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We deem a computer to exhibit artificial intelligence (AI) when it performs a task that would normally require intelligent action by a human.
Much of the recent excitement about AI in the medical literature has revolved around the ability of AI models to recognize anatomy and
detect pathology on medical images, sometimes at the level of expert physicians. However, AI can also be used to solve a wide range of
noninterpretive problems that are relevant to radiologists and their patients. This review summarizes some of the newer noninterpretive
uses of AI in radiology.
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INTRODUCTION
W hen a computer performs a task that would nor-
mally require intelligent action by a human, we
term that behavior artificial intelligence (AI).

Much of the recent excitement about AI in the radiology lit-
erature has revolved around the ability of AI models to recog-
nize anatomy and detect pathology on medical images,
sometimes at the level of expert physicians [1�5]. However,
AI can also be used to solve a wide range of noninterpretive
problems that are relevant to radiologists and their patients.
Despite a number of excellent recent reviews on this topic
[6�9], subsequent developments have continued at such a
pace that these reviews are already somewhat out of date.
With one exception [8], these reviews have given little atten-
tion to issues specific to academic radiology, such as the
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impact of AI on radiology education and residency training.
The purpose of this review is to stake a new set of banners in
the sand along the current edges of this rapidly expanding
field. The topics covered in this review are shown in Figure 1.
IMAGE PRODUCTION AND QUALITY CONTROL

There have been a number of recent developments in the use
of AI for image reconstruction for a variety of image modali-
ties (e.g., CT, PET, and MRI) [9]. These techniques have led
to decreases in imaging time, radiation dose, and contrast
dose while also improving image quality.
Noise Reduction

Deep learning has been used to reduce noise and artifacts,
enhance contrast and thus improve visualization of pathology
[10,11]. Initial deep learning techniques resulted in over-
smooth images with loss of details and compromised visibility
of essential structures [12�14]. However, this has been
addressed with more recent techniques involving the use of
convolutional neural networks (CNN) [15] and generative-
adversarial networks (GAN), resulting in de-noised images
without loss of critical information [13,16�19].

AI can improve image quality either by acting on the proc-
essed image or by directly transforming the raw sensor scan-
ner data into images. A postprocessing stage is then added to
minimize artifacts and noise [20�23]. AI based algorithms
such as AUTOMAP have been developed, which can be
directly applied on the sensor data to improve performance.
AUTOMAP uses deep learning to produce higher-quality
MR images with superior immunity to noise and reduc-
tion in reconstruction artifacts compared to conventional
1225
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Figure 1. Flowchart of topics covered in this review.
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reconstruction methods, without having to collect addi-
tional data [21].
Reduction of Radiation, Contrast Dose, and Scanning
Time

Increased utilization of computed tomography (CT) and
positron-emission tomography (PET) imaging has led to sig-
nificant concerns about radiation dose, especially when con-
sidered on a population scale. Although magnetic resonance
(MR) images do not employ ionizing radiation, there are
similar concerns about the wide usage of gadolinium-based
contrast agents.

The classic method for CT dose reduction is to reduce the
X-ray tube current. However, this results in fewer X-ray
photons utilized per scan and thus noisier images. Multiple
algorithmic approaches have been implemented to reduce
this noise, and iterative reconstruction techniques are cur-
rently offered by most vendors. More recently, deep learning
techniques have demonstrated the potential to decrease radia-
tion and contrast doses without loss of image quality. Initial
machine learning approaches to dose reduction resulted in
fuzzy, over-smoothed images. However, as the field has
evolved, techniques such as CNNs or GAN have offered a
balance between smoothing and feature preservation [7].

One such deep learning technique teaches an AI model
what normal anatomy and abnormal pathology look like at
both low and standard radiation doses. The AI model can
then create high-quality images directly from low-dose raw
sensor data [12,18]. A multi-center study compared the diag-
nostic quality of low-dose scans created in this manner with
1226
CT scans of the same patient at standard radiation doses.
Over 90% of the radiologists in this study felt the
AI-reconstructed low-dose images were of greater or equal
diagnostic quality than the standard-dose images [24].

