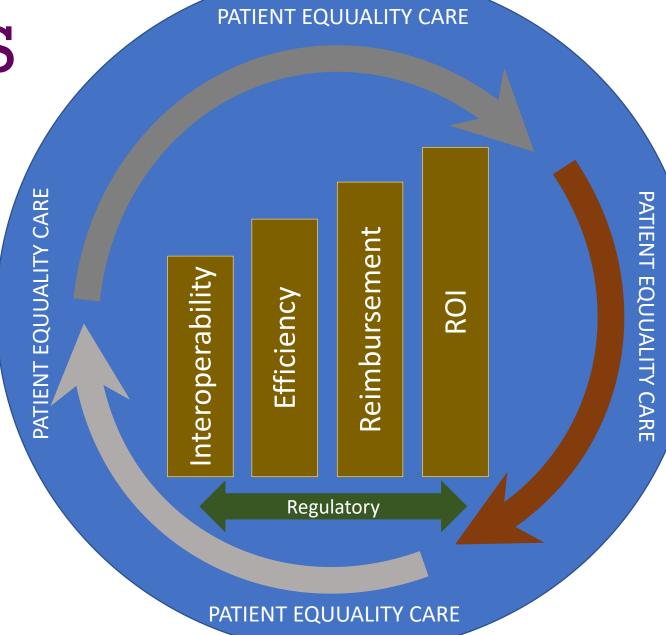
Going Global

Implementation: need for open agnostic digital platforms, understand and share of success

Consumers: knowing how to apply and actionable insights; reference sites

Serving Patients: Delivery of Care, share use cases, reimbursements, best practices, education

Footprint: Platform is to be integrated easily from research into clinic enabling easy integration of AI tools

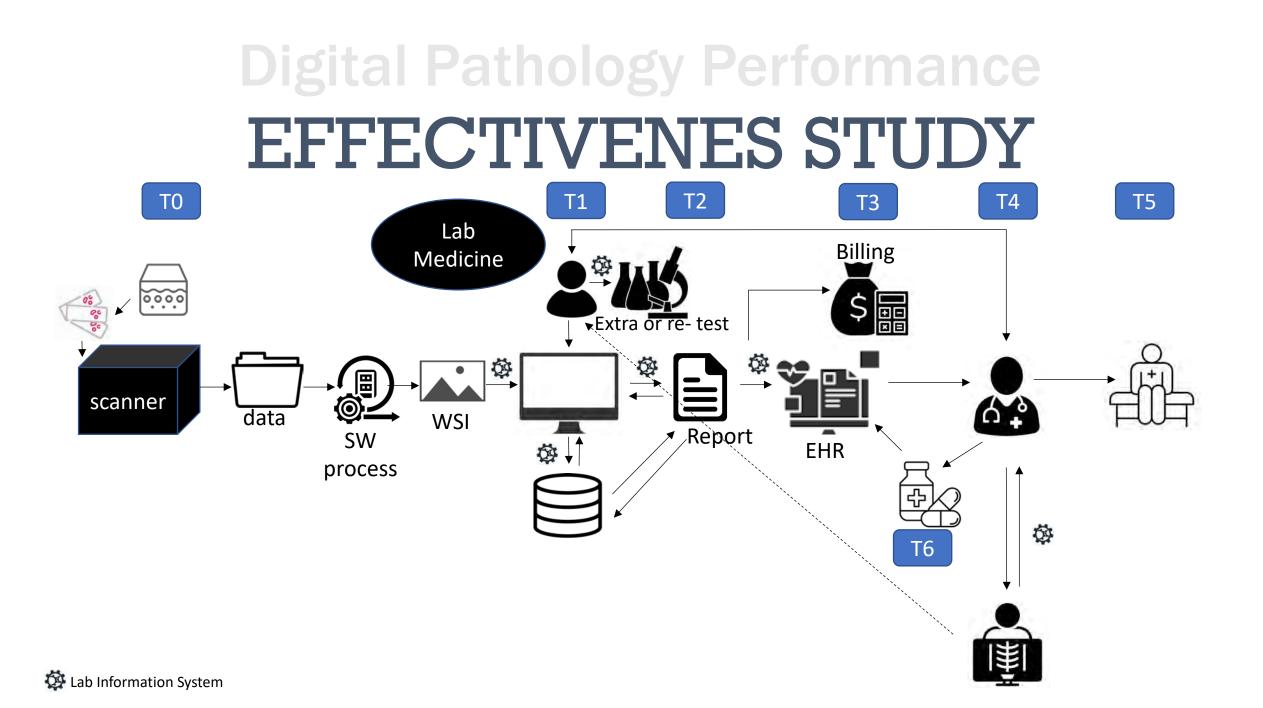

General principles, harmonization, guidelines and connectathons

501(c)(3) organization established to raise philanthropic support to help realize the promise of digital pathology.

Our Vision: To bring digital pathology enabled precision medicine to every patient. DIGITAL PATHOLOGY DPA FOUNDATION

Our MISSION: Accelerate adoption of digital pathology to improve patient outcomes globally.

Synergy of DRIVERS


Digital Pathology Effectiveness Study

PURPOSE:

Document the impacts of adopting digital pathology for both patients and providers across a range of practice settings and community types.

ROADMAP

Timelines	Deliverables
Year 1	Effectiveness Study results Market Insights Optimization Stepping stone to unlock AI
Year 3	Best practices, Guidelines AI study driving for Regulatory Clarity, CPT codes, ROI Interoperability AI CPT application
Year 5	CPT Valuation Investigator Funded study Data as asset
>5yrs	Cyclic

THANK YOU

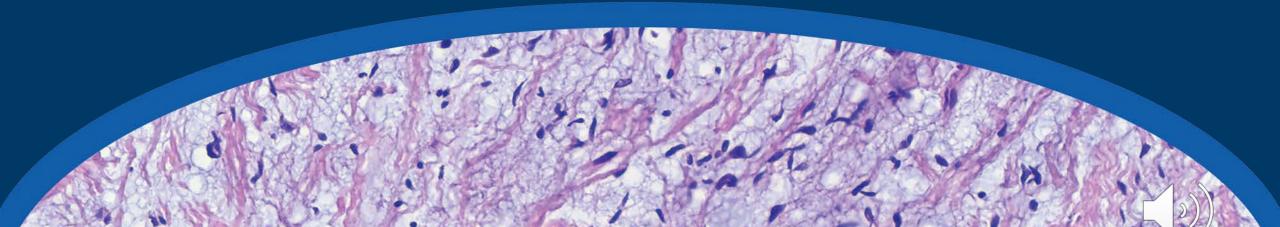
Association for Pathology Informatics (API) : Pathology Informatics – A Field or a New Practice?

> Ji-Yeon Kim Physician Director, Lab Informatics Kaiser Permanente

American Clinical Laboratory Association (ACLA)

Susan Van Meter President, ACLA

Association of Directors of Anatomic and Surgical Pathology (ADASP)


Alexandra Kalof, MD Division Chief, CLIA Laboratory & Director of Anatomic Pathology University of Vermont Medical Center

Session 1: Updates from Organizations and Initiatives related to DP/AI

Panel Q&A

Coffee Break

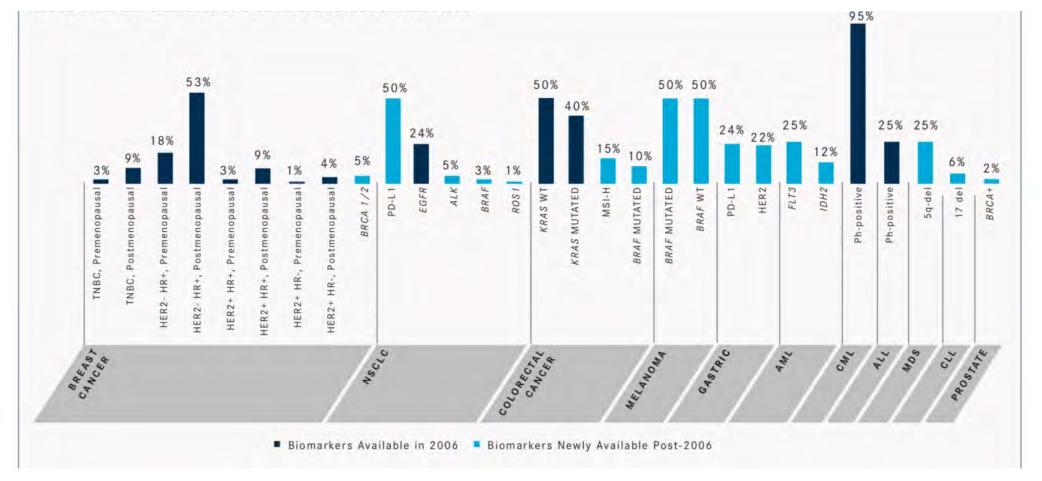
Q&A Session with Troy Tazbaz, Director, CDRH Digital Health Center of Excellence (DHCoE)

Moderated by Jithesh Veetil, PhD Senior Program Director, Digital Health & Technology (MDIC)

Session 2: From Regulatory Science to Patients

Moderated by Mark Stewart & Brittany McKelvey

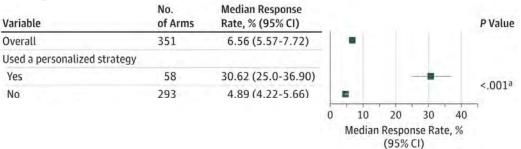
Friends of Cancer research (FOCR): Advancing Regulatory Science

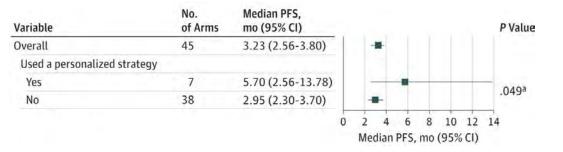

Mark Stewart Vice President, Science Policy (FOCR)

Advancing Regulatory Science Through Collaboration

Mark Stewart, PhD Vice President, Science Policy mstewart@focr.org

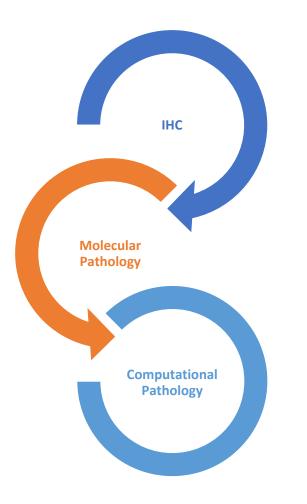
friendsofcancerresearch.org

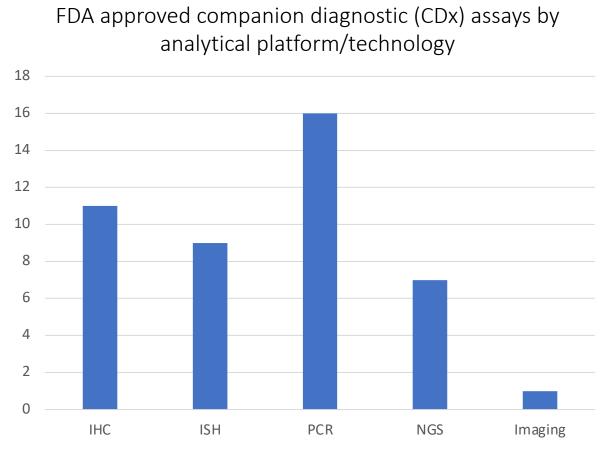

Increasing use of biomarkers in cancer research and care


IQVIA. Global Oncology Trends 2019: Therapeutics, Clinical Development and Health System Implications.

Personalized medicine improves outcomes for patients with cancer

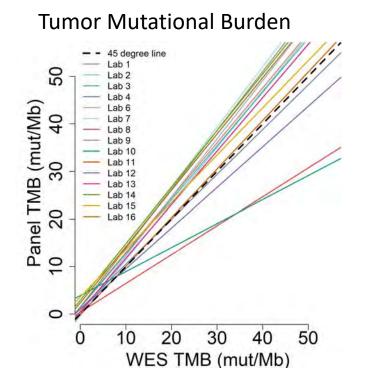
Response Rate

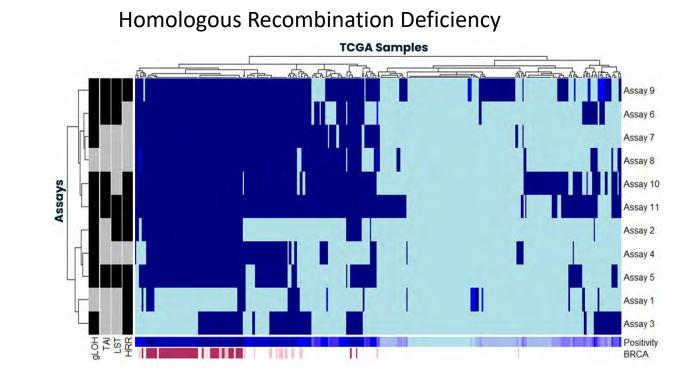

Progression-Free Survival

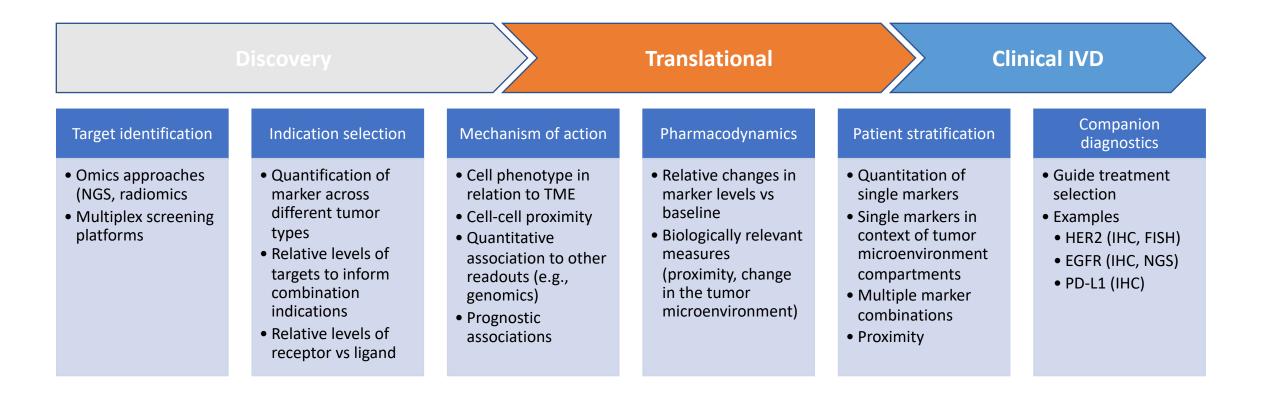


- Biomarkers that stratify patients likely to respond to therapy are now included in 39% of oncology trials, up from 25% in 2010
- Predictive biomarkers were associated with 60% of novel oncology therapeutics in 2018, and three were approved with a companion diagnostic.

Schwaederle M, et al. JAMA Oncol. 2016;2(11):1452–1459


Transformative technology enabling better patient selection and outcomes




Jørgensen JT. Transl Oncol. 2021 Jun;14(6):101063.

Variation in diagnostic tests: harmonization project case study

Digital pathology: from drug discovery to clinical diagnostics

Applying a collaborative model for digital pathology

Initial Opportunities:

- Outline potential use cases, considerations, and approaches for AI-driven digital pathology in oncology drug development
- Identify key challenges/opportunities for alignment of methodology

Emerging digital pathology harmonization effort

Use Case:

- Antibody-drug conjugates (ADCs) are an emerging drug class and often target cell surface receptors. IHC is used to identify the presence, location, and amount of the target.
 - Example: anti-HER2 ADCs

Objectives:

- Evaluate how comparable biomarker measurements are across digital pathology platforms, with or without comparison to manual readings, with a common set of IHC slides.
 - Identify factors that may contribute to variability observed.
- Determine if a reference set can be used to standardize reporting of digital pathology measurements and performance.