Similar techniques can be used to generate high-quality PET
images, with significant reductions in radiation dose to the
patient. One early study combined low-quality, low-dose PET
images with high-quality T1-weighted MR images to produce
high-quality PET images, at only 1/4 of the radiation dose [25].
Subsequent studies have used GANs to produce high-quality
PET images with only 1% of the standard dose of radiation
[26,27]. Yet another study achieved a 200-fold decrease in the
radiotracer dose for 18F-fluorodeoxyglucose PET scans in the
evaluation of glioblastoma by using deep learning [28].

Another use of deep learning is to learn the artifacts pro-
duced from low-dose CT and subtract these artifacts from
reconstructed low-dose images. Using a technique called
residual learning, this has been applied to low-dose CT to
remove streak artifacts [29].

Deep learning techniques have been used to create good
quality postcontrast MRI images from images obtained using
only 10% of the standard dose of gadolinium [30]. These
images did not have any significant image degradation com-
pared to full contrast dose images and also had lower motion
artifacts.
Increasing MR Image Quality and Decreasing Scan Time

Deep learning has been used to improve other aspects of
image quality in CT and MR [31], such as the removal of
CT metal artifact [32], MR banding artifact [33], and MR
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motion artifact [34]. CNNs have also been used to enhance
spatial resolution [35,36].
The relatively long acquisition times of MRI often require

one to sacrifice image quality to meet the constraints of lim-
ited scanning time. Another problem is that MR sequences
with incomplete sampling of k-space (a technique used to
shorten MR scan acquisition times) can result in lengthy
reconstruction times. Deep learning has been used in MR
image reconstruction from undersampled k-space data by
training a CNN to learn a mapping between zero-filled and
fully sampled MR images [37]. Deep learning has also been
used for MR image reconstruction from clinical multicoil
MR data, an adaptation that reduces scan time through the
use of parallel imaging [38]. These techniques can substan-
tially decrease the time needed to produce acceptable MR
images. For example, diffusion MR imaging can be acceler-
ated by a factor of 12 when deep learning is used to optimize
q-space data processing [39].
Automated Assessment of Image Quality

Technologists routinely screen medical images for quality as
they are created. They check these images for adequacy of
penetration, exposure, coverage, and the presence of motion
or other imaging artifacts. They also assess the need for image
retake or sequence repetition. The need for this type of qual-
ity control is especially critical in MR imaging, where
sequence repetition may be needed in up to 55% of exams
[40]. Sometimes suboptimal images are not identified until
after an exam has been completed and the patient has left the
department. Recalling these patients for repeat imaging
results in delayed diagnoses, increased costs to the health care
system, and in some cases, increased radiation exposure.
There is therefore great interest as to whether deep learning
models can be trained to instantly recognize image quality
problems, allowing technologists to correct them before the
exam is completed [41]. One recent study was able to train
an AI model to recognize quality problems on abdominal
T2-weighted images with a negative predictive value of
86�94% [42].
IMPROVING RADIOLOGYWORKFLOW

Creating Study Protocols

Radiology study protocoling is an important task in routine
clinical practice, and ensures that patients undergo the correct
and optimal study. However, this process is tedious, time-
consuming, and susceptible to human errors. Nascent work
on automating this process has shown promising results. At
one large academic center, rule-based machine learning
applied to order entry information substantially decreased the
number of studies manually protocoled and improved emer-
gency department order turn-around-time [43]. Using non-
deep learning-based natural language processing algorithms
applied to order entry data, neuroradiology MRI protocol
selection can also be automated [44] and can even allow
selection of specific MRI sequences [45]. Such automation of
MRI sequence-level protocol information could potentially
allow for dynamic sequence selection, instead of a one-size-
fits-all approach. Deep learning-based natural language proc-
essing algorithms have been applied to musculoskeletal MRI
protocol selection [46] and general radiology protocol selec-
tion [47] with some success.

Another facet of protocol optimization is the experimental
determination of the optimal pulse sequence for a particular
clinical indication. Currently, optimal sequences are chosen
following a tedious side-by-side comparison between pulse
sequences by one or more radiologists. However, a properly
trained CNN might provide an acceptable surrogate for
human readers when performing a protocol optimization
study [48]. Use of a CNN could not only reduce the tedious
aspects of such studies but could also greatly increase the prac-
tical number of sequence combinations that could be tested.
Hanging Protocols

Hanging protocols can have a large impact on a radiologist’s
workflow. An efficient hanging protocol can reduce the lag
time between study selection and when the radiologist can
actually view the images. Most major commercial picture
archival and communication systems (PACS) offer some form
of automated hanging protocol. However, PACS vendors
continue to strive for even more efficient tools, such as GE
Healthcare’s “Smart Reading Protocols” technology, which
learns the user’s preferences based on what the user explicitly
teaches the algorithm [49]. Academic work has been com-
pleted to create hanging protocols based on the user’s previ-
ously manually corrected hanging protocols, without explicit
user input to the algorithm [50]. Creating optimal hanging
protocols can be challenging because of diverse individual
preferences, inconsistencies in the DICOM metadata, and
differences between vendors. For example, a brain MRI
acquired using one vendor’s scanner will have different
sequence names, which prevents simple rule-based machine
learning approaches from inferring the correct hanging proto-
col. Using AI to dynamically create the hanging protocol
based on image content as opposed to the metadata alone
could provide one solution to this problem.
Worklist Prioritization

AI can also help optimize radiologist workflow by means of
worklist prioritization. A radiologist’s worklist is often popu-
lated based on a set of rules related to exam type, subspecialty
focus, location, or other variables, with studies assigned vary-
ing levels of priority. However, algorithms that might modify
these rules or alter priority of individual exams on a worklist
have the potential to optimize efficiency or other outcome
metrics within a given practice. For example, one group prac-
tice reported improved group turnaround times by using ana-
lytics-driven worklists in which studies from a shared worklist
1227
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were distributed to individual radiologists’ worklists based on
empirical measures of each individual’s reading speed for each
study type [51]. Deep learning approaches can also assist radi-
ologists by assigning higher priorities to cases on the worklist
that may contain emergent abnormalities. Such prioritization
has been proposed in the setting of triage or screening systems
to detect abnormalities on chest radiographs [5], abdominal
CT [52], or head CT [53]. In these paradigms, there is an
image interpretation component to the AI’s tasks, but the
role of the AI is not to primarily render an interpretation but
to alert radiologists to potential critical findings and improve
turnaround time for reporting of potentially actionable
abnormalities.
BUSINESS APPLICATIONS

NATURAL LANGUAGE PROCESSING

“Natural language processing” (NLP) is a term that is often
used synonymously with the terms “text mining” or “infor-
mation extraction.” Tang et al. state that NLP typically refers
to conversion of unstructured text into a structured format,
which can facilitate automated information extraction
[54�56]. Principal applications of natural language processing
include improvement in the quality of radiology reports and
in improving communication with clinicians and patients.

It has been proposed that clinicians prefer itemized report-
ing because specific information or findings can be found
more easily in reports with this format than in unstructured,
narrative reports [57]. Many radiology practices have already
adopted speech recognition software which enables radiolog-
ists to utilize templates with such subheadings. Indeed, the
Radiological Society of North America (RSNA) hosts a web-
site, radreport.org, which effectively serves as a library for
radiology report templates [58]. RSNA members can submit
new reporting templates, and this collection of templates is
reviewed by the RSNA Reporting Subcommittee.

The extent to which itemized reporting has been adopted
varies considerably among different radiology practices. For
practices with persistent heterogeneity in reporting format
and style, NLP may be a promising means to automatically
generate standardized radiology reports from free text reports
[55]. NLP may also provide an automated method for con-
verting nonstandard terminology into a standardized lexicon
[58,59].

A majority of referring clinicians prefer that radiology
reports include follow-up imaging recommendations and
adhere to published management guidelines for managing
imaging findings. One survey found that 67% of clinicians
believed that radiology reports should indicate whether imag-
ing follow-up is indicated for incidental 5 mm hepatic lesions
[60]. Another study found that in CT scans of the chest or
abdomen, only 34% of recommendations for pulmonary
nodules adhered to Fleischner Society Guidelines [61]. NLP
could enable “computer-assisted reporting” in which pub-
lished clinical guidelines and recommendations are
1228
automatically inserted into radiology reports based on appli-
cation of the algorithm to freely dictated findings [7,55,58].

Recent studies have shown that NLP can be applied to the
unstructured text of a radiology report to detect actionable
imaging findings, such as the presence of a pulmonary embo-
lus [62]. Detection of such findings could trigger more timely
communication of results to referring clinicians [62�64].