Thank You

friendsofcancerresearch.org

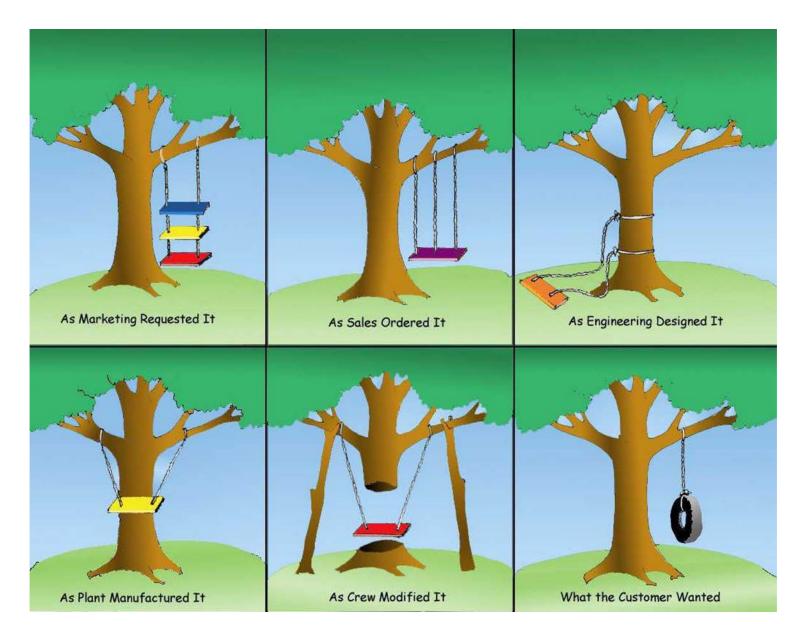
Value of Diagnostics in Healthcare

Hannah Mamuszka CEO & Founder, Alva10

CALVA10

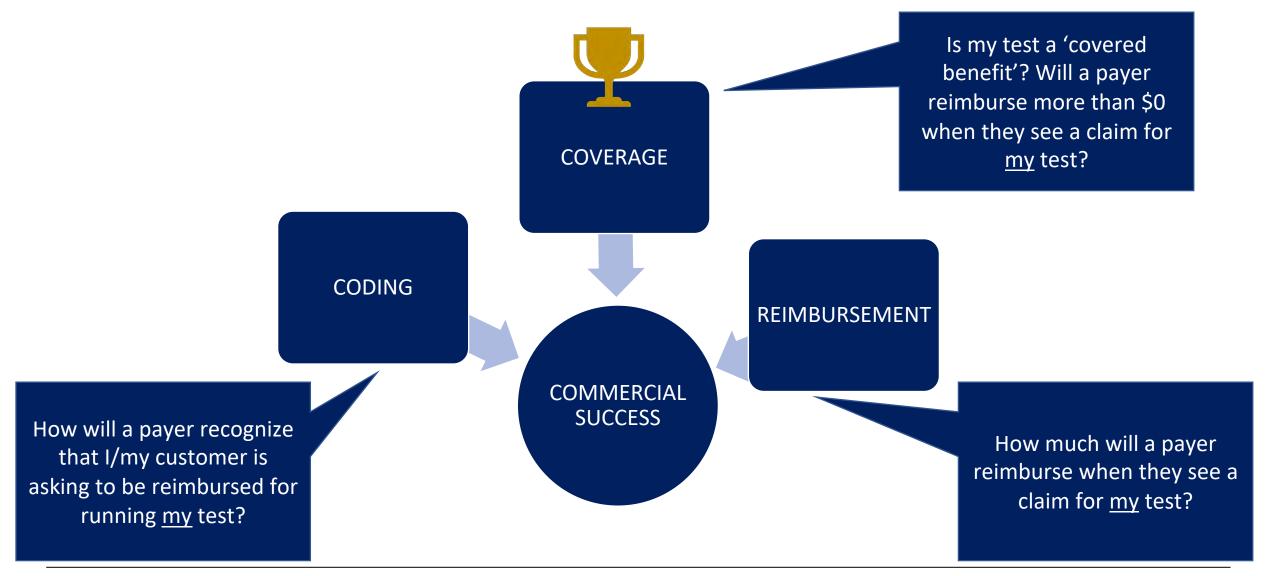
MOVING DIAGNOSTICS TO THE FOREFRONT OF PRECISION MEDICINE

PICC 2023 Hannah Mamuszka

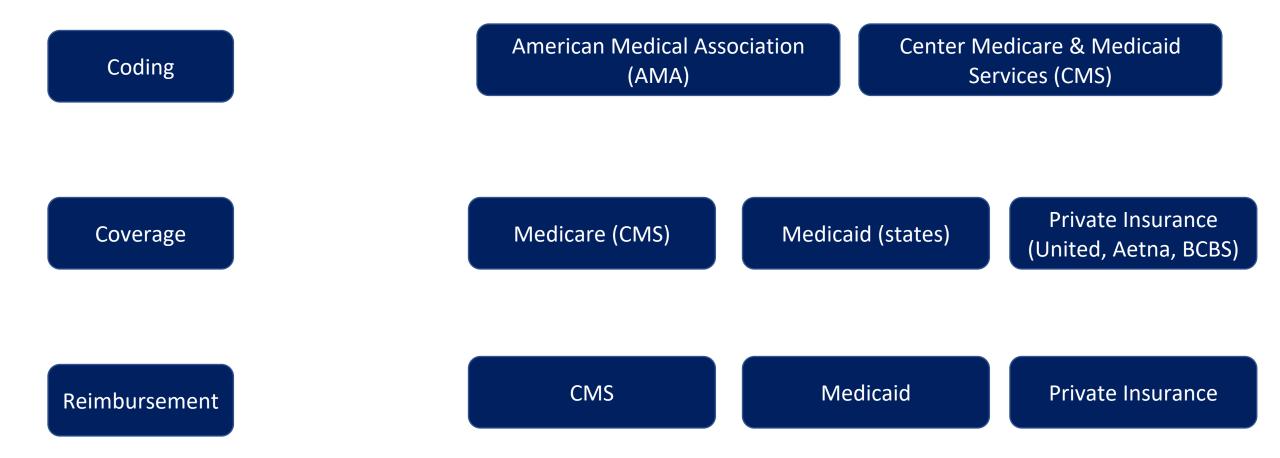

Dismantling The Coding and Reimbursement Myths

"Coding enables my test to get paid"

"As long as I have a code, I am all set"


"Reimbursement is just a matter of getting the right code for my test"

Coding guarantees that your test claim will be processed by the insurance company administrative systems. It does NOT guarantee that the claim will be paid. Acknowledging the payer (Medicare, commercial insurance, large employers, etc.) as the end customer of the lab and diagnostics industry


CONFIDENTIAL & PROPRIETARY

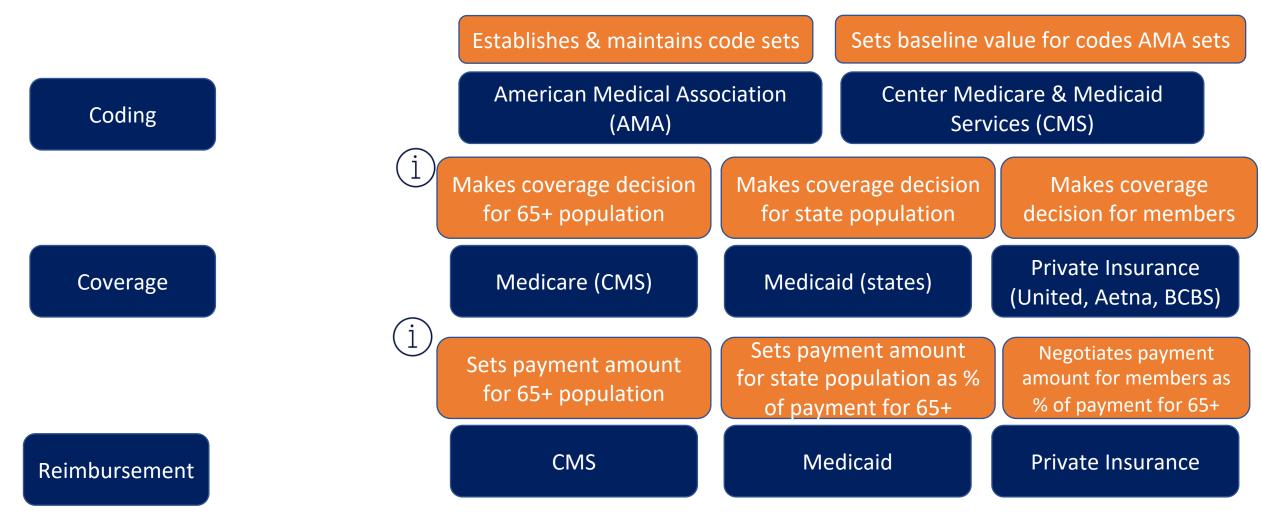
CODING – <u>A</u> PILLAR OF THE U.S. HEALTHCARE SYSTEM

PRESCIENT MEDICINE

STAKEHOLDERS OF REIMBURSEMENT ECOSYSTEM

 \propto ALVA10

\propto ALVA10


INTERPLAYS BETWEEN STAKEHOLDERS

	Establishes & maintains	code sets	Sets baseline	value for codes AMA sets
Coding	American Medical Association (AMA)		Center Medicare & Medicaid Services (CMS)	
Coverage	Medicare (CMS)	Medica	nid (states)	Private Insurance (United, Aetna, BCBS)
Reimbursement	CMS	Me	edicaid	Private Insurance

PRESCIENT MEDICINE

INTERPLAYS BETWEEN STAKEHOLDERS

WHY DIAGNOSTICS STRUGGLE TO GAIN TRACTION

TOO OFTEN, DIAGNOSTIC COMPANIES:

Don't understand economic impact of test to payers
 Don't confirm clinical utility with physicians

•Struggle with sample collection for development and validation

Don't publish their data early enough

Don't generate enough evidence to warrant coverage
Assume early revenue before evidence is ready; don't raise enough money or allow enough time to generate evidence

 Physicians who don't understand, don't agree with, or won't use the test

- Small data sets for validation
- Inaccurate economic assumptions
- Lacking or limited peer reviewed data
- Insufficient evidence for coverage
- An inability to generate more evidence to obtain coverage

Ų

Clinical Utility Confirmation

Do physicians agree there is a clinical problem? Do physicians agree this test solves the problem? Will physicians use this test? Will using the test improve patient outcomes?

Payer Utility Agreement

- Do payers agree there is a problem?
- Do payers agree with the clinical utility of the test?
- Do payers agree with the economic utility of the test? How much data will payers need to see for pilot study

engagement or coverage?

Commercial Planning

Is the company ready to deliver? Coding timeline and planning Billing logistics Sales support and clinical training Customer development and marketing support Lab infrastructure (including reporting and TAT in clinical window)

Path to coverage and revenue

DESIGN WITH THE END IN MIND: ECONOMIC AND CLINICAL UTILITY

ECONOMIC UTILITY

- Allowing payers to appreciate downstream economic impact of implementation of test
- Empowering payers to enforce/waive Prior Auth when cost effective clinical pathways are clarified by diagnostic information
- Enabling payers to message improved patient outcomes and reduced employer costs to their customers for membership retention purposes

CLINICAL UTILITY

- Accurate diagnosis of disease
- Risk stratification
- Response prediction
- Patient adverse event profiles
- Payer costs of obtaining sample/diagnosis
- Critical junctions where lack of information leads to expensive interventions

CALVA10

MOVING DIAGNOSTICS TO THE FOREFRONT OF PRECISION MEDICINE

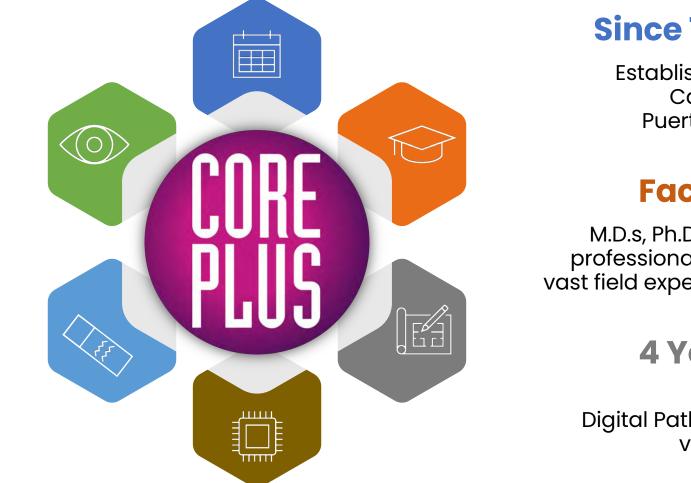
Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

The Journey to Precision Pathology

Mariano de Socarraz CEO, CorePlus

THE JOURNEY TO

PRECISION PATHOLOGY


BY MARIANO DE SOCARRAZ

CORE PLUS

Welcome to our world[™]

Total Cases

>125,083	>10,389
WSI	AI

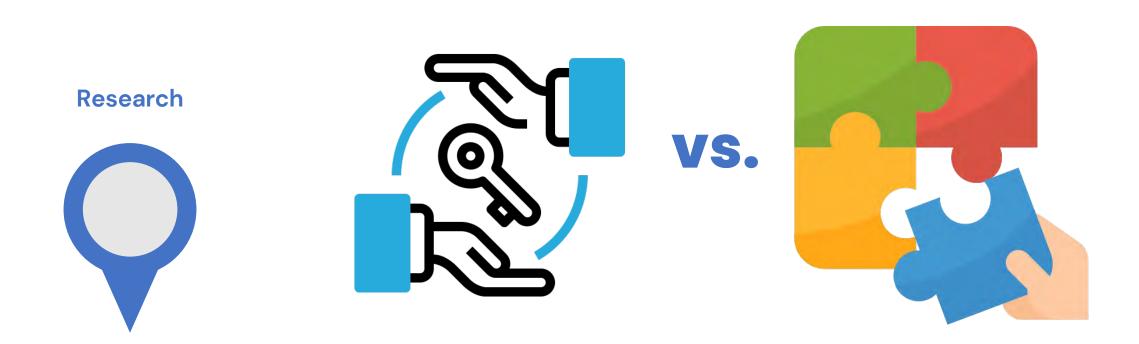
Total Slides

>345,795	>124,882
WSI	AI

Tech-enabled

Since 1996

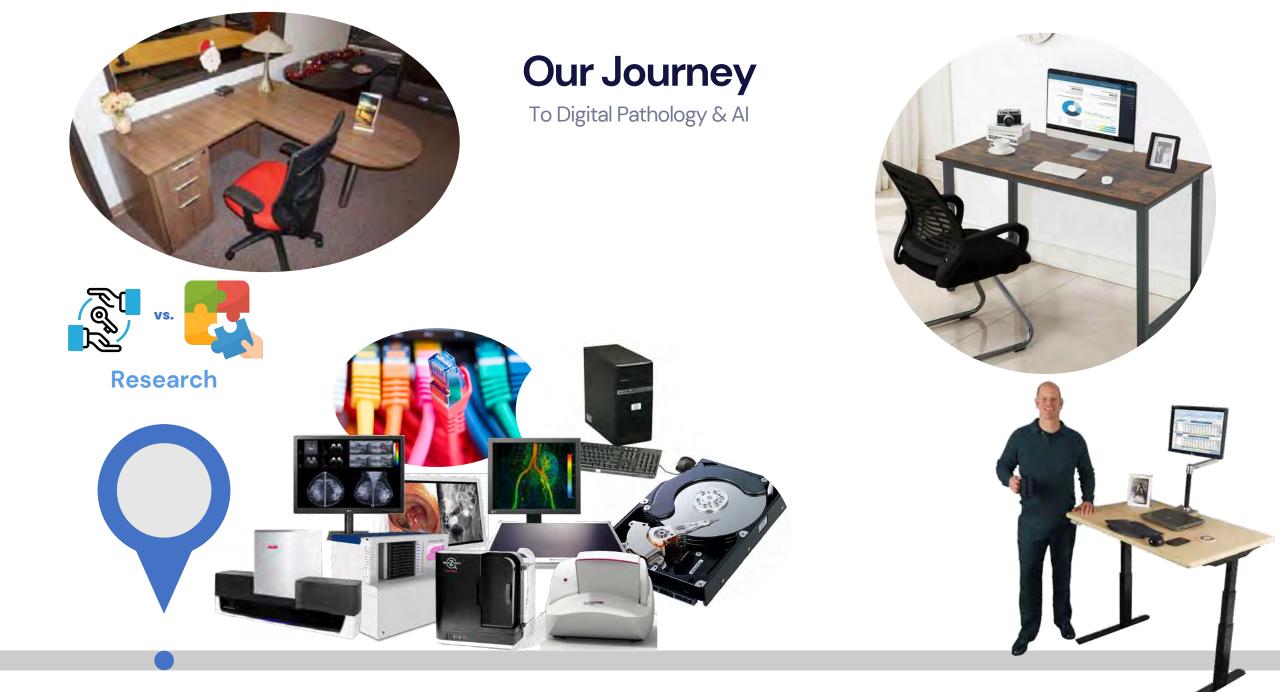
Established in Carolina Puerto Rico


Faculty

M.D.s, Ph.Ds, and professionals with vast field experience

4 Years

In the **Digital Pathology** venture



Research

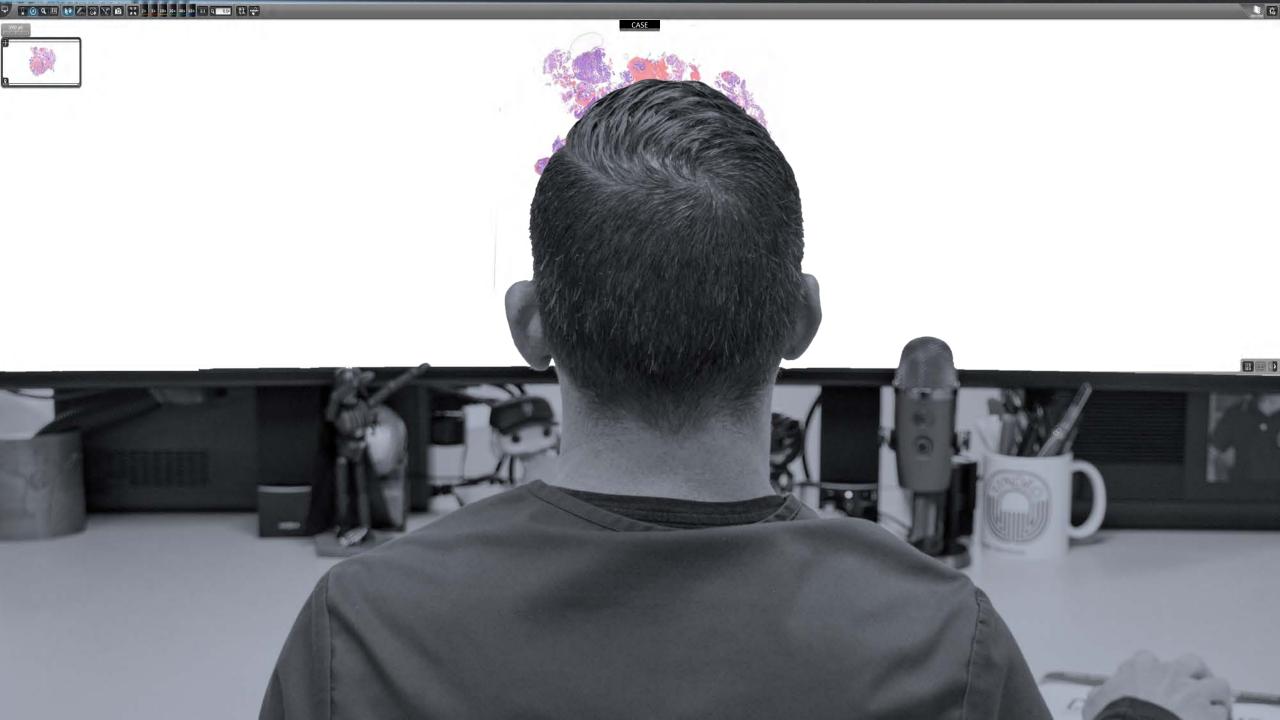
Upgrades

Our Journey

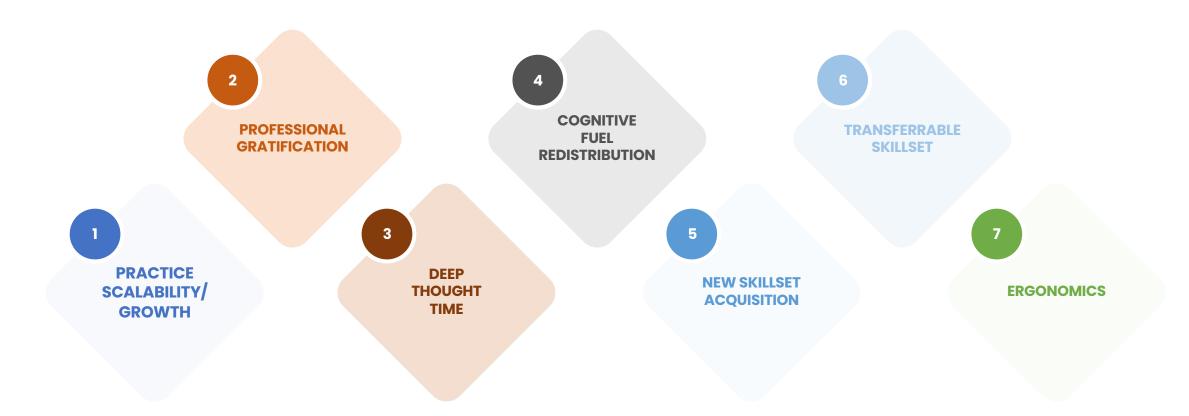
COLLEGE of AMERICAN PATHOLOGISTS Validation guidelines

VALIDATION & GO-LIVE!