An additional use of NLP is to improve communications of
results with patients. Patients have increasing access to their
diagnostic testing results, including radiology reports. It may
be difficult for patients without a medical background to
understand their imaging findings and their clinical impor-
tance. It has been suggested that NLP could automatically
convert a radiology report into a jargon-free format, either
by converting it into “plain” English for English-speaking
patients or by converting it into various other languages for
non-English-speaking patients [7].

Other NLP applications include extraction of pertinent
clinical information from the electronic medical record to aid
imaging interpretation [7,55] and embedding calculators to
aid interpretation (such as adrenal nodule washout calcula-
tions) [58]. Other clinical support tools may improve report-
ing quality by prompting a dictating radiologist to consider a
second site of fracture [54] or suggesting a differential diagno-
sis for the reported findings [55].
Optimal Scheduling of Scanners, Patients, and Staff
AI applications have the potential to address complex issues
such as scanner utilization and schedule optimization. In the
United States, medical imaging utilization continues to
increase in most age groups, with a 1�5% annual increase in
advanced imaging utilization (CT and MRI) reported
between 2012 and 2016 [65]. MRIs are time consuming to
acquire [7], and significant time-length variability is observed
in identically protocoled MRI examinations [66]. Given the
high capital expense and labor costs of performing MRIs, uti-
lization rate of the scanner becomes a significant factor in
determining the cost of an MRI exam [67]. These factors, in
an environment of declining reimbursements, are driving the
development of AI applications in the optimization of scanner
utilization and prospective determination of optimal time
allocation per scan. The transition of the US healthcare sys-
tem to electronic medical records systems, digitized radiology
ordering, reporting, and image storage have created rich data
sources that may be used by AI applications to address ineffi-
ciencies in utilization and scheduling [7] and to predict
patient wait times and appointment delays [68].

One preliminary study developed a machine learning based
approach using a feed-forward type of neural network to pre-
dict length of MRI exam based on patient demographics and
exam type [67]. This algorithm created an optimized schedule
simulation using dynamic slot lengths as compared to the tra-
ditional method of fixed slot lengths based only on MRI
exam type. Using this method, the authors report decreased
patient wait times and increased scheduling density, allowing
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accommodation of 2.78 more exams per day per scanner in
their schedule simulation when compared to historical data
[67]. This approach has the potential to improve MRI effi-
ciency, increase patient satisfaction through lower wait times,
and reduce costs.
Missed scheduled medical appointments are a problem

observed in all healthcare systems, leading to clinical misman-
agement and consumption of substantial resources [69]. AI
models have been used to predict missed appointments and
determine which missed appointments are most likely to
result in treatment discontinuation [69,70]. One study con-
cluded that missed appointments are the result of complex
interactions between patient, environmental, and operational
factors— their optimal AI prediction model required 81 vari-
ables [69]. Another prediction model for a cohort of diabetic
patients used demographics, clinical condition, and prior
appointment attendance [70]. When the predictions were
compared against true historical data, the algorithm accurately
predicted missed appointments with an AUC of 0.958, with
the ultimate goal of targeting interventions designed to
increase compliance.
Scheduling the appropriate staffing level and workforce

composition can be complex in any industry, particularly
healthcare. Interest in leveraging AI to optimize staffing is
long standing with publications dating back to the late 1980s
[71]. One recent report projected a 3�5% increase in profit-
ability by using a machine learning-based framework trained
on historical data that predicted the staffing needs of a profes-
sional services company [72]. An optimized or “intelligent”
radiology schedule may be able to predict fluctuations in vol-
ume, exam complexity, “no shows,” and referring practice
patterns while determining the ideal number and composi-
tion of requisite staff [7].
BILLING AND COLLECTIONS

Insurance claim denials can account for as much as a 3�5%
loss in revenue [73]. This has led healthcare organizations to
turn to AI techniques such as NLP and other machine learn-
ing (ML) tools for innovative solutions to optimize billing,
report classification, and claim denial reconciliation [7,73].
There has long been interest in the automated prediction of
diagnosis (International Classification of Diseases, version 10)
and procedural codes (Current Procedural Terminology)
based on unstructured free text entries in the medical record.
Currently, this task is expensive and time-consuming, and is
performed by experts trained in the nuances of these coding
systems. Most published research has focused on the applica-
tion of diagnostic codes rather than billing codes due to the
sensitive nature of billing code prediction. Errors related to
under- or over-coding could potentially lead to inaccurate
revenue realization or billing compliance risk [74].
One recent report described a neural network trained to

automatically assign International Classification of Diseases,
Tenth Revision (ICD-10) codes to the morbid disease/con-
ditions reported on death certificates, based on the
interpretation of multilanguage free text [75]. This AI model
represents an important initial step in developing AI applica-
tions for diagnosis code prediction, which could help
improve billing accuracy and reduce insurance claim denials.

NLP techniques can be used to analyze radiology reports
for administrative coding and quality assurance within a radi-
ology practice. NLP could either analyze a free-text radiology
report and automatically generate a billing code, or it could
convert a free-text radiology report into a structured report
that is more amenable to analysis by a separate algorithm used
to generate a billing code [54,55]. NLP could also be used to
assess for completeness of a radiology report, documentation
of use of comparison studies, documentation of timely non-
routine communications, and assuring that recommendations
in a radiology report adhere to published guidelines [54,58].
RESEARCH APPLICATIONS

Image Annotation, Segmentation, and Labeling

Traditionally, positive imaging findings are described in the
diagnostic report, often with the use of specific series and
image numbers. However, further effort is required to local-
ize subtle or small findings on a given image. Radiologists
have therefore long used annotations such as arrows, circles,
flags, and other markings placed on the DICOM images [76].
Such annotations may help a referring clinician to discuss the
findings with patients and plan treatment. They can also
greatly assist radiologists following findings on subsequent
studies or during multidisciplinary boards.

Segmentation is the process of partitioning an image into
multiple segments, each of which represents a cell, a tissue or
an organ of choice. Labeling refers to text labels assigned to
each of these segments of interest.

Image segmentation, labeling, and volumetric assessment
are being increasingly used, and are becoming an important
component of diagnostic imaging interpretation. These tasks
are mostly performed by radiologists or specially-trained
technologists on dedicated workstations under a radiologist’s
supervision. Annotation, segmentation, and labeling can be
tedious and time-consuming tasks, and while they do not
directly impact diagnosis by human radiologists, are helpful to
convey imaging findings. Segmentation and annotations are
also useful when referencing a finding relative to standard
anatomic structure in the human body, such as vertebrae,
hepatic lobes, brain anatomy, prostate, etc.

AI models have been used to successfully localize and
annotate organs such as the kidney, segmental anatomy such
as lobes of the liver or lung, and automated detection and
labeling of vertebral bodies [77,78]. This is extremely useful
when volumetric assessment of a lesion or organ is needed.
Examples include automated estimate of renal volume in a
potential donor, liver volumes in patients with potential seg-
mental or lobar resection and volumetric assessment in tumor
treatment response. Prostate segmentation is used by urolo-
gists for targeted biopsy in suspected MR findings of high-
1229
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risk prostate cancer. Studies have shown high accuracy in
prostate segmentation using deep learning [79,80].

One concern with annotation is that annotations perma-
nently embedded in images may alter the original dataset and
may impact its use for other projects. However, annotation
metadata can be stored independently (e.g., medical imaging
research management and associated information database
format) or embedded within the dataset as needed [81].

Image annotation and segmentation remains an important
component in oncologic clinical trials where lesions (target or
nontarget) are followed from baseline at various time points
to assess treatment response. These studies require precise and
consistent evaluation of the lesions across different readers at
different time points, and can be best optimized using annota-
tions and in some instances automated/semiautomated seg-
mentation or volumetric assessment. Studies have shown that
deep learning can efficiently monitor changes and perform
quantitative analysis before, during, and after treatment and
can also help to predict prognostic endpoints [82�84].
Radiomics and Image Quantification

Radiomics refers to the extraction of features from medical
images to be used to support decision-making [85]. Follow-
ing imaging acquisition, images are segmented to reduce the
image to a set of essential components by manual, automated,
or semiautomated methods. The segmentation process itself
can be fully automated through use of deep learning algo-
rithms, particularly those using the U-Net architecture [14].
Subsequently, feature extraction is performed to obtain quan-
titative data to characterize the volumes of interest. The
imaging-derived data can be combined with clinical or geno-
mic data to build databases that can be later mined. AI can be
applied to these databases in either unsupervised learning
approaches (e.g., to identify patterns) or supervised learning
approaches (in which outcome data or confirmed pathologi-
cal diagnoses are used to train a learning model).