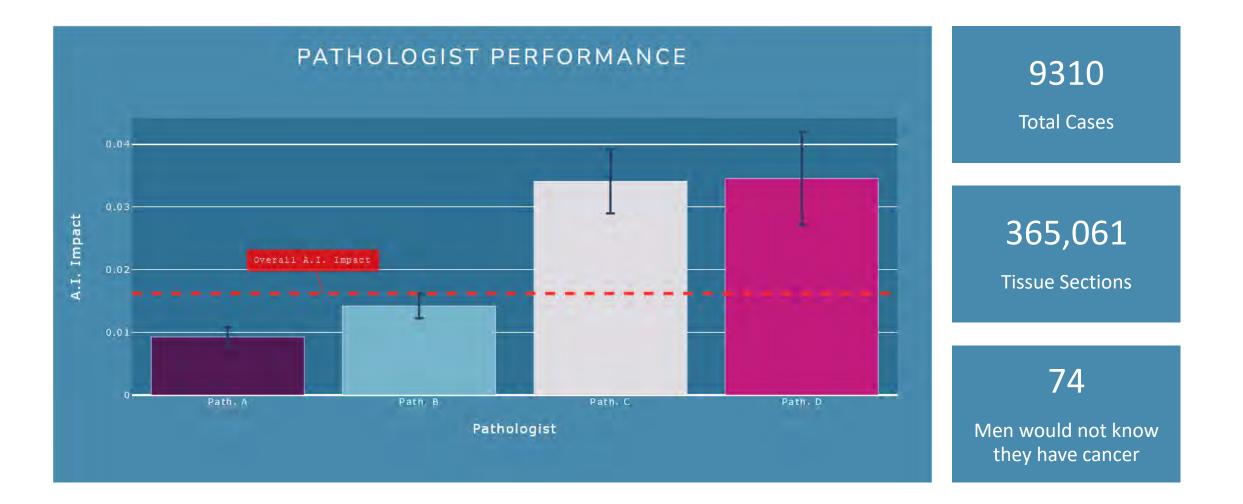
......


AI-ASSISTED DIAGNOSIS


So, how does **Pathology** look like in



Return on Innovation is a metric used by CorePlus to understand the impact of innovation on the organization's measured operational performance, human resources development, life-enhancement for our staff, and the attainment of its mission and purpose.



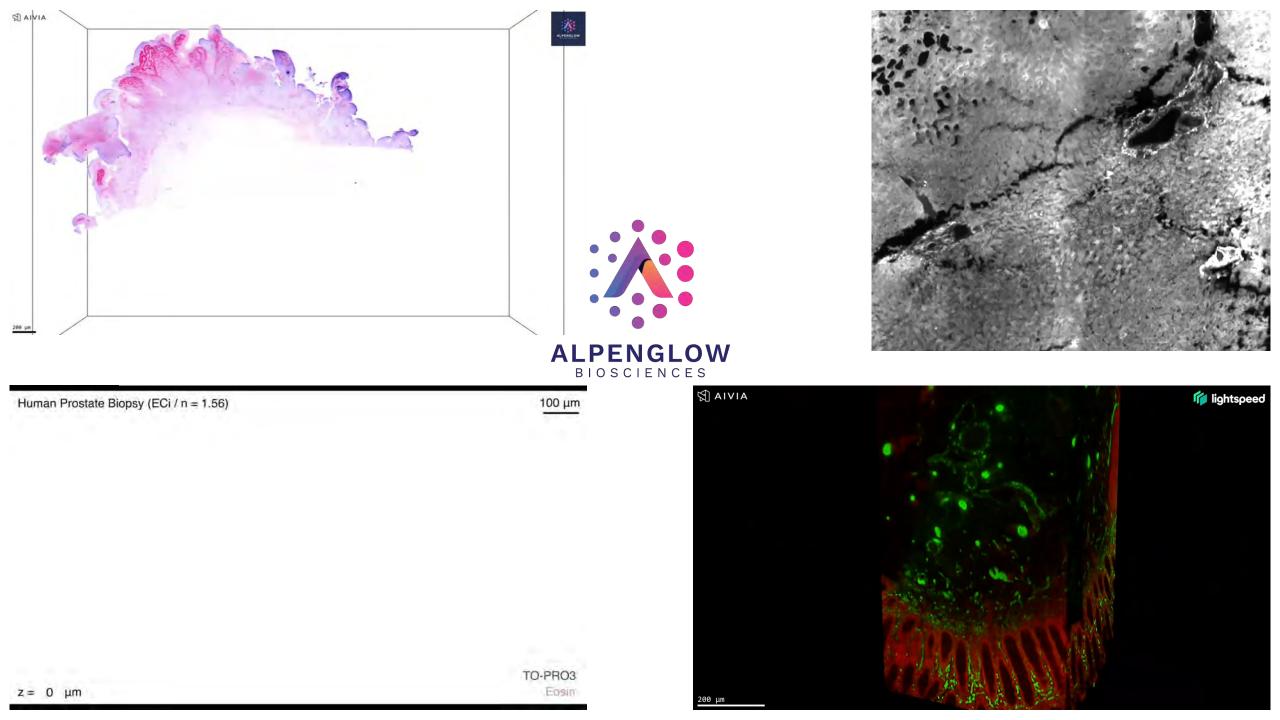
HUMAN RESOURCES ROI

Make a big impact with our professional slides and charts

Prostate Al Impact

THE VALUE IN ARTIFICIAL INTELLIGENCE

QALY = Quality Adjusted Life Years



\$7,500 More Value per Test

7.5% Increase in Value

... one more thing...

"Once an AI technology has been validated and demonstrated to improve outcomes (and assuming the existence of high-quality evidence to support this), it raises the question of whether it would be unethical not to apply it in clinical practice."

> Jackson B., et al, The Ethics of Artificial Intelligence in Pathology and Laboratory Medicine: Principles and Practice Academic Pathology: Volume 8 2021, DOI: 10.1177/2374289521990784

THANK YOU!

GET IN TOUCH

Pathology Innovation Collaborative Community (PIcc) Annual Meeting 2023

What We Can Learn From Other Technologies

P. "Mickey" Williams, Ph.D. Director, Molecular Characterization Laboratory Frederick National Laboratory for Cancer Research, NIH

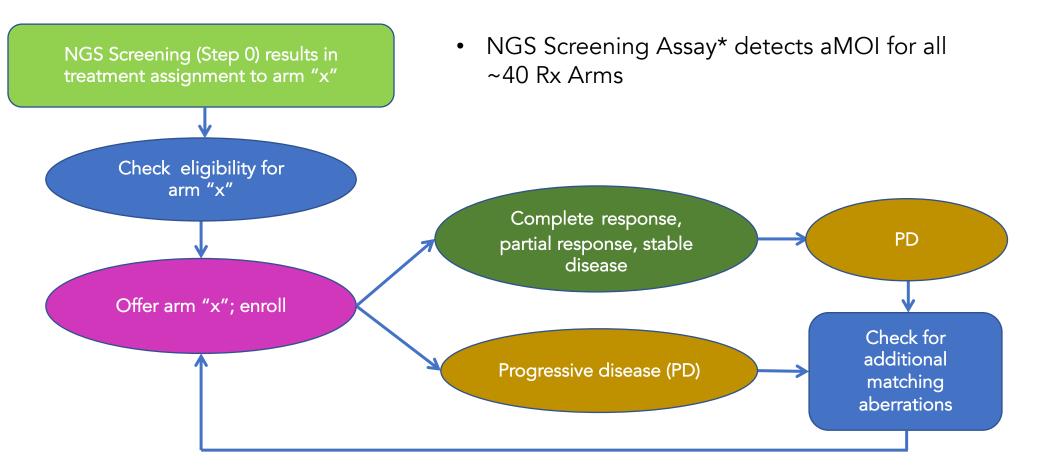
Development, Validation and Harmonization of NGS Assays Experiences from NCI-MATCH

P. Mickey Williams, PhD

Director of the Molecular Characterization Lab, Frederick National Laboratory for Cancer Research

Jyune 27-28, 2023

Talk Overview


- High level overview of assay development & validation for the NCI-MATCH Trial
 - The NCI-MATCH Trial concept was developed in 2014-15
 - The trial launched prior to clinical NGS becoming a "routine" part of patient management AND prior to FDA clearance or approval of any NGS test
 - Concern about impact of uncontrolled pre-analytics; resulted in provision SOPs for core needle biopsy collection, shipping kits containing specimen vessels (formalin filled jars), overnight shipment to a pre-analytic processing lab (central specimen processing, blocking, macrodissection and extraction)
 - Concern about cross assay & cross laboratory consistency of NGS, resulted in development of a central lab network, single assay platform and central data analysis pipeline
 - In my mind these concerns parallel similar concerns in the current state of AI driven digital pathology
- Finish with a snapshot of some community wide efforts, intending to ensure accuracy and consistency of critical clinical assays

Precision Medicine in Cancer Treatment

- Precision medicine is the tailoring of treatment for each individual based on molecular abnormalities found in tumors rather than the type of cancer
- Example:
 - *BRAFV600E* melanoma responds to BRAF inhibitors or BRAF inhibitors combined with MEK inhibitors but colorectal cancers with the same mutations appear not to respond
- We need to know more about which tumors will respond to agents targeted to "driver" mutations
- Most driver mutations are relatively rare across all tumor histologies
- A multi-arm treatment, precision medicine master screening protocol was developed

NCI-MATCH Schema (Single-Arm Phase II)

NCI-MATCH was the largest Precision Medicine Trial encompassing over 1,400 enrollment sites and 40 different treatment arms contained in 1 Master Protocol

Frederick National Laboratory for Cancer Research

NGS Assay Requirements

- Required multi-analyte assay for screening for many treatment actionable somatic mutations
- Minimal tissue and nucleic acid input
 - Core needle biopsies, shipped overnight in formalin
- Acceptable performance with FFPET from all solid tumor histologies
- Cost efficiency for small specimen batch size
- Goal of 15-day turn-around-time
- Assay performance requires high specificity, acceptable sensitivity and reproducibility across labs, staff and instruments
- Based on the early state of clinical NGS, decision was made to use a central lab network, using the same analytically validated and harmonized NGS platform
- Input from many led to an assay platform selection; Oncomine Cancer Panel v1
- Details along with required analytical performance metrics were documented in "The Assay Intended Use Statement" and "Validation Plan"

Define the Assay System

The assay system detailed via SOPs:

- Sample acquisition
- Shipment kits/instructions
- Pre-analytic processing
- Nucleic acid extraction
- Shipment to assay laboratories
- Receipt and accessioning
- Assay protocols:
 - Reagents
 - Instruments
 - Assay controls
 - Assay QC acceptance criteria
- Harmonized central data analysis and clinical report template

A Central Laboratory Network was Established

ECOG-ACRIN Central Biorepository and Pathology Facility at MD Anderson Cancer Center

Stan Hamilton, MD

Massachusetts General, Center for Integrated Diagnostics John lafrate, MD, PhD MD Anderson Molecular Diagnostics NGS Laboratory

Stan Hamilton, MD

NCI Molecular Characterization Laboratory Mickey Williams, PhD Yale Tumor Profiling Laboratory Jeffrey Sklar, PhD

Tumor testing using validated single platform across central lab network of CLIA certified clinical laboratories

Frederick National Laboratory for Cancer Research

Pre-validation Activities and Analytical Validation(s)

- Laboratory groups met weekly to generate harmonized SOPs, assess pre-validation feasibility data and make tweaks, lock SOPs and data analysis pipeline
- Pre-submission meetings with CDRH to discuss "Intended Use" and "Validation Plan"
 - Intent to enroll patients across all solid tumors and lymphoma, patients will have progressed after treatment with standard of care
 - The use of NGS for patient enrollment screening and treatment assignment led to a nonsignificant risk assessment, requiring an Abbreviated IDE operation
 - The meetings proved very helpful input prior to moving into Analytical Validation
 - Need to demonstrate accurate performance in potentially difficult tissues (brain, pancreas, bone, blood, etc.)
 - Demonstration of harmonization
- All lab staff trained together with locked SOPs prior to initiating Analytical Validation
- Trained staff performed independent analytical validations in their respective labs

NCI-MATCH Assay Proved Fit for Intended Use

"...the assay tailored for this trial is highly sensitive for detecting genetic mutations from a variety of tumor tissue and, for the first time, has been reproduced with accuracy by multiple clinical laboratories, laying the groundwork for future clinical utility."

Chih-Jian Lih et al, The Journal of Molecular Diagnostics, Vol 19, Issue 2, March 2017

Evolution of NCI-MATCH NGS Assays

- During the course of NCI-MATCH several NGS assays received FDA approval/clearance
- Routine NGS testing with both FDA approved/cleared and LDT's became more accessible
- Insurance coverage was more reliable for certain tests/indications
- Several NCI-MATCH Treatment Arms remained open due to low aMOI hit-rate
- A designated lab network was established to continue screening
 - 29 labs were vetted via assay validation reports & a blinded concordance test
 - Central lab verification was required for first pass clinical outcome assessment

Community Efforts Addressing Assay Accuracy and Comparability

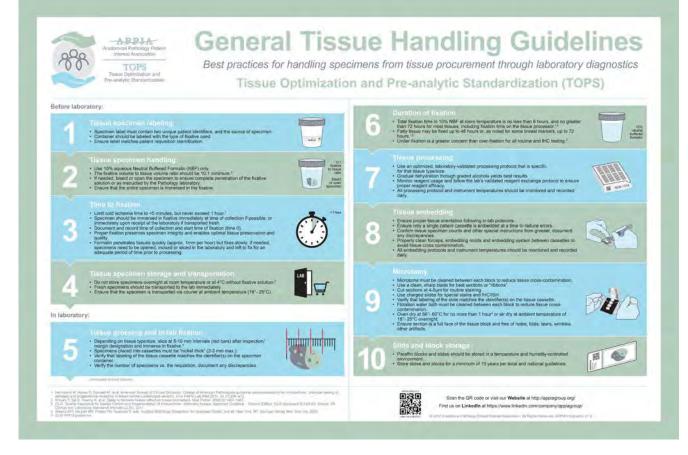
- FOCR TMB Harmonization Project
- FOCR ctMONITOR
- FOCR HRD Harmonization
- FNIH QCM for Predictive ctDNA Assays
- FNIH AML MRD Harmonization
- MDIC Somatic Reference Samples
- AMP
- CAP
- Is there a need for AI Digital Pathology "Reference Materials" and "Cross Assay/Lab Harmonization" efforts?

Thanks for Your Attention!

- AND THANKS TO:
- The PI's of NCI-MATCH and Laboratory and Supporting Staff
- All the enrollment site PIs and Essential site staff
- Most Importantly, All the <u>PATIENTS</u> and their <u>FAMILIES</u>

Pre-Analytics & APPIA

Joshua Greenlee, MBA Senior Product Manager & Laboratory Workflow/ Productivity Strategist Sakura Finetek USA, Inc


- The Anatomical Pathology Patient Interest Association (APPIA) was founded and incorporated in 2016.
- APPIA is an organization formed by industry partners actively engaged across all phases of anatomical pathology from specimen acquisition, preparation, and examination.
- APPIA's mission is cooperative industry partners dedicated to advancing anatomical pathology to benefit patient care by advocating and fostering quality, education, and best practices.
- APPIA is a resource to those who contribute to quality patient outcomes

TOPS Tissue Optimization and Pre-analytic Standardization

- The Tissue Optimization and Pre-analytic Standardization (TOPS) program was APPIA's first education initiative.
- TOPS provides best practice suggestions and guidelines on tissue handling and pre-analytics collected from notable resources in the industry.
- Guidelines are displayed in an easy-to-read infographic for laboratories and education programs.
- Training materials are available focusing on audiences from laboratory personnel to nurses and surgeons.
- Presentations have been given at the National Society of Histotechnology and other society meetings to support continuing education.

Panel Discussion/ Q&A

Moderated by: Mark Stewart

Lunch Break

Sponsored by:

Roche

Key Note 1: A Vision for Digital Pathology and Al

Thomas Fuchs Founder and Chief Scientist, Paige

The Journey to Precision Pathology

Mariano de Socarraz CEO, CorePlus

Session 3: FDA Research at OSEL & Update on PCCP from DHCoE

Moderated by: Ed Margerrison

Accelerating Medical Device Innovation with Regulatory Science Tools

Office of Science and Engineering Labs (OSEL) Center for Devices and Radiological Health (CDRH) U.S. Food and Drug Administration (FDA)

CDRH's Office of Science and Engineering Labs

165 FEDERAL EMPLOYEES Up to 180 visiting scientists	140 Research Projects In 20 Program Areas	400/year Peer-reviewed presentations, articles, and other public disclosures
> 3,000/year	75 Standards and conformity assessment committees	55,000 ft² Lab facilities
Premarket regulatory reviews	70% Staff with a graduate degree	

OSEL Regulatory Science Program Areas

- Advanced Patient Monitoring and Control
- AR/VR extended reality (XR)
- Artificial Intelligence (AI) / Machine Learning
- Biocompatibility/Toxicology
- Cardiovascular
- Computer Modeling and Simulation
- Digital Pathology
- Electromagnetic and Electrical Safety
- Emergency Preparedness
- Human Device Interaction
- Materials Performance

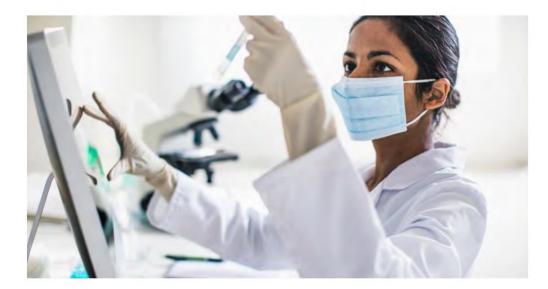
- Medical Imaging and Diagnostics
- Microfluidics
- Nanotechnology
- Neurology
- Ophthalmology
- Orthopedic Devices and Additive Manufacturing
- Post Market Signal Response
- Sterility and Infection Control
- Therapeutic Ultrasound

OSEL's Focus on Regulatory Science Tools

- OSEL develops Regulatory Science Tools (RSTs), which are innovative, peerreviewed approach or methodology to help assess the safety or effectiveness of a medical device or emerging technology
 - Brought into the public domain as early as possible before standards may be available
- We have identified a number of types
 - Virtual and physical phantoms
 - CM&S and related datasets
 - Lab methodologies
 - Best practices

The Family of Device Assessment Tools

Regulatory Acceptance Consensus MDDT – Regulatory acceptance Regulatory for a defined Science Tools – Context of Science-based Use (COU) approaches to help assess new **Peer-reviewed** devices **Publications**


Standards-Broad with regulatory acceptance

More than 140 RSTs published

Catalog of Regulatory Science Tools to Help Assess New Medical Devices

f Share 🎔 Tweet 🛛 in Linkedin 🖾 Email 🖨 Print

https://www.fda.gov/medical-devices/science-and-researchmedical-devices/catalog-regulatory-science-tools-helpassess-new-medical-devices

Phantoms	<u>ê</u>					
arch:			Export Excel			
hantom Name	* Description		Type Areas Reference			
D printed phantom material and d	esign with A tool for peri	forming Raman spectroscopy	measurements on a Physical Medical Article			
ssue-relevant Raman signature	Metho	ds]	
lood Mimicking Fluid for High II	Search:			Export Excel		
Focused Ultrasound	Method Name	Description	= Type = Areas =	Reference 🔹		
Digital models of retinal vascular a clinical fundus camera image	Approach to Validate Simulation-Based	A method to validate simulati agreement metrics which offe	on data using meaningful Lab Method Credibility assessment in r a natural way to visually localize modeling	Article 🕝		
	Distributions Assessing texture	Com	putational Models and Simulatio	ns		
Microcalcification templates	reproduction of camera- phone-based medical devices	Search:				Export Excel
	Automated Rapid Accelerated Aging (Automated RAA)	Model or Simulation Name	Description	а Туре а	Areas	Reference
Vanostructured Virus-simulating Evaluating Optical Biosensing M	Battery of image quality test methods for evaluation of fluorescence imaging systems	Benchmark Datasets for Validation of Computational Fluid Dynamics Models	Experimental datasets of velocity and pressure on simplified medical devices used to validate computational fluid dynamic (CFD) models	Cardiovascular	wiki 🖻	
Parchment breast phantom	Benchmark problems for verifying cardiac electrophysiological models	of Dataset	Cardiovascular	Article 🗹 Article 🖾		
Phantom for assessing performa infrared hematoma detectors ii ii ii ii ii ii ii ii ii ii ii ii ii	Confocal Laser Methods (CLM) for quantitative	Anatomically Realistic IVC				
	evaluation of dioptric power characteristics of intraocular lens (IOL) implants	CFD/6DOF Model of Clot Transport and Capture in an IVC Filter	A computer simulation for prediction of the capture efficiency of IVC filters	Model	Cardiovascular	Article C
	Considerations for Accelerated Wear Durability Testing for Transcatheter Heart and Risk Calcu		Rapid (screening level) risk assessments of color additives in medica devices	al Model	Biocompatibility/toxicology Orthopedics	Article
	Valves	Color Scale Study Data	Color scale study repository for Cardiac CT and Prostrate MRI Studies	s. Model	Artificial intelligence/machine learning	GitHub 🕑
		Computational model of the human cardiac action potential	Model and software of the human action potential appropriate for simulating arrhythmia initiation in human hearts	Model	Cardiovascular	Article 🔄 Code 🛃
		Computational model of the rabbit cardiac action potential	Parsimonious (reduced complexity) model and software of the rabbit action potential amenable to large scale simulations of arrhythmias	Model	Cardiovascular	Article 🗹 Code 🗹
		Computational modeling comparisons of ASTM F2182 test	Technical considerations when using the modeling analog of the AST F2182	M Model	Electromagnetic and electrical safety	Article 🗗

FDA Talk 2: Regulatory Science Projects In OSEL's Digital Pathology Program

Brandon Gallas OSEL/CDRH

REGULATORY SCIENCE PROJECTS IN OSEL'S DIGITAL PATHOLOGY PROGRAM

Brandon D. Gallas

FDA liaison to Plcc!

Division of Imaging, Diagnostics, Software Reliability (DIDSR)

Office of Science and Engineering Laboratories (OSEL) Center for Devices and Radiological Health (CDRH) U.S. Food and Drug Administration (FDA)

Disclaimers

FDA

- The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. This is a contribution of the U.S. Food and Drug Administration and is not subject to copyright.
- This is a contribution of the U.S. Food and Drug Administration and is not subject to copyright.

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Introduction

Office of White Oak Services

Introduce

- DIDSR digital pathology program
- Digital pathology landscape
- Digital pathology gaps and efforts
 - Technical performance
 - Computational pathology
 - Role of the pathologist
- Hidden slides offer more details for Q&A

fda.gov

6/27/2023: Plcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Digital Pathology Team

- Anant Agrawal
- Arian Arab
- Aldo Badano
- Kenny Cha
- Wei-Chung Cheng
- Weijie Chen
- Katherine Elfer
- Brandon Gallas

- Alexej Gossmann
- Seyed Kahaki
- Nicholas Petrick
- Berkman Sahiner
- Ravi Samala
- Frank Samuelson
- Si Wen
- Victor Garcia

FDA

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

21 Research Fellows

+ 13 Summer Fellows

OSEL Digital Pathology Team

- Research projects
- Regulatory support

- Anant Agrawal
 - Arian Arab

• Seyed Kahaki

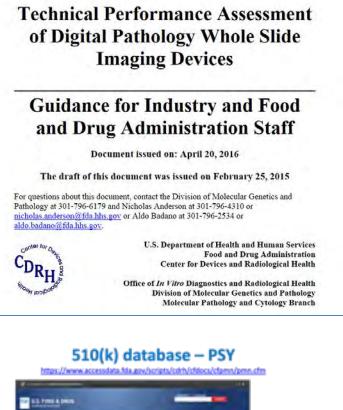
FDA

- Wei-Chung Cheng
- Weijie Chen
- Brandon Gallas

- Si Wen
- Victor Garcia

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science


Regulatory Landscape

Technical Performance Assessment

- TPA Guidance issued 2016
- Increase clarity and performance requirements

Digital Pathology is in its infancy (2017)

- Clearance required clinical studies with thousands of cases plus analytical studies and bench tests
- Clearance covered end-to-end system
- Components cleared as separate products
 - PSY: Whole slide imaging system
 - QKQ: Digital pathology image viewing and management software
 - PZZ: Digital Pathology Display

			-
10(k) Presented Notification			
	-		
-		12121	PER WS NO
	Tank in Concession (10.00	Card Million
-	- St.	Address of the address	
and the second s			1

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

FDA

510(k) database – PSY

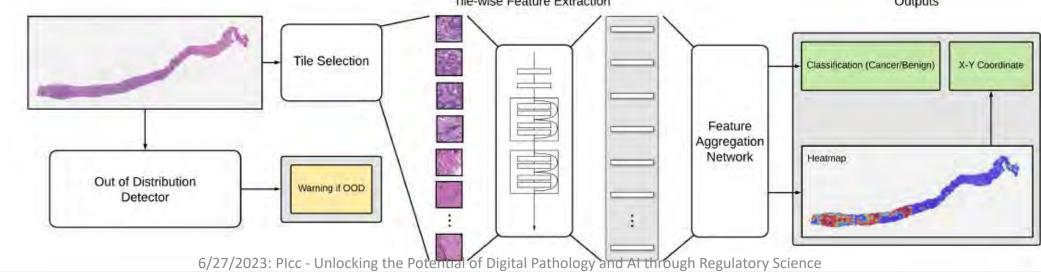
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm

U.S. Department of Health & Human Services				a A A				
	STRATION			Follow F	DA En Es		ARCH	
Home Food	Drugs Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Vete	erinary C	cosmetics To	obacco Products	
510(k) Pr • FDA Home	emarket Notifi Medical Devices Date 1 to 8 of 8 Results ProductCode: psy Decision D 06/25/2023	abases		Results per Pa	ge 10 🗸]	a a 🔤	
	New Search				cel <u>Download Files</u> <u>More About 510(k)</u>			
	Device Name	\$	Applicant	\$	510(K) Number	Decision Date	•	
	Nanozoomer S360md Slide	Scanner System	Hamamatsu Photonics K.K.		K213883	and the second se		PSY: WSI system
	Dynamyx Digital Pathology S	Software	Inspirata, Inc.		K210811	03/01/2022		
	Philips Intellisite Pathology S	Solution	Philips Medical Systems Nederlan	d B.V.	K203845	09/17/2021		💊 QKQ: WSI Viewer
	Mdpc-8127		Barco NV		K203364	04/15/2021		
	Fullfocus		Paige.Al, Inc		K201005	07/15/2020		
	Philips Intellisite Pathology S	Solution	Philips Electronics Nederland B.V.		K192259	09/20/2019		PZZ: WSI Display
	Aperio At2 Dx System		Leica Biosystems Imaging, Inc.		K190332	05/20/2019		
	Philips Intellisite Pathology S	Solution	Philips Medical Systems Nederlan	d B.V.	K172174	10/04/2017		

Regulatory Landscape

Paige Prostate

fda.gov


- DEN200080, authorized 09/21/2021
- first AI-based software for identifying an area of interest on the prostate biopsy image with the highest likelihood of harboring cancer so it can be reviewed further by the pathologist.
- Analytical device performance
 - Bench testing: standalone performance
 - Precision study: intra-site and inter-site agreement
- Clinical reader study
 - 16 readers, 190 Ca + 420 benign cases

https://www.fda.gov/news-events/pressannouncements/fda-authorizes-software-can-help-identifyprostate-cancer

FDA NEWS RELEASE

FDA Authorizes Software that Can Help Identify Prostate Cancer

Hot Off the Press

REVIEW

Regulatory considerations for medical imaging AI/ML devices in the United States: concepts and challenges

Nicholas Petrick^{a,*} Weijie Chen,^a Jana G. Delfino^a,^a Brandon D. Gallas^a,^a Yanna Kang,^b Daniel Krainak,^b Berkman Sahiner,^a and Ravi K. Samala^a ^aU.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and

Engineering Labs, Silver Spring, Maryland, United States

^bU.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Product Evaluation and Quality, Silver Spring, Maryland, United States

fda.gov

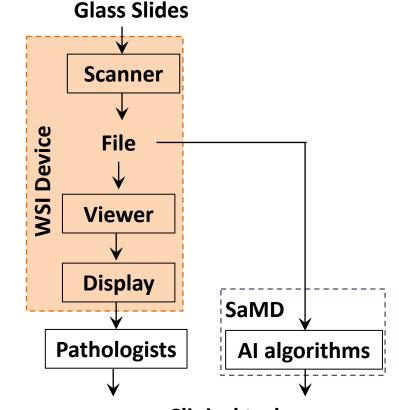
6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

Primary Digital Pathology Research Areas

- Technical performance assessment
- Computational pathology
- Role of the pathologist

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science


FDA

Technical Performance Assessment

Gaps

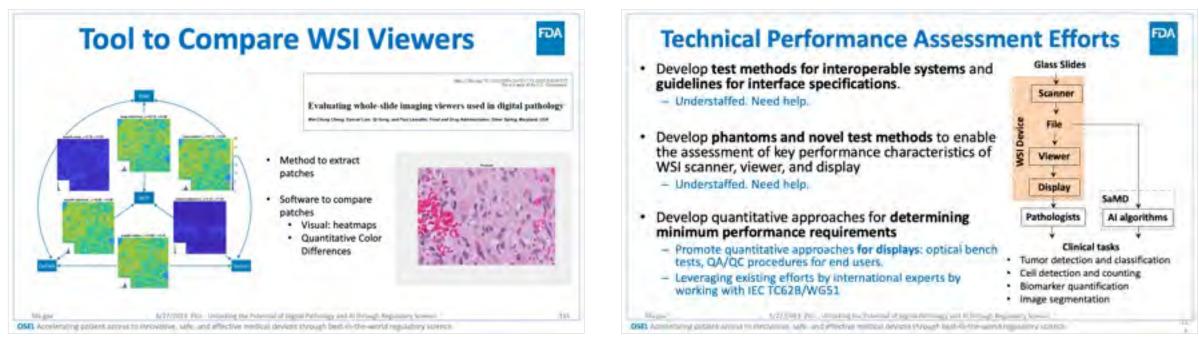
fda.gov

- Need methods to demonstrate interoperability between scanners and viewers
- Need to understand image quality along the pipeline
- Need data demonstrating correlation between technical performance and clinical performance (scanning and display)

Clinical tasks

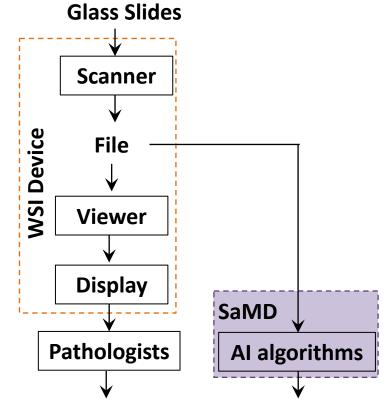
- Tumor detection and classification
- Cell detection and counting
- Biomarker quantification
- Image segmentation

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science


OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Technical Performance Assessment

Wei-Chung Cheng


fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

Computational pathology

Gaps

- Need standardized statistical methods to assess AI/ML models
- Need methods to treat noisy and incomplete reference standard labels
- Need to understand generalizability of AI/ML models
 - Sites, slide prep, scanners/imaging
 - Standardized datasets
- Need template to report AI/ML architecture and development elements

Clinical tasks

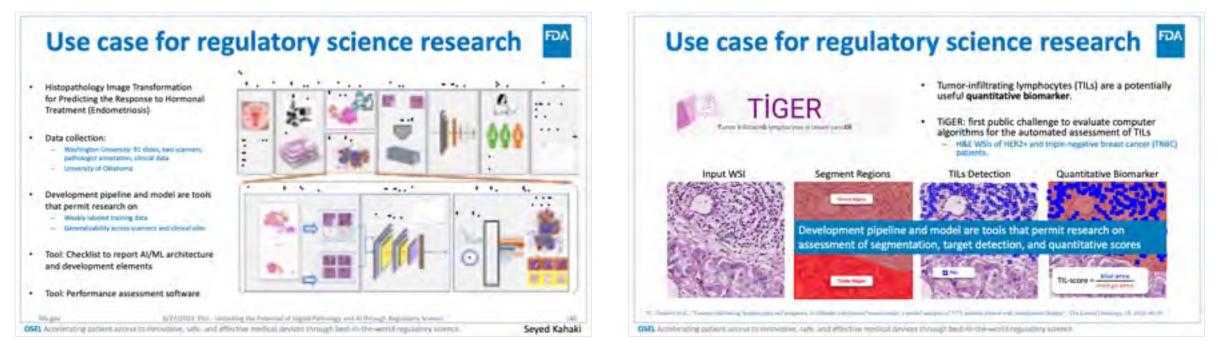
- Tumor detection and classification
- Cell detection and counting
- Biomarker quantification
- Image segmentation