Radiomics is often used in oncological scenarios, such as
for identification of imaging features that predict specific sub-
types or grades of tumors [86]. Applying a discovery radio-
mics approach to chest CT resulted in better prediction of
pathologically proven lung cancer than current state-of-the-
art approaches [87]. Combining radiomics signatures of non-
small cell lung cancers with clinical variables can predict over-
all survival [88]. Deep learning has also been used in attempts
to identify MR features that could help classify molecular
subtypes of [89,90] and estimate patient prognosis in [91]
patients with intracranial gliomas. A systematic review in
neuro-oncology found that AI models could predict patient
outcomes such as survival with higher accuracy than conven-
tional staging and clinical risk parameters [92]. For instance,
AI can predict prognosis in patients with high-grade glioma
with accuracies of 91% [93].

AI models based on radiomics have been used to estimate
severity or risk of progression in certain disease states in a vari-
ety of nononcological settings [94], including coronary artery
1230
disease, dental disease, gastrointestinal disease, endocrinopa-
thies, neurological disorders, ophthalmology, fractures, and
pulmonary disease. For example, conversion of mild cogni-
tive impairment to Alzheimer disease can be predicted by
combining multimodal neuroimaging data with other bio-
markers such as cerebrospinal fluid analyses and cognitive per-
formance assessments with up to 81% accuracy (AUC of 0.86)
[95].
Image-Based Search Engines

As machine learning techniques have matured, search engines
using images as input have been developed for commercial
and academic use [96�99]. Unlike traditional search systems
that use text input and search databases based on image tags
and keywords, image-based search engines search using the
visual content of the image. This can provide more accurate
and complete results given that text searches are limited by
the textual annotation of images [100].

In radiology, image-based search engines can provide valu-
able opportunities for education as well as research [7]. Large
volumes of medical imaging are accumulating in shared and
public databases, and image-based search engines connected
to these databases may allow easy discovery and comparison
of visually similar cases. As opposed to text searches, which
are likely to find cases with similar diagnoses, image searches
may also find visually similar cases with different diagnoses.
Correlation of visual and textual features of images found
using image-based search engines may also provide interesting
research opportunities [101].
Explainable Artificial Intelligence

One problem that may delay both widespread clinical adop-
tion and regulatory approval is the relative lack of transpar-
ency about how AI systems make their decisions. Patients
and physicians should both feel uneasy about trusting impor-
tant medical decisions to opaque pronouncements from a
“black box” [9]. AI algorithms in nonmedical fields have
been shown to make problematic decisions based on training
data biased for ethnicity, age, or gender [6,8,102]. Further-
more, medical deep learning models may be susceptible to
adversarial attacks [103�105]. If a medical AI system makes
an incorrect decision, it is critical to find out why and to pre-
vent future errors of the same type. To help address these
concerns, the European Commission High-Level Expert
Group on Artificial Intelligence recently presented its Ethics
Guidelines for Trustworthy AI [106]. Among these guidelines
are the principles of explicability and transparency, which
state that “technical explainability requires that the decisions
made by an AI system can be understood and traced by
human beings.” There are speculations that the European
Union may go on to require that companies providing auto-
mated systems be able to explain to users how their systems
reach a decision [107]. These concerns have prompted
research into explainable artificial intelligence. Explainable
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artificial intelligence techniques such as saliency maps [108]
and local interpretable model-agnostic explanations [109]
provide some early steps toward this goal.
Adversarial Attacks on PACS and Images

An adversarial attack is another name for the more colloqui-
ally familiar term “cyberattack.”Motivations to attack health-
care systems are wide and varied. One obvious motivation for
an adversarial attack is monetary, as the healthcare system rep-
resents a large portion (17.8% in 2016) of the US gross
domestic product [104]. However, other possible motivations
may include political influence, fame or attention, or inflic-
tion of personal harm.
Well-publicized cases of cyberattacks on national health-

care systems already exist, such as the 2017 attack on the
National Health System in the United Kingdom [110]. In
this case, an attack was designed to infiltrate a healthcare sys-
tem and hold data or access to the data for ransom. One can
imagine similar types of attacks which would target images or
other patient data. A malicious actor might hold this data for
ransom or publicly expose potentially damaging private
health details.
There are also potential political motivations for adversarial