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Computational pathology

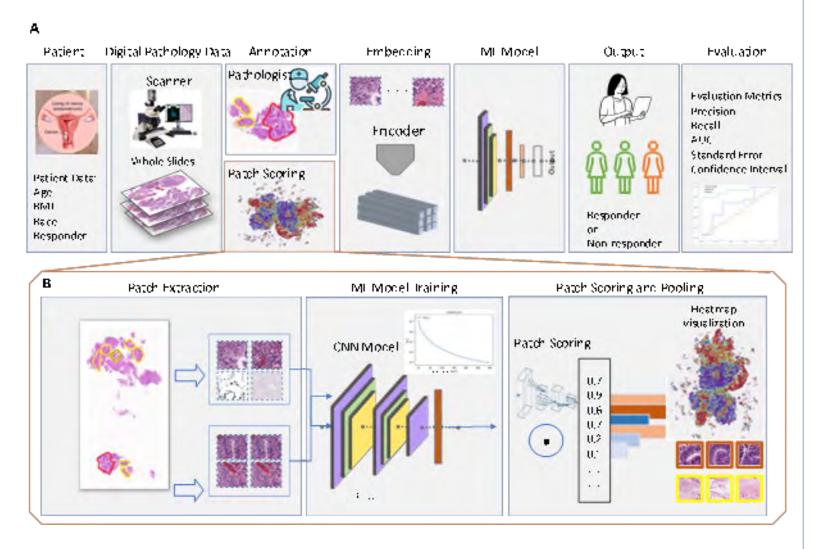

Seyed Kahaki

Weijie Chen

Arian Arab

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science


OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Use case for regulatory science research

- Histopathology Image Transformation for Predicting the Response to Hormonal Treatment (Endometriosis)
- Data collection:

fda.gov

- Washington University: 91 slides, two scanners, pathologist annotation, clinical data
- University of Oklahoma
- Development pipeline and model are tools that permit research on
 - Weakly labeled training data
 - Generalizability across scanners and clinical sites
- Tool: Checklist to report AI/ML architecture and development elements
- Tool: Performance assessment software

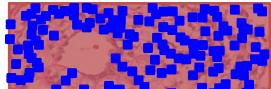
6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Seyed Kahaki

FDA Use case for regulatory science research

- Tumor-infiltrating lymphocytes (TILs) are a potentially useful quantitative biomarker.
- TiGER: first public challenge to evaluate computer algorithms for the automated assessment of TILs
 - H&E WSIs of HER2+ and triple-negative breast cancer (TNBC) patients.

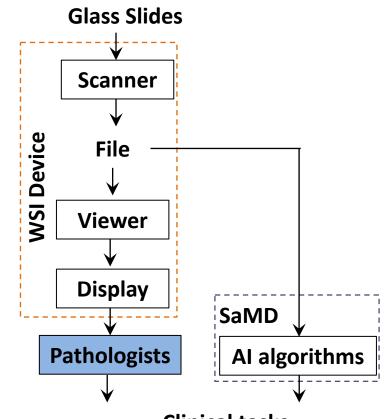

Input WSI Stroma Region Tumor Region

Segment Regions

TILs Detection

Quantitative Biomarker

Development pipeline and model are tools that permit research on assessment of segmentation, target detection, and quantitative scores



*C. Denkert et al., "Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy", The Lancet Oncology, 19, 2018, 40-50.

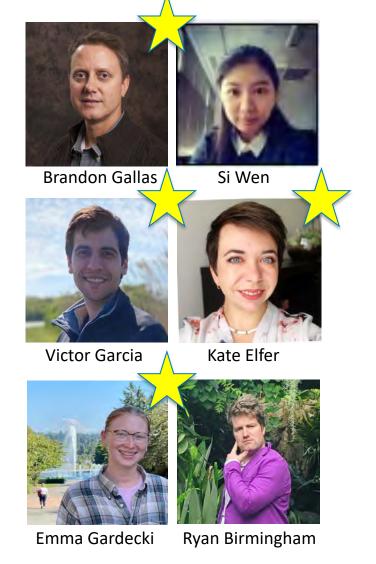
Role of the pathologist

Gaps

- Need methods to account for variability from pathologists
 - End users and reference standard
 - Detection/classification, quantitative measurements, segmentations
- Need template to report methods to determine the reference standard by panel of pathologists
- Need software and performance report templates

Clinical tasks

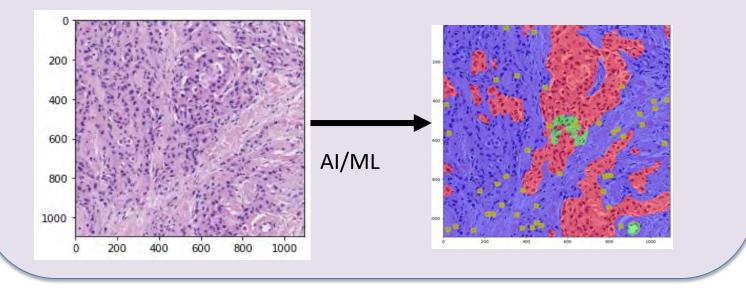
- Tumor detection and classification
- Cell detection and counting
- Biomarker quantification
- Image segmentation


fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

High-Throughput Truthing Project (HTT)



fda.gov

Reference-Standard Dataset

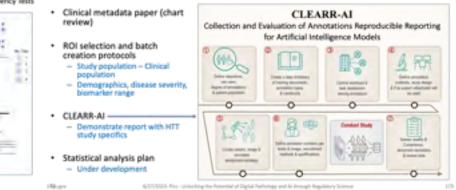
Slides, Images, Pathologist Annotations Pivotal Study -> Validate AI/ML Models

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

HTT Pivotal Study is LIVE!

- Help get the word out to pathologists that specialize in breast cancer and other stakeholders
 - Contact Brandon.Gallas@fda.hhs.gov

HTT data-collection tools and data



HTT Protocols

fda.gov

6/27/2023: Plcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

U.S. FOOD & DRUG

Summary

• Introduce

- DIDSR digital pathology program
- Digital pathology landscape
- Digital pathology gaps and efforts
 - Technical performance
 - Computational pathology
 - Role of the pathologist
- Lots of opportunities to address gaps.
- We are here to discuss and collaborate
- Q&A: Visit hidden slides?

• What is Regulatory Science?

The science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all FDA-regulated products.

https://www.fda.gov/science-research/science-andresearch-special-topics/advancing-regulatory-science

 Unofficial: Development and standardization of data, tools and methods that generalize across biomarkers, devices, and diseases

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

- Accelerating Medical Device Innovation with Regulatory Science Tools
 - <u>https://www.fda.gov/news-events/fda-voices/accelerating-medical-device-innovation-regulatory-science-tools</u>
 - <u>https://cdrhhome.fda.gov/spaces/1/cdrh-news/articles/feature/4158/regulatory-</u> science-tools-to-accelerate-medical-device-innovation
- Medical Device Development Tools (MDDT)
 - <u>https://www.fda.gov/medical-devices/medical-device-development-tools-mddt</u>
- Catalog of Regulatory Science Tools
 - <u>https://www.fda.gov/medical-devices/science-and-research-medical-devices/catalog-regulatory-science-tools-help-assess-new-medical-devices</u>

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

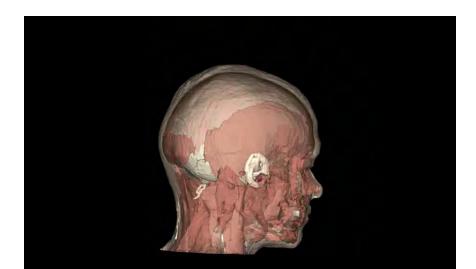
FD/

Title and content (black background)

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science



CDRH Mission

.. protect and promote the health of the public by ensuring the <u>safety</u> and <u>effectiveness</u> of **medical devices** and the safety of radiation-emitting electronic products...

We facilitate medical device innovation by advancing regulatory science, providing industry with predictable, consistent, transparent, and efficient regulatory pathways, and assuring consumer confidence in devices marketed in the U.S.

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

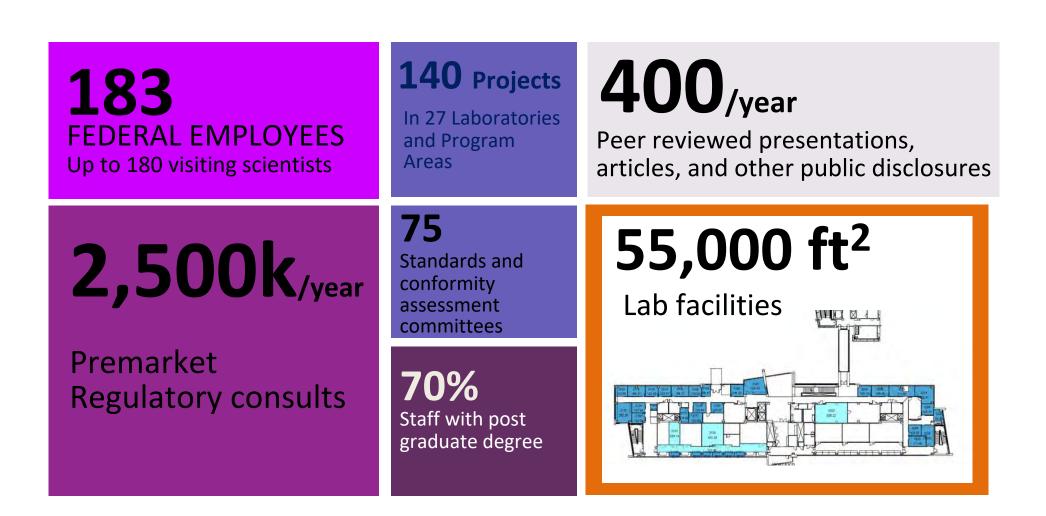
CDRH in Perspective

1900 EMPLOYEES	18k Medical Device Manufacturers	183k Medical Devices On the U.S. Market
22k/year Premarket	570k Proprietary Brands	1.4 MILLION/year Reports on medical device adverse events and malfunctions
Submissions includes supplements and amendments	25k Medical Device Facilities Worldwide	

fda.gov

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

Office of Science and Engineering Laboratories (OSEL)


- Conduct laboratory-based regulatory research to facilitate development and innovation of safe and effective medical devices and radiation emitting products
- Provide scientific and engineering expertise, data, and analyses to support regulatory processes
- Collaborate with colleagues in academia, industry, government, and standards development organizations to develop, translate, and disseminate science and engineering-based information regarding regulated products
- <u>https://www.fda.gov/about-fda/cdrh-offices/office-science-and-engineering-laboratories</u>

fda.gov

6/27/2023: Plcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL in Perspective

Division of Imaging, Diagnostics and Software Reliability (DIDSR)

FDA

- Develop least burdensome approaches for regulatory evaluation of imaging and big-data devices
 - Efficient clinical trials accounting for reader variability, simulation tools, in silico phantoms and imaging trials, addressing issues related to imperfect / missing reference standards, and limited data for training/testing of machine classifiers
- Develop measures of technical effectiveness of imaging and big-data technologies
 - Phantoms, laboratory measurements, computational models

6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

fda.gov

DIDSR in Perspective

35 FEDERAL EMPLOYEES 14 Fellows/Students 3 Open Staff Positions

Peer reviewed articles, code and presentations

4 Program Areas

- AI/ML
- Medical Imaging and Diagnostics
- Digital Pathology
- Mixed Reality (AR/VR/XR)

550/year

Premarket Regulatory consults ~15,000 ft²

DIDSR Lab and facilities

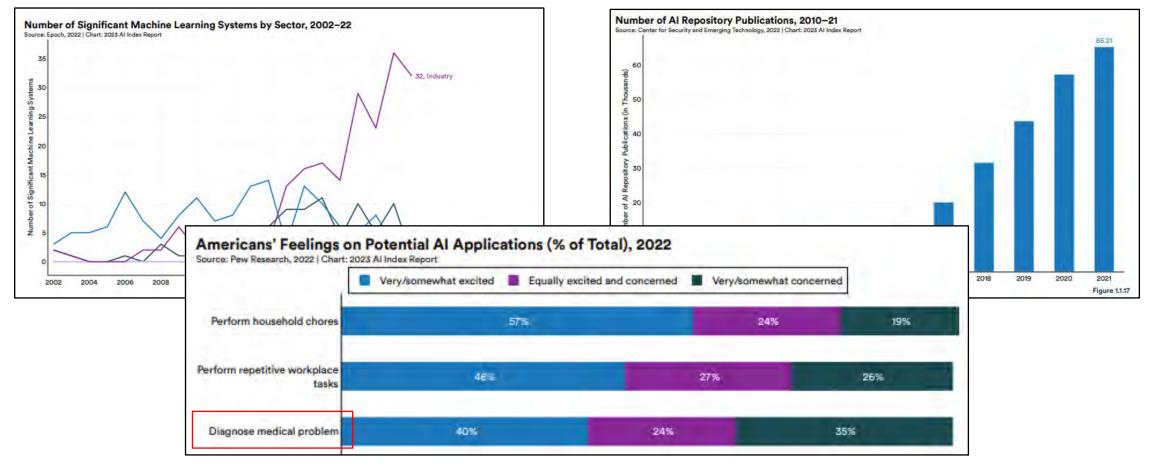
6/27/2023: PIcc - Unlocking the Potential of Digital Pathology and AI through Regulatory Science

Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

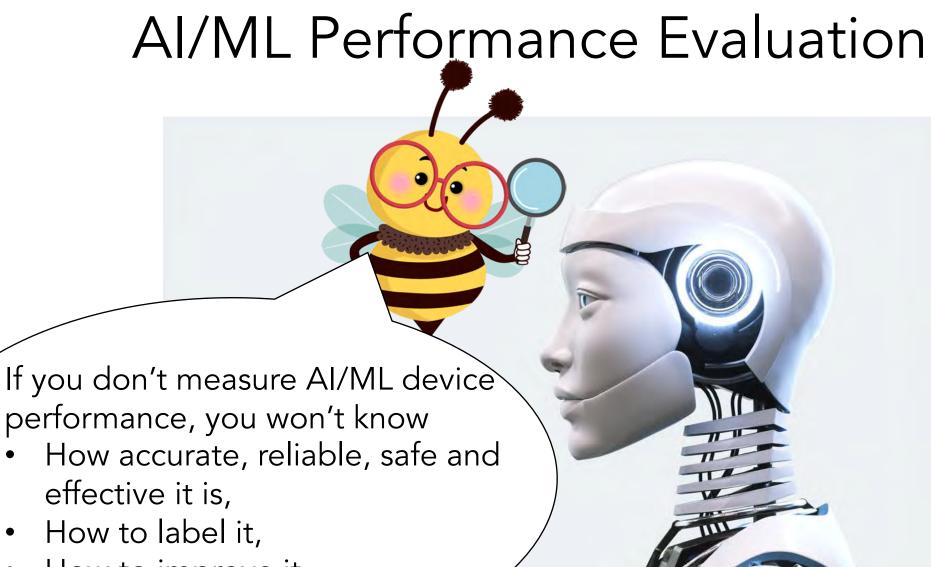
FDA Talk 3: DIDSR AI/ML Research Program And Gaps

Alexej Gossmann OSEL/CDRH, FDA

FDA/CDRH/OSEL Artificial Intelligence (AI) / Machine Learning (ML) Research Program, and Regulatory Science Gaps


Pathology Innovation Collaborative Community Annual Meeting (PIcc23) June 27, 2023

Alexej Gossmann


Staff Fellow Division of Imaging, Diagnostics and Software Reliability Office of Science and Engineering Labs Center for Devices and Radiological Health U.S. Food and Drug Administration

AI/ML is taking the world by storm!

Stanford HAI. 2023 AI Index Report: Measuring Trends in Artificial intelligence. Retrieved 4 April 2023. https://aiindex.stanford.edu/report/

FDA

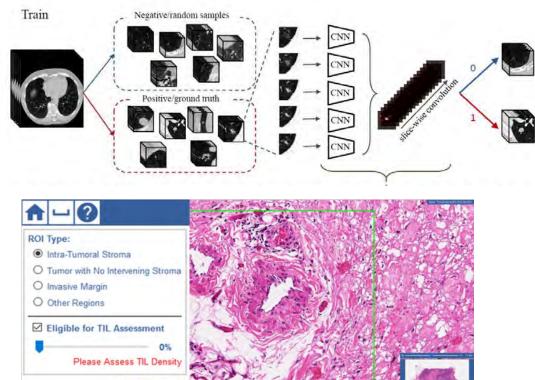
• How to improve it.

Overview of this talk

- OSEL, DIDSR: Explain who we are
- Describe regulatory science challenges and gaps in medical AI/ML
- Describe OSEL AI/ML research program activities to address these gaps

Office of Science and Engineering Labs (OSEL)

Accelerating patient access to innovative, safe and effective medical devices through bestin-the-world regulatory science.


FDA

An OSEL employee

What OSEL/DIDSR Does

- Division of Imaging, Diagnostics, and Software Reliability (DIDSR)
- Conduct regulatory science research for a variety of imaging, AI/ML, MXR, and diagnostic devices.
- Develop approaches for assessing imaging and big-data technologies.