attacks. Persons hoping to effect political regime change
could target a particular politician’s or candidate’s imaging or
other health data by inserting or deleting abnormal imaging
findings. This contaminated data might cause that politician
to resign from office or drop out of a race. Other individuals
might be personally targeted, with the intent to cause harm
or death. Altered images could lead to the withholding of
critical care or to unnecessary and possibly harmful treat-
ments.
One cybersecurity study found that a typical PACS may be

intentionally or inadvertently exposed to the internet, and
that more than 1100 PACS directly connected to the Internet
without any layer of security or virtual private network [111].
Even PACS not directly connected to the internet could be
indirectly exposed to the internet via a healthcare facility’s
internal network, for example, through web-based PACS
viewers. Furthermore, it is not common practice for hospitals
to encrypt internal PACS traffic, largely due to outdated
hardware, infrastructure, or information technology (IT) pol-
icies [105]. Infiltration of a hospital’s PACS system without
exploiting a direct exposure to the internet has been shown
to be shockingly easy [105]. With permission of a hospital
participating in their study, investigators performed a penetra-
tion test (i.e., an ethical hacking test). In their test, they were
able to install a small device between the hospital’s CT scan-
ner and the hospital PACS system that enabled them to inter-
cept and manipulate all scan data transmitted in the PACS.
The device installation process took 30 seconds to complete,
and within 10 minutes, they obtained usernames and pass-
words of 27 staff members and physicians in addition to access
to PACS data.
With rapidly advancing progress in the development of
algorithms for detecting and classifying imaging findings,
more attention has turned towards limitations of these algo-
rithms and particularly to vulnerabilities in these algorithms.
To date, adversarial algorithms have been developed that can
systematically deceive a trained AI model or a human radiolo-
gist. Notable examples include one algorithm that tricked an
AI model into misclassifying pneumothorax on chest radio-
graphs [103] and another that misled human radiologists by
adding fake pulmonary nodules and removing real pulmo-
nary nodules from chest CT exams [105].

Research is ongoing to develop methods to prevent and
detect image tampering. Methods such as digital image water-
marking [105] and ML algorithms to detect tampered images
[112], such as “feature squeezing” [113] or “defensive distilla-
tion” [114], have been proposed for the detection of manipu-
lated images.

In the meantime, prevention of an adversarial attack begins
with recognition of the problem and by adopting some sim-
ple standards of practice. Exposure of a hospital’s PACS to
the internet should be minimized. Antivirus, security software
on workstations and servers, and all medical devices con-
nected to a hospital network should be kept updated. Data
encryption should be enabled on every hospital’s PACS, and
as a corollary to this recommendation, hospitals and clinics
should avoid using PACS with no encryption.
RAMIFICATIONS OF AI FOR RADIOLOGY
EDUCATION

AI has promise for improving the quality and efficiency of
radiology education. In the current training model for radiol-
ogy residency, residents operate as apprentices, dictating stud-
ies from the diagnostic work list, which are then reviewed by
the attending radiologist for accuracy and clarity. However,
the studies that residents are exposed to over the course of
residency training can vary substantially. To address this prob-
lem, Chen et al. developed an NLP tool that operates on
electronic medical records to track resident progress, and can
be used to assign future cases to residents for a more balanced
curriculum [115]. Applications like this one have the poten-
tial to help radiology residents identify knowledge gaps and
areas in which the resident needs greater clinical exposure
[116].

The difficulty of assigned cases can also potentially be
matched to a resident’s individual ability, using AI tools that
dynamically evaluate cases for their level of difficulty [117].
Interesting cases could be identified using NLP tools applied
to radiology reports [118], and then used to build and index
teaching files [58]. One could use an NLP algorithm to search
free-text, unstructured reports to retrieve imaging studies for
educational files [54]. Automated correlation of radiology
findings with pathology results, operative reports, and clinical
outcomes using AI tools would be another area in which the
educational experience could be improved.
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During a case conference, an experienced radiologist
varies the difficulty of a case to match the ability of a stu-
dent or other trainee. This is in contrast to current physi-
cal and electronic media used for radiology education,
which are static with respect to a student’s ability [117].
However, by adapting a video game AI technique called
dynamic difficulty [119�122], educators may be able to
create teaching materials that adapt to a student’s abilities
in real-time.

AI tools might also help in tracking radiology resident per-
formance and evaluate competency. AI tools are being devel-
oped and implemented across medical specialties to evaluate
physician competence [123], and radiology training should
be particularly amenable given the highly digitized nature of
radiology practice. Metrics used for evaluation of resident
competency, such as the ACGME/American Board of Radi-
ology milestone project [124], could incorporate AI-based
assessments in the future.

While AI tools may help improve radiology training, there
are potential downsides to the resident’s educational experi-
ence. As interpretive AI tools begin to be incorporated in
radiology practice, residency programs will need to decide
how residents should use these tools. For example, pulmo-
nary nodule detection on chest CTs is a time-consuming task
and an active area of research for deep learning algorithms.
Should radiology residents first learn to interpret chest CTs
without the algorithm in order to develop their own percep-
tive skills or should they use the algorithm and focus on learn-
ing what the algorithm’s blind spots are? Does manually
segmenting cardiac chambers by drawing circles on a cardiac
MRI serve an educational purpose or should that be left to
deep learning software? Skills such as these that are currently
learned by radiologists will likely atrophy as radiologists
become more dependent on automated tools. However,
deciding which skills should be allowed to atrophy and the
subsequent impact on clinical performance will be important
questions moving forward. In addition, it will be important
that AI tools do not replace residents in the interpretive
workflow for educational activities [116]. For example, much
work is focused on the identification of normal studies, with
the idea that the radiologist can focus his or her time on the
more complex cases. If radiology residents are directed to
only examine cases with positive findings, those residents will
lose experience in identifying negative cases, which are
important for learning the spectrum of normal variation.
Communicating that a study is normal to the clinical team or
patient can be one of the most challenging but useful tasks in
radiology. Attention to possible unintended consequences of
AI tools such as these will be important for radiology resi-
dency programs in the future.

A substantial number of radiology residents at one US pro-
gram felt that they lacked exposure to the current literature
on AI, and expressed doubts about whether they would have
gone into radiology had they known of AI’s potential impact
on their specialty [125]. A majority of the radiology faculty at
the same institution admitted they neither had familiarity
1232
with big data analytics nor used AI or machine learning in
their daily work [125].

Academic radiologists need to consider other effects of AI
on their residents and residency programs. Anxiety about the
potential displacement of radiologists by AI has discouraged
some Canadian medical students from going into radiology
[126]. This anxiety may also be shared by US medical stu-
dents. Despite these fears, medical student interest in radiol-
ogy remains at its highest level in 10 years [127]. Radiology
residents in some institutions have embraced the need to learn
and use AI by instituting multi-institutional resident-driven
AI journal clubs [128]. Others have crafted their own year-
long pathway to teach themselves the arcana of machine
learning. Attending radiologists at these institutions are also
rising to the challenge by devoting considerably more time to
teaching AI techniques to their residents and by performing
their own AI research. Tools such as Google’s Colab Note-
book system (https://colab.research.google.com/notebooks/
welcome.ipynb) allow radiologists to get their feet wet with
deep learning without having to buy a high-end workstation
[129]. The ACR Data Science Institute has developed a
freely-available, user-friendly platform called ACR AI-LAB,
which is designed to enable radiologists to develop AI algo-
rithms at their own institutions and use their own data to
meet their own specific clinical needs [130].

It therefore behooves all radiology educators to follow
these examples, and to teach their medical students and resi-
dents about AI as an opportunity for radiology, rather than as
a threat [127,131]. The European Society of Radiology has
called for AI and informatics to be included in the curricula
for future radiology residents [8]. This approach could be
strengthened by dedicated rotations in information technol-
ogy (IT) during residency training, and fellowships in AI and
IT post-residency.
CONCLUSIONS

The ultimate goal of AI in medical imaging is to improve
patient outcomes. In this review, we have summarized some
of the many ways in which noninterpretive AI is relevant to
radiologists and their patients. At this time, only a few of these
techniques are ready to translate into clinical practice.
Regardless of which of these techniques are ultimately
adopted, we hope that this review will provoke thought in
the wider community of academic radiologists, and to help
lead us to even newer and more intriguing applications.
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