OSEL AI/ML Program

• AI/ML program

- Regulatory science research
- Developing robust AI/ML test methods
- Evaluating methodologies for assessing AI/ML
- AI/ML team identified regulatory gaps
 - Not all AI/ML knowledge gaps
 - Important ones to support FDA regulatory mission

Regulatory Science Gaps and Challenges

- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance
 Monitoring

Regulatory Science Gaps and Challenges

- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance
 Monitoring

FDA

Limited labeled training and test data

- •There is a need for
 - Fundamental understanding of the limitations of smaller datasets and
 - Novel techniques to enhance AI/ML algorithm training and testing when the real-world datasets are limited in size

Use of synthetic data for AI training and testing

- Al algorithms require large training data sets for high performance
- Limited annotated data sets for medical images
- In-silico images may help

1.0 0.9 0.8 0.7 Sensitivity 0.6 0.5 0.4 556 DDSM Only 556 DDSM + 250 Synthetic 0.3 556 DDSM + 500 Synthetic 0.2 556 DDSM + 1000 Synthetic 0.1 556 DDSM + 2000 Synthetic 0.0 **FP/Image**

FDA

Test (n=361)

Badano et al., JAMA Network Open 2018

RST: VICTRE: In Silico

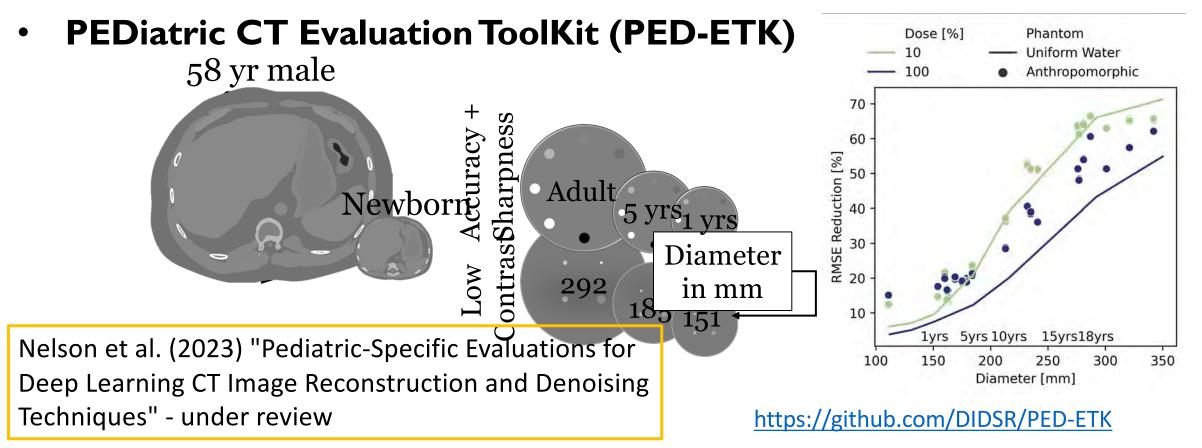
Breast Imaging

Pipeline | FDA

Cha et al., "Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning," Journal of Medical Imaging 2020

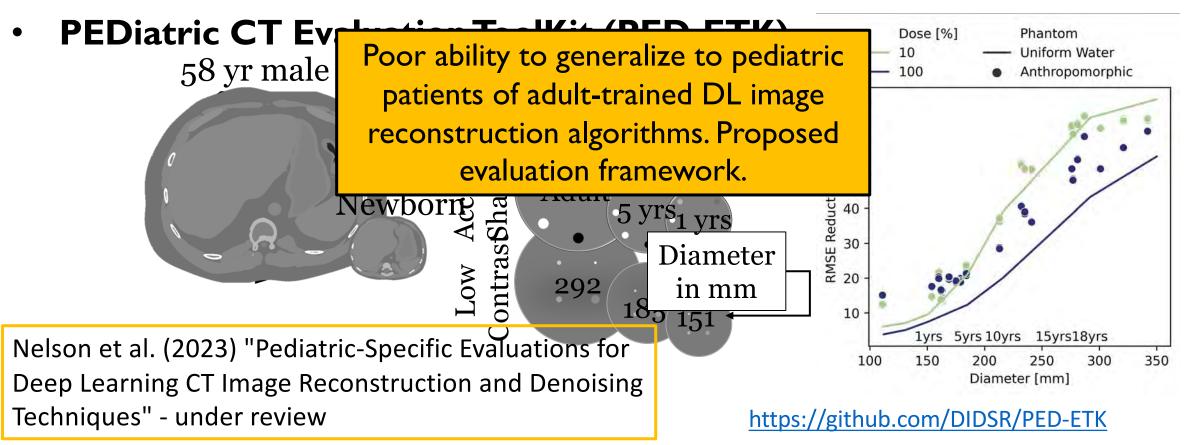
REALYSM: Simulations-based testing for Al devices Badano et al. The Goal: Generate realistic simulated data where stochastic digital human ... ArXiv preprint 2023. real patient examples are unavailable (a) Data Simulation: Sample (c) AI Evaluation (b) AI Model simulation parameters Training Model → Data Decision Breast 10 lesion Image Generated 197 Phantom Insertion Using Acquisition Generation Simulation Option 2: Option 1: Sizikova et al. Fully-Detailed, External Generate Physics-based In Silico Approach Training Data Simulated Training for Evaluating ... 2023 (in review) Data

Regulatory Science Gaps and Challenges


- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance
 Monitoring

Bias, equity, and generalizability

•There is a need for methods to understand, analyze and minimize performance differences of AI/MLenabled devices among subgroups Pediatric-Specific Evaluations for Deep Learning CT Image Reconstruction and Denoising

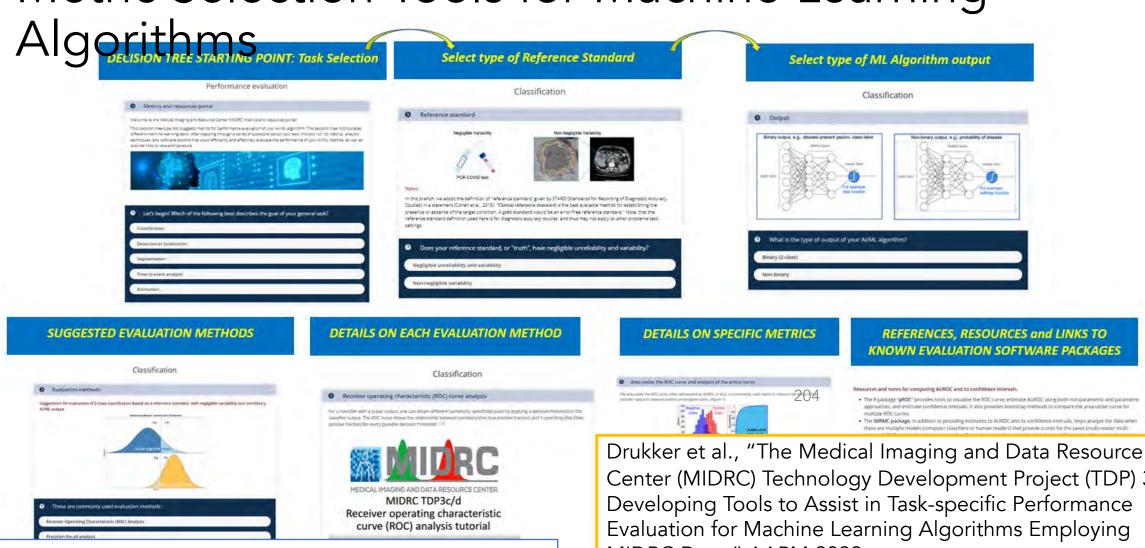

- Deep learning image reconstruction (DLIR) models primarily trained on adults.
- Do pediatric patients benefit equally from adult-trained DLIR models?

Pediatric-Specific Evaluations for Deep Learning CT Image Reconstruction and Denoising

- Deep learning image reconstruction (DLIR) models primarily trained on adults.
- Do pediatric patients benefit equally from adult-trained DLIR models?

Regulatory Science Gaps and Challenges

- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance
 Monitoring


Ground truth and metrics for performance estimation

- A need to understand how to determine the level of truth needed to evaluate AI-enabled devices in a least burdensome fashion
- The metrics used to determine AI/ML performance
- Determination of acceptable performance criteria

FDA

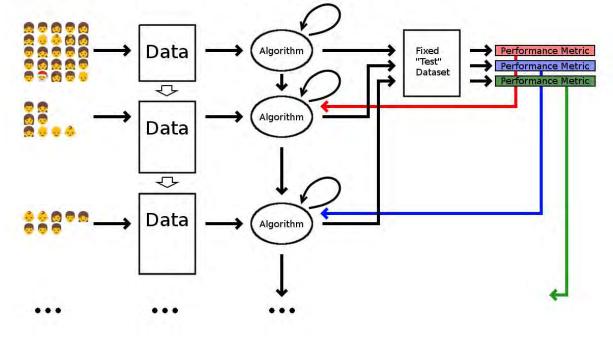
MIDRC: Task-specific Performance Evaluation Metric Selection Tools for Machine Learning

https://www.midrc.org/performance-metrics-decision-tree

Center (MIDRC) Technology Development Project (TDP) 3c: Developing Tools to Assist in Task-specific Performance Evaluation for Machine Learning Algorithms Employing MIDRC Data," AAPM 2022

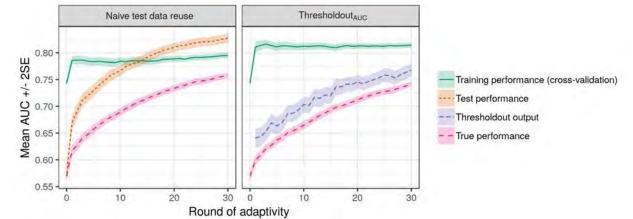
Regulatory Science Gaps and Challenges

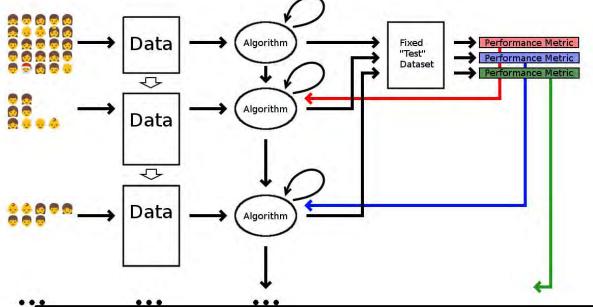
- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance
 Monitoring



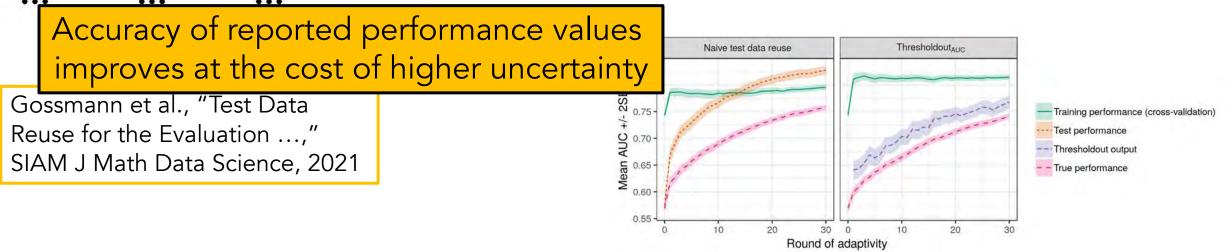
Evolving algorithms

- How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- •Our stakeholders would like a more flexible premarket regulatory process to allow for periodic modifications of AI/ML algorithms over time and evolving AI algorithms without the need for a new regulatory submission.
- There are many open questions related to the regulation of such devices.

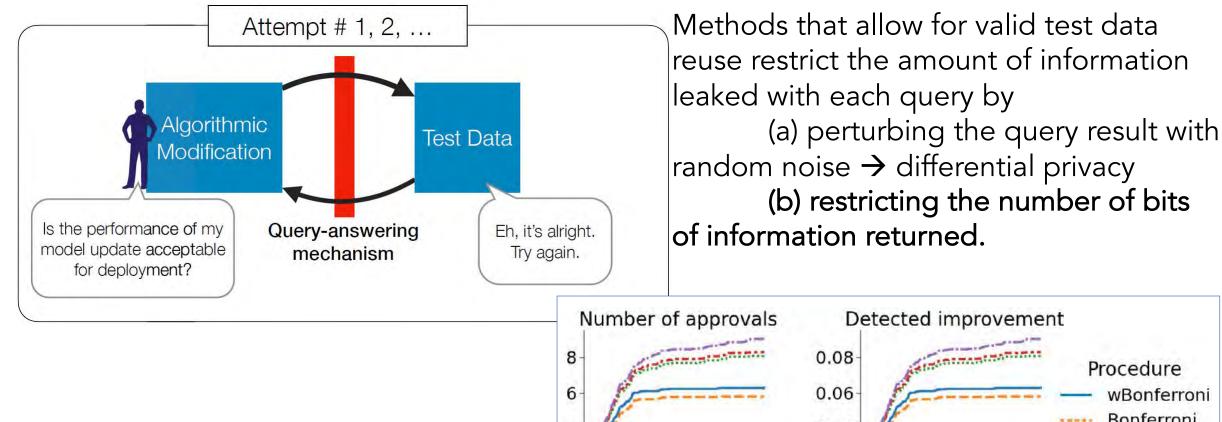

How can we reuse an existing test dataset to validate sequential algorithmic modifications?


Gossmann et al., "Test Data Reuse for the Evaluation ...," SIAM J Math Data Science, 2021 Methods that allow for valid test data reuse restrict the amount of information leaked with each query by (a) perturbing the query result with random noise → differential privacy

(b) restricting the number of bits of information returned.

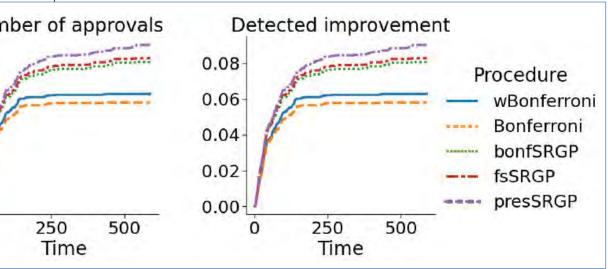


How can we reuse an existing test dataset to validate sequential algorithmic modifications?



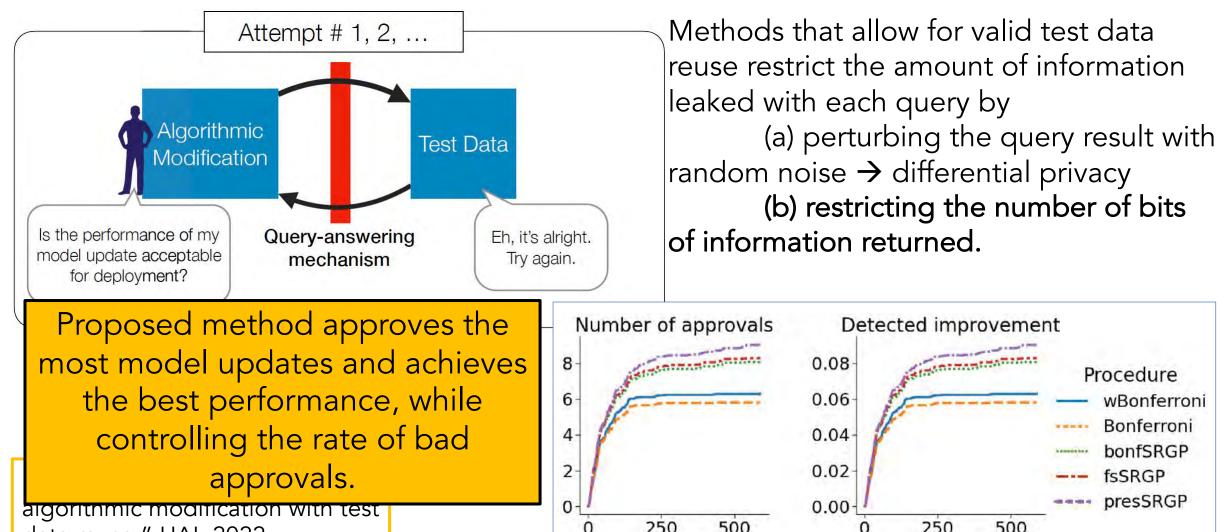
Methods that allow for valid test data reuse restrict the amount of information leaked with each query by (a) perturbing the query result with random noise → differential privacy (b) restricting the number of bits of information returned.

How can we reuse an existing test dataset to validate sequential algorithmic modifications?

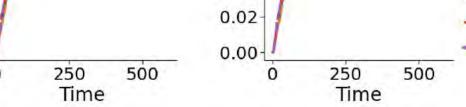

4

2

0-


0

Feng et al., "Sequential algorithmic modification with test data reuse," UAI, 2022



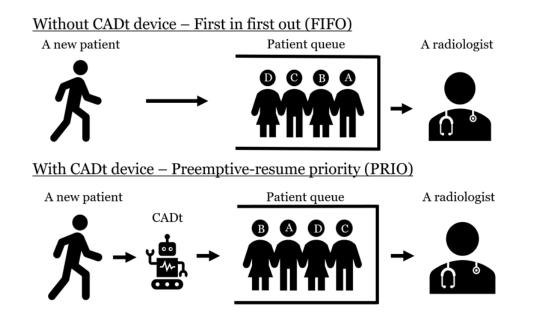
How can we reuse an existing test dataset to validate sequential algorithmic modifications?

data reuse," UAI, 2022

Regulatory Science Gaps and Challenges

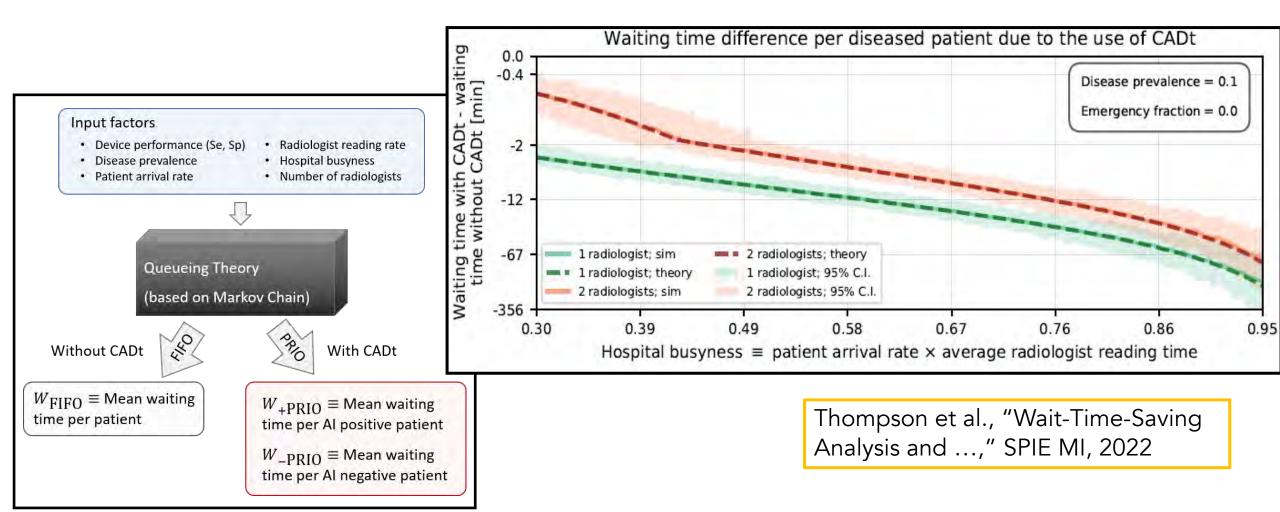
- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance
 Monitoring

Emerging clinical application of AI/ML

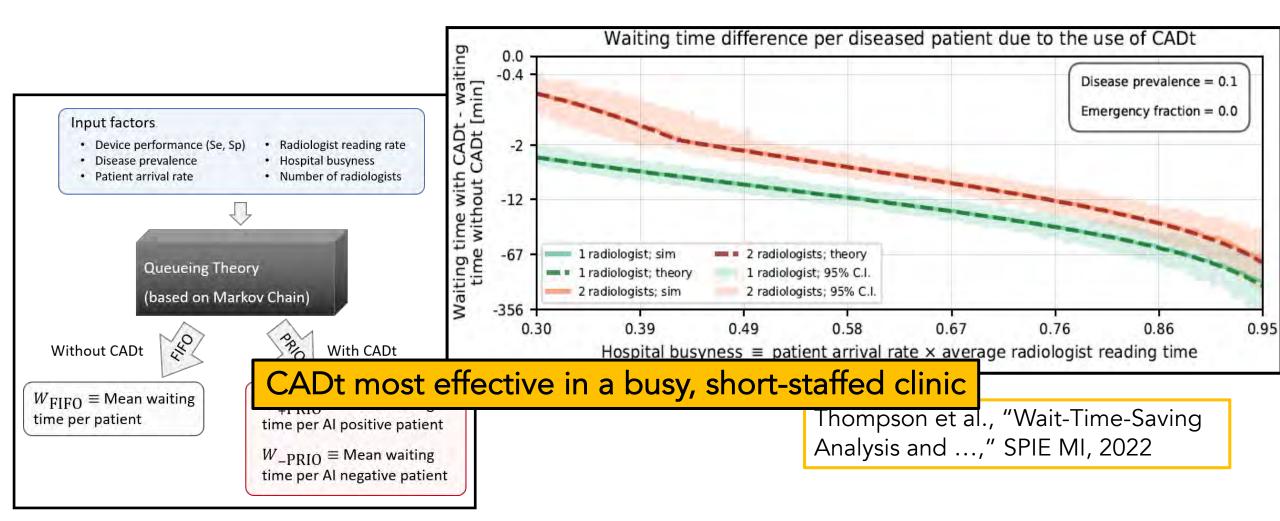

- Device sponsors continue to think of new ways to utilize AI/ML in medical practice, including
 - Automating patient referrals,
 - Triaging patients,
 - Reading images autonomously,
 - Large language models (LLMs) applied to medical records,
 - Etc.
- We need methods for evaluating these new and different uses of AI.

A Modeling Tool for Streamlined Assessment of Emerging Radiological Computer-Assisted Triage (CADt) and Notification Software

- 30+ FDA-approved CADt devices since
 2018
- Why CADt devices?
 - Faster diagnosis and treatment for
 time sensitive diseases e.g. stroke
- How effective is a CADt device?


 \rightarrow Use queueing theory to quantify the amount of time savings

Thompson et al., "Wait-Time-Saving Analysis and ...," SPIE MI, 2022


A Modeling Tool for Streamlined Assessment of Emerging Radiological Computer-Assisted Triage (CADt) and Notification Software

FDA

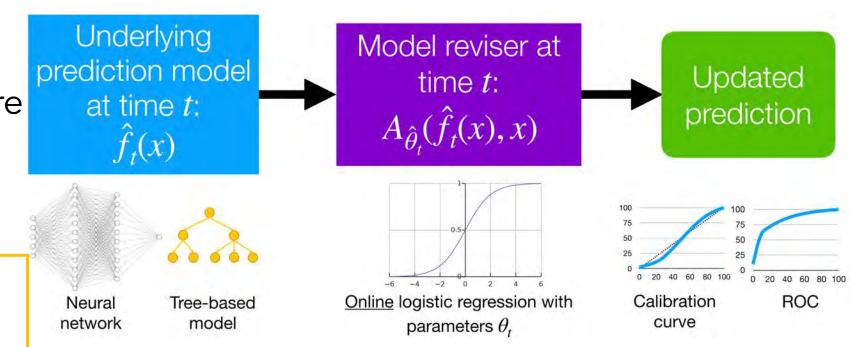
A Modeling Tool for Streamlined Assessment of Emerging Radiological Computer-Assisted Triage (CADt) and Notification Software

FDA

Regulatory Science Gaps and Challenges

- Limited labeled training and test data
- Bias, equity, and generalizability
- Ground truth and metrics for performance estimation
- Evolving algorithms How to maintain safety and effectiveness for devices with a predetermined change control plan (PCCP)
- Emerging clinical application of AI/ML
- Data Drift and Postmarket AI/ML Performance Monitoring

Data Drift and Postmarket AI/ML Performance Monitoring


- Data acquisition systems and protocols, and patient populations change over time and by site.
- AI/ML device users, such as radiologists, and patients want to know that the AI products they are using will be accurate and reliable even as practice and patient populations change.
- We need planned and standardized methods for detecting changes to the inputs of AI devices, monitoring the accuracy of their outputs, and mitigating effects of those drifts.

Online Recalibration

- Model updates can protect against changes in the environment, and learn from accumulating data.
- However, algorithmic modifications also carry the risk of deteriorating model performance.
- We design an online logistic recalibration and revision procedure that provides performance quarantees.

Feng et al., "Bayesian logistic regression for online recalibration and revision ...," JAMIA 2022.

Putting tools in the hands of stakeholders

Regulatory Science Tools (RST)

Regulatory Acceptance Standards-Broad Regulatory and regulatory acceptance for a acceptance defined Context of **Regulatory Science** Use (COU) Tools – Sciencebased approaches to help assess new Publications devices

Regulatory Science Tools (RST)

Regulatory Acceptance Standards- Broad Regulatory and regulatory acceptance for a acceptance defined Context of **Regulatory Science** Use (COU) Tools – Sciencebased approaches $\left(\cdot \right)$ to help assess new Publications devices

AI/ML Relevant RSTs

iMRMC: Multi-Reader Multi- Case Reader Studies	Statistical tools (java GUI and R package) t analyze, size, and simulate multi-reader mu case (MRMC) reader studies		Imaging reader studies, Artificial <u>GitHub</u> (intelligence/machine learning	3		
iRoeMetz Application	A java application used to simulate reader scores for multi-reader multi-case (MRMC) reader studies		Imaging reader studies, Artificial <u>GitHub</u> (intelligence/machine learning	2		
Assess New	ory Science Tools to Help w Medical Devices	VICTRE: Breast Mass Generation Software	A modeling software that randomly generates main body of breast masses including random branching spicules grown out from the mass surface	Model	Medical imaging and diagnostics	<u>GitHub</u> 🗗
		VICTRE: Digital Mammography Regions of Interest (ROIs)	VICTRE ROI patches for digital mammography of breast density categories with microcalcification cluster and spiculated mass inserted signals.	Dataset	Medical imaging and diagnostics	<u>GitHub</u> 🗗
		VICTRE: Model Observers (MO)	Computer model observer functions to perform location-known lesion detection tasks	Model 222	Medical imaging and diagnostics	<u>GitHub</u> 🖉
		VICTRE: Virtual Imaging Clinical Trials for Regulatory Evaluation	An entirely in-silico imaging clinical trial replicating a premarket study.	Model	Medical imaging and diagnostics	GitHub 🗗 Article 🗗
https://www.fda.go devices/science-ar	ov/medical- nd-research-medical-	VICTRE: Multi-modality Anthropomorphic Breast Phantom	A digital breast phantom with modifiable parameters including phantom voxel size (resolution) and breast density	Phantom, Virtual	Medical imaging and diagnostics	GitHub 🗗 Document 🗗
<u>devices/catalog-re</u> nelp-assess-new-m	gulatory-science-tools- nedical-devices	VICTRE_MCGPU: Pivotal Study Simulations	A simulation tool that replicates a Siemens Mammomat Inspiration system for VICTRE	Model	Medical imaging and diagnostics	<u>GitHub</u> 🗗

Regulatory Science Tools (RST)

Regulatory Science Tools – Sciencebased approaches to help assess new devices

Publications

Regulatory Science Regulatory Science Tash Science

Standards-[®] Broad and regulatory acceptance

Medical Device Development Tools (MDDTs)

Qualification of Medical Device Development Tools

Guidance for Industry, Tool Developers, and Food and Drug Administration Staff

Document issued on: August 10, 2017

The draft of this guidance document was issued on November 14, 2013.

For questions regarding this document, contact MDDT@fda.hhs.gov.

https://www.fda.gov/media/87134/download

Summary

- Active research from OSEL has been
 - Identifying and addressing critical gaps in device evaluation of medical AI/ML
 - Putting methodology and tools into the hands of stakeholders

Acknowledgments

• I'd like to acknowledge Berkman Sahiner, Nicholas Petrick, Brandon Nelson, Elena Sizikova, Kenny Cha, and Elim Thompson for providing slides and information used this presentation.

Questions

227

FDA

Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

FDA Talk 4: Predetermined Change Control Plan

Ayobami Adebowale DHCoE, CDRH, FDA

PREDETERMINED CHANGE CONTROL PLANS

Ayobami Adebowale, M.Eng

Biomedical Engineer for Digital Health Policy, CDRH Digital Health Center of Excellence Office of Science and Technology (OST), Center for Devices & Radiological Health (CDRH), US FDA

Patients are at the Heart of What We Do

CDRH Vision Patients in the U.S. have access to high-quality, safe, and effective medical devices of public health importance first in the world

Advancing Health Equity for All Devices is a Top Strategic Priority for CDRH

Historically, under-resourced populations lack access to quality health care.

Digital health technology (DHTs) can help bridge the divide.

www.fda.gov/digitalhealth

Predetermined Change Control Plans for AI/ML-Enabled Devices

Predetermined Change Control Plans (PCCPs) can support ensuring that AI/MLenabled devices better meet the needs of diverse populations.

The FDA's proposed approach to PCCPs would:

• Put safe and effective advancements in the hands of health care providers and users faster.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial

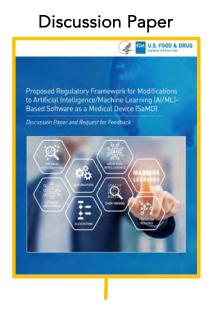
www.fda.gov/digitalhealth

Supporting FDA's Strategic Priority to Promote Health Equity

- PCCPs can further FDA's strategic priority by:
 - Facilitating more rapid and continuous improvement of AI/ML-enabled device performance across diverse populations
 - Ensuring important performance considerations including with respect to race, ethnicity, disease severity, gender, age, and geographical considerations – are addressed throughout the total product lifecycle
- Draft guidance proposes to place a significant and increased emphasis on importance of clearly communicating valuable information about these considerations to device users

Continuing our Collaborative Approach

2019	2020	2021	2022	2023
 Published <u>AI/ML-SaMD Discussion</u> <u>Paper</u> First joined <u>Collaborative</u> <u>Community</u> related to AI/ML 	 Public Workshop on <u>AI/ML in</u> <u>Radiological Imaging</u> PEAC Meeting on <u>Patient Trust in</u> <u>AI/ML Devices</u> 	 Published <u>AI/ML Medical Device</u> <u>Software Action Plan</u> Posted <u>List of Currently Marketed</u> <u>AI/ML Devices</u> Public Workshop on <u>Transparency of</u> <u>AI/ML Devices</u> Published <u>Good Machine Learning</u> <u>Practice Principles</u> 	 Contributed to IMDRF's <u>Key Terms & Definitions: Machine Learning Enabled Medical Devices</u> Published <u>Clinical Decision Support</u> (CDS) Final Guidance Updated <u>List of Currently Marketed Al/ML Devices</u> Recognized new <u>Consensus Standard on Al/ML</u> 	 Published <u>Predetermined Change</u> <u>Control Plan for AI/ML Devices Draft</u> <u>Guidance</u>



We recognize that by working collaboratively with stakeholders we can lay out a clear path toward building a proactive patient-centered approach to the development and use of AI/ML-enabled devices.

www.fda.gov/digitalhealth

FDA's Collaborative Patient-Centered Approach to AI/ML-Enabled Devices

2019

Proposed regulatory framework for modifications to AI/ML-enabled medical device software to assure their safety and effectiveness, including pre-specification of software changes to enable rapid improvement of software products

2021

Holistic, patient-centered strategic approach to AI/ML-enabled devices that promotes health equity, including aims to update the proposed regulatory framework and foster a patient-centered approach, including transparency to users

2023

Proposed, least burdensome approach to support safe, iterative improvement through modifications to an AI/ML-enabled device

www.fda.gov/digitalhealth

FDA

Purpose and Scope

Scope of Draft Guidance

- Applicable to machine learning-enabled device software functions (ML-DSFs) that a manufacturer intends to modify over time
- Describes proposed recommendations on information to be included in a Predetermined Change Control Plan (PCCP) provided as part of a marketing submission
- Generally, recommendations apply to device constituent part of a combination product, when the device constituent part is (or includes) an ML-DSF
- PCCP is an optional mechanism within a marketing submission for premarket authorization for modifications to an ML-DSF

D/

Proposed Approach for Modifications for Machine-Learning Device Software **Functions** (ML-DSF)

Draft Policy for PCCPs

An authorized PCCP specifies planned modifications that, if not included in a PCCP, could otherwise require a new marketing submission*

The modifications can be implemented to the ML-DSF without triggering the need for a new marketing submission Modifications made to an ML-DSF that are not specified in the authorized PCCP could require a new marketing submission*

*Note: pursuant to 21 CFR 807.81(a)(3) and 21 CFR 814.39(a), and in accordance with the "Modifications" guidances. For a list of the "Modifications" guidances, please see the Resources slide.

Proposed Components of PCCPs

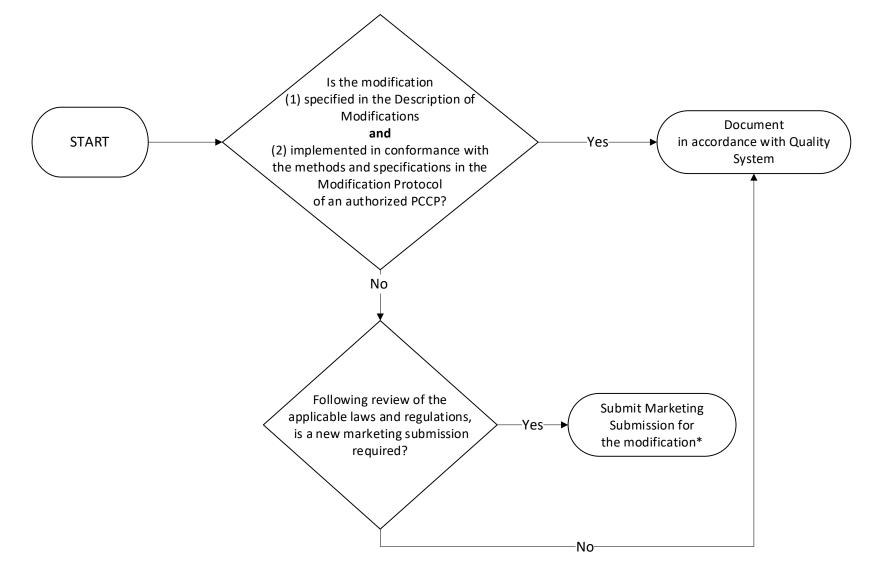
Description of Modifications	 "What" a manufacturer intends the algorithm to become as it learns Identifies specific, planned modifications to ML- DSF that the manufacturer intends to implement Draws a "range of FDA-authorized specifications" around initial device characteristics and performance
Modification Protocol	 "How" the algorithm will learn/change while remaining safe and effective Describes methods that will be followed when developing, validating, and implementing the modifications to ensure the device remains safe and effective Methods described in Modification Protocol should be consistent with and support the modifications outlined in Description of Modifications
Impact Assessment	 Describes modifications' benefits and risks, and how risks are mitigated Assesses benefits and risks of each individual modification, as well as collective impact of modifications, included in the Description of Modifications Discusses how activities proposed within Modification Protocol mitigate identified risks to continue to reasonably ensure the safety and effectiveness of the device
www.fda.gov/digitalboalth	Predetermined Change Control Plan

www.fda.gov/digitalhealth

Proposed PCCP Recommendations for Marketing Submissions

Establishing a PCCP

- A PCCP is included in a marketing submission for a device and established as part of that authorization*
- An "authorized PCCP" is one that has been reviewed and established through the device marketing authorization
- To establish a new PCCP for a previously authorized device, the marketing submission must include appropriate marketing submission requirements and the proposed PCCP for the device


*Note: The term "authorization" is used to include clearance of a 510(k), granting of a De Novo, or approval of PMA

Identifying a PCCP in a Marketing Submission

- In the marketing submission, the PCCP:
 - should be a standalone section, noted in the cover letter, and listed in the table of contents as "Predetermined Change Control Plan"
 - should be discussed as part of the device description, labeling, and other relevant sections
- The PCCP should be described in the:
 - 510(k) summary,
 - De Novo decision summary, or
 - PMA summary of safety and effectiveness document (SSED) and approval order
- Details of the PCCP should be included in sufficient detail to support transparency to users regarding the safety and effectiveness of the device
- Labeling should include an adequate description to ensure appropriate use of the device

Using an Authorized PCCP to Implement Modifications

www.fda.gov/digitalhealth

*For the modified device to have a PCCP, a PCCP should be submitted with the marketing submission so that the device and PCCP can be authorized together.

Modification Protocol

"How" the algorithm will learn/change while remaining safe and effective

Modification Protocol

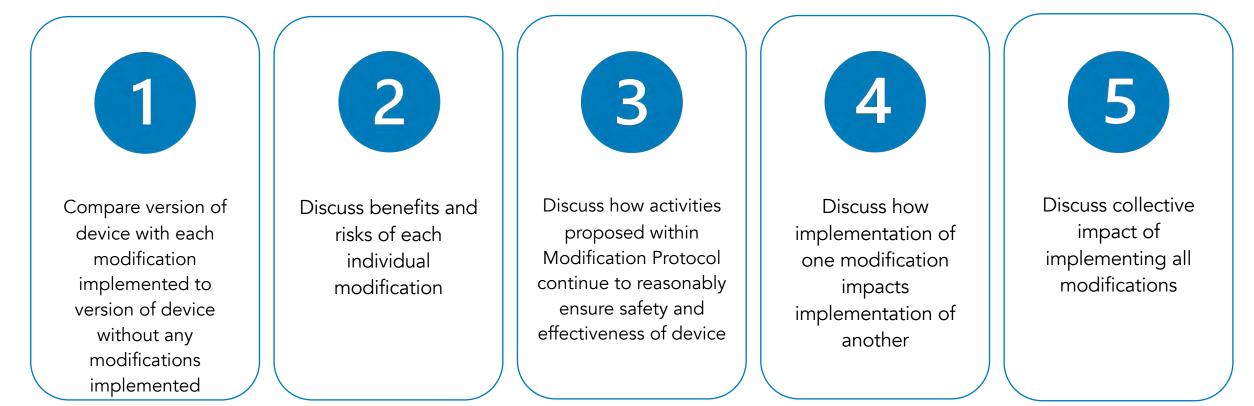
- Methods described in Modification Protocol should be consistent with and support modifications outlined in Description of Modifications
- Four primary components of a Modification Protocol:
 - (1) data management practices,
 - (2) re-training practices,
 - (3) performance evaluation protocols, and
 - (4) update procedures, including communication and transparency to users and realworld monitoring plans
- Include description of how proposed methods are similar to, or are different from, methods used elsewhere in marketing submission

Traceability between Modification Protocol and Description of Modifications

PCCP should clearly delineate which parts of Modification Protocol are applicable to each modification within Description of Modifications

	Modification Protocol Component			
Modification	Data management practices	Re-training practices	Performance evaluation	Update procedures
Modification #1	Method A	Method D	Method G	Method J
	(see Section X.A)	(see Section X.D)	(see Section X.G)	(see Section X.J)
Modification #2	Method A	Method E	Method H	Method J
	(see Section X.A)	(see Section X.E)	(see Section X.H)	(see Section X.J)
Modification #3	Method B	Method F	Method I	Method J
	(see Section X.B)	(see Section X.F)	(see Section X.I)	(see Section X.J)

Table 1. Example of Description of Modifications to Modification Protocol Traceability Table www.fda.gov/digitalhealth


Impact Assessment

Describes modifications' benefits and risks, and how risks are mitigated

Impact Assessment

Documentation for an Impact Assessment provided to the Agency in a marketing submission containing a PCCP should:

www.fda.gov/digitalhealth

KEY POINTS

- ✓ The PCCP draft guidance describes FDA's proposed approach to ML-DSFs to support their iterative development and improvement over time
- ✓ The introduction of PCCPs build on the Agency's longstanding commitment to developing innovative approaches to ensuring safe and effective digital health technologies are available to patients
- ✓ The PCCP Draft guidance introduces proposed recommendations on information to be included in a PCCP provided as part of a marketing submission for an ML-DSF
- ✓ The draft guidance also specifies that modifications made to an ML-DSF in accordance with an authorized PCCP can be implemented to the ML-DSF without a new marketing submission

Further Questions or Feedback

www.fda.gov/digitalhealth

DigitalHealth@fda.hhs.gov

AYOBAMI ADEBOWALE, M.ENG

Biomedical Engineer, Digital Health Center of Excellence (DHCoE) Center for Devices and Radiological Health, U.S. Food and Drug Administration Email: Ayobami.Adebowale@fda.hhs.gov

www.fda.gov/digitalhealth

The Food and Drug Omnibus Reform Act ("FDORA") Included a Provision for PCCPs

Γ	\square	
L •		
Ŀ	-	
L 1		

FDORA grants authority for PCCPs*

• Changes to a device consistent with an approved predetermined change control plan do not require a supplemental application. It may also require that change control plans include labeling required for safe and effective use of the device.

The PCCP provision applies to more than just AI/ML-enabled devices

• This provision applies to all devices—it is not specific to AI/ML-enabled devices or software devices. It applies to both premarket approval (PMA) applications and 510(k) applications.

2023 Draft Guidance on PCCPs for AI/ML-Enabled Devices

• This Draft Guidance provides proposed recommendations specifically for ML-DSFs that a manufacturer intends to modify over time. Consistent with the addition of section 515C, this draft guidance discusses the submission of PCCPs in marketing submissions for ML-DSFs.

*Per section 3308 of FDORA, Title III of Division FF of the Consolidated Appropriations Act, 2023, enacted on December 29, 2022, which added section 515C to the Federal Food, Drug, and Cosmetic Act (FD&C Act).

Term Mapping

2019 Discussion Paper

Predetermined Change Control Plan

Current Draft Guidance

Modification Protocol

Description of

Modifications

Predetermined Change Control Plan

SaMD Pre-Specifications

Algorithm Change Protocol

Impact

Impact Assessment

SaMD = Software as a Medical Device

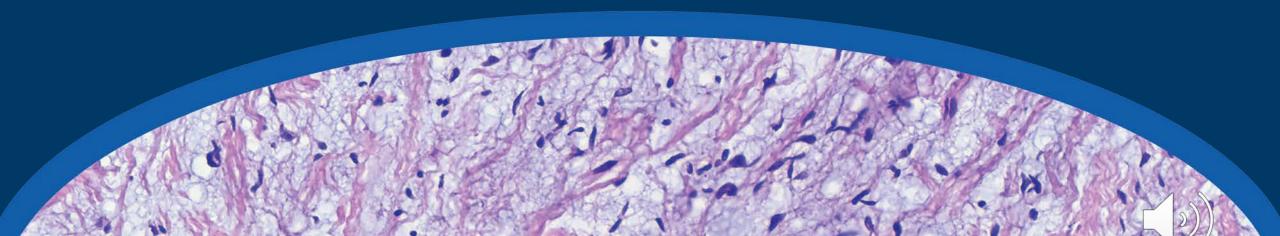
FD/

Resources/ Modification guidances

Cited Resource	URL
Deciding When to Submit a 510(k) for a Software Change to an Existing Device	<u>www.fda.gov/regulatory-information/search-fda-</u> <u>guidance-documents/deciding-when-submit-510k-</u> <u>software-change-existing-device</u>
Deciding When to Submit a 510(k) for a Change to an Existing Device	<u>www.fda.gov/regulatory-information/search-fda-</u> guidance-documents/deciding-when-submit-510k- <u>change-existing-device</u>
Modifications to Devices Subject to Premarket Approval (PMA)	www.fda.gov/regulatory-information/search-fda- guidance-documents/modifications-devices-subject- premarket-approval-pma-pma-supplement-decision- making-process
21 CFR 807.81(a)(3)	www.ecfr.gov/current/title-21/chapter-l/subchapter- H/part-807/subpart-E/section-807.81#p-807.81(a)(3)
21 CFR 814.39(a)	<u>www.ecfr.gov/current/title-21/chapter-l/subchapter-</u> <u>H/part-814/subpart-B/section-814.39#p-814.39(a)</u>

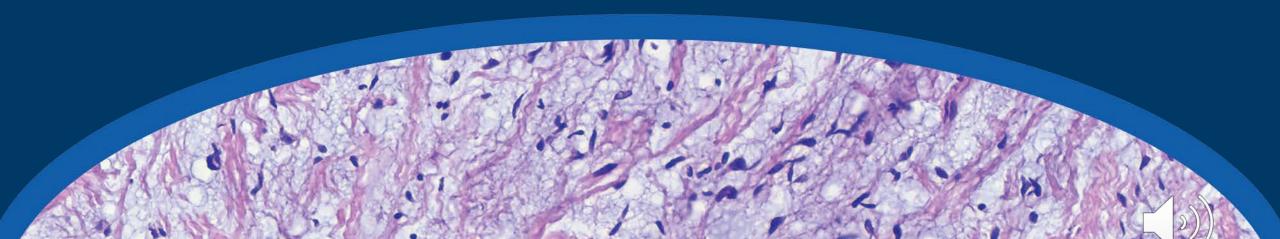
Pathology Innovation Collaborative Community (PIcc) Annual Meeting 2023

Panel Discussion/Q&A


Moderated by Ed Margerrison

Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

Coffee Break



Pathology Innovation Collaborative Community (PIcc) Annual Meeting 2023

Breakout Session Topics

Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

Breakout Session Topics

Remote Work

Mike Isaacs, Matthew Leavitt, Doc de Baca

Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

Breakout Session Topics

PCCP

Emre Gulturk, Kevin Schap, Alexej Gossmann

Pathology Innovation Collaborative Community (PIcc) Annual Meeting 2023

Breakout Session Topics

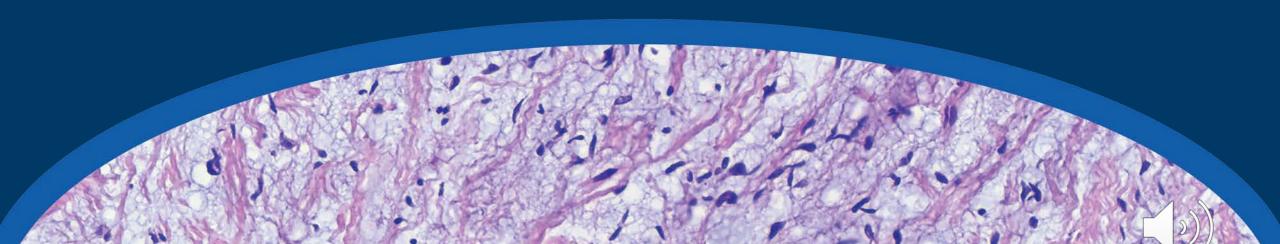
Statistics

Brandon Gallas, Kim Blenman, Gina Giannini

Pathology Innovation Collaborative Community (Plcc) Annual Meeting 2023

Breakout Session Topics

"Open Topic"


Jeni Caldera, Joe Lennerz

Pathology Innovation Collaborative Community (PIcc) Annual Meeting 2023

Dinner Reception

PIcc23

Plcc23 Day 2

June 28

Welcome

Breakout Session Overview

Introduction of all Participants (each table)

• Name, title, organization – two minutes total

We have identified Breakout Topic Leads

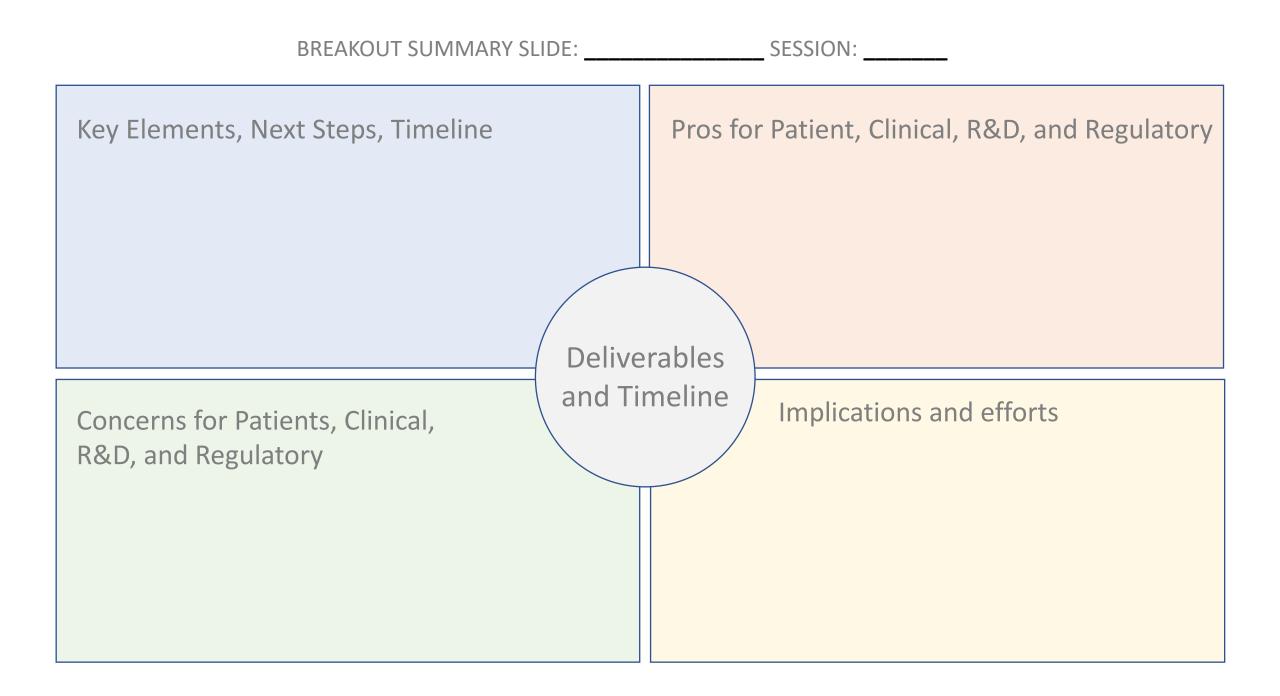
• Deliver 1-slide summary in plenary session (feel free to change if ok)

Rules of Engagement

- Every member in the group should contribute
- Share your experience and perspective
- Respect the opinions of others
- Maintain confidentiality and respect antitrust requirements
- Focus on the topic at hand and try not to move on to tangential issues
- Use parking lot for important topics for subsequent discussion

Last Five Minutes

- Confirm champion is prepared
- Check 1-slide summary for consolidation and projection in plenary session



Breakout Session Format

Overview – "Name of the group"

- What is missing to move "XXX" forward
- 3 key elements that the group considered most meaningful next steps including timelines
- What is the goal of this project and timeline?
- "How will these elements be valuable from a clinical, regulatory, and R&D perspective?"
- What is the clinical impact and/or relevance to the patient?
- What are possible concerns/risks to the patient?
- Explain the regulatory implications and advantages of pursuing this project in relation to digital pathology.

Breakout Session 1

Remote Work

Mike Isaacs, Matthew Leavit, Doc de Baca, Joe Sirintrapun

PCCP

Emre Gulturk, Kevin Schap, Alexej Gossmann

Statistics

Brandon Gallas, Kim Blenman, Gina Giannini

PIcc23

Open Topic

Jeni Caldera, Joe Lennerz

Create Summary Slide

Coffee Break + Rotate

Breakout Group Presentations

Vote

Keynote II: MedPerf Open and Standardized Benchmarking of Medical Artificial Intelligence

Alex Karargyris

Breakout Session 2

Remote Work

Mike Isaacs, Matthew Leavit, Doc de Baca, Joe Sirintrapun

PCCP

Emre Gulturk, Kevin Schap, Alexej Gossmann

Statistics

Brandon Gallas, Kim Blenman, Gina Giannini

Open Topic

Jeni Caldera, Joe Lennerz

Create Summary Slide

Coffee Break + Rotate

Breakout Group Presentations

Vote

Lunch

Sponsored by DDX Foundation

Final Breakout Session

Create Summary Slide

Coffee Break + Rotate

Breakout Group Presentations

Vote

Next Steps