
Medical Image Analysis 88 (2023) 102885

Available online 29 June 2023
1361-8415/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

An aggregation of aggregation methods in computational pathology 

Mohsin Bilal a,d,1, Robert Jewsbury a,1, Ruoyu Wang a, Hammam M. AlGhamdi a, Amina Asif a, 
Mark Eastwood a, Nasir Rajpoot a,b,c,* 

a Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK 
b The Alan Turing Institute, UK 
c Department of Pathology, University Hospitals Coventry and Warwickshire, UK 
d School of Computing, National University of Computer and Emerging Sciences, Islamabad, Pakistan   

A R T I C L E  I N F O   

Keywords: 
Computational pathology 
Whole slide image analysis 
Aggregation of predictions 
Machine learning 

A B S T R A C T   

Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often 
process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict 
WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods 
with a view to help guide future research in the area of computational pathology (CPath). We propose a general 
CPath workflow with three pathways that consider multiple levels and types of data and the nature of compu
tation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and 
representation of the data, features of computational modules and CPath use cases. We compare and contrast 
different methods based on the principle of multiple instance learning, perhaps the most commonly used ag
gregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific 
WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list 
of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, 
some recommendations and possible future directions.   

1. Introduction 

The emerging area of computational pathology (CPath) involves a 
broad range of computational methods to analyse digitized images of 
tissue slides for a wide variety of downstream applications such as 
clinical decision-making and biomarker analysis (Abels et al., 2019). A 
high-resolution scan of a routine histology slide of a tissue specimen 
generates a whole slide image (WSI), often containing several billions of 
pixels. A WSI is a multi-gigapixel image containing large amount of 
information-rich pixel data at various levels of details, for instance a 
large number of various types of cells and glands, tissue phenotypes, and 
regions of interest to analyse for WSI-level predictions. However, a WSI 
can often not be processed entirely in graphic processing units (GPUs) 
for training or inference, presenting a computational challenge in itself. 
As a remedy, it is common to divide a WSI into multiple image tiles (or 
patches), perform the analysis on individual patches (or small groups of 
patches) and aggregate the results of inference from various levels into a 
WSI-level inference. While localization and recognition of objects like 

cells benefits from low-level details of the WSI data, prediction at the 
level of image tiles themselves provides slightly better context at the cost 
of missing low-level details of the cellular objects, a manifestation of the 
classical position-class uncertainty trade-off (Wilson & Knutsson, 1988). 
In this survey, we focus on computational approaches to WSI analysis for 
various different WSI-level tasks including prediction of diagnostic and 
molecular labels and survival analysis. 

There are multiple levels of aggregation in CPath. For example, ag
gregation of object (say, nuclei) level predictions into an image patch 
level prediction and aggregation of patch-level predictions into larger 
tile level prediction, as illustrated in Fig. 1a. In this paper, we focus on 
methods that aggregate predictions gathered from objects, image 
patches or tiles into WSI-level predictions. These methods follow the 
pipeline shown in Fig. 1b. As part of our comprehensive review, we aim 
to cover all aspects of CPath literature, including data in a WSI, 
computational approaches, use cases, evaluation, comparison, and rec
ommendations for possible future directions. 

Generally speaking, a CPath model’s WSI-level inference uses an 
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aggregated score to label a WSI with a correct diagnostic, prognostic or 
molecular category, making aggregation an essential module in several 
CPath analytical pipelines. We would like to note that our definition of 
“aggregation” in this paper is not restricted to aggregated scores only. It 
also refers to aggregating features obtained from various levels, objects 
and parts of a WSI for predictive modelling. For instance, there can be 
more than one WSIs for a patient to model CPath solutions, which 
require aggregating scores from multiple WSIs per case (Chang et al., 
2021). 

2. Computational pathology workflow 

Fig. 1 illustrates whole slide image analysis workflow to approach 
the predictive modelling solution by processing the WSIs in three 
different ways. A CPath model obtains image tiles by dividing WSIs and 
WSI-level scores by aggregating the results of inference on the tiles. The 
predictive modelling in a CPath pipeline may follow one of the three 
approaches: bottom-up inference, top-down inference or tissue pheno
typic representation based inference. In the bottom-up approach, image 
patches or tiles are used to detect, segment and classify various tissue 
objects like cells and glands as the primary units of information that are 
then subject to aggregation to represent a WSI, see for instance (Diao 
et al., 2021; Ho et al., 2022; Lu et al., 2020; Park et al., 2022). The WSI 
representations for predictive modelling offer options from classical 
machine learning to graph learning (GL) where graph convolutional 
neural networks (GCNNs) learn and aggregate all information into a 
single score for clinical decision-making. 

The top-down approach begins with analysing WSIs with tile-level or 
region-level predictions. In its simpler form, it does not require any 
annotations for specific objects and regions in a WSI, instead a WSI-level 
label may be used to weakly label the small image tiles. Tile-level scores 
or deep features can then be used to model predictive analysis, for 
instance in a multiple instance learning (MIL) setting. Results of infer
ence on tiles are then aggregated into a WSI-level score (Bilal et al., 
2021; Coudray et al., 2018; Kather, Pearson, et al., 2019). 

There is a third approach in CPath workflows, in which we first learn 

to distinguish different tiles as tissue phenotypes or regions of interest 
(labelled) within a WSI to incorporate apriori domain knowledge in 
predictive modelling (Park et al., 2022; Su et al., 2022; Wang et al., 
2021; Yamashita et al., 2021), leading to a tissue phenotypic represen
tation of the WSI. 

Fig. 2 and Table 1 present a summary of the aggregation methods 
found in the CPath literature considering three related aspects of the 
scientific literature: use cases, the type of input data and aggregation 
methods. 

In this paper, we focus on WSI image analysis workflows for the 
diagnostic, molecular and prognostic survival predictions at the WSI 
level as three main histopathology use cases. We have also added an 
aggregation method which used multiple WSIs and generated an 
aggregated output at the case level. Table 1 provides more details on the 
methods for these use cases with additional information of cancer type, 
clinical problem, aggregation method and workflows, and datasets used 
whether public or private. Diagnostic tasks include primary cancer 
screening, cancer subtype classification, cancer grade prediction and 
metastases detection. In the molecular prediction tasks, we include 
workflows for gene expression prediction, molecular pathways/subtype 
prediction, mutation prediction and treatment response prediction (Xie 
et al., 2022). In the prognostic use case, we include survival and risk 
prediction workflows. In the next section, we describe methods of ag
gregation in detail. 

3. Methods of aggregation 

Most CPath approaches process WSI tiles and aggregate the tile-level 
predicted labels, scores or probabilities to predict the slide-level label. 
We refer to both the small image patches and large image tiles as tiles 
from hereon. The problem can be formulated as follows: given a WSI 
Xcomposed of a set or a bag of tiles X = {x1, x2, …, xn} and their cor
responding predictions y = {y1, y2,…, yn}, the output prediction ywsi is 
obtained as follows, 

ywsi = gφ({yi = fθ(xi), ∀i}) (1) 

Fig. 1. A general overview of computational 
pathology data and workflows, a. A WSI con
tains many cells and glands as objects (Obj.), 
image patches, tiles or high power fields (HPF). 
A case may have multiple WSIs. b. Whole slide 
image analysis workflow here, considers a WSI 
as input, divided into several image tiles 
(patches or HPF) for machine learning to 
compute an aggregated output at WSI-level. 
Image tiles from a WSI can be processed by 
machine learning model to infer features; i.e., 
scores or labels or deep features, to be aggre
gated by different aggregation methods.   
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In Eq. (1), f represents a function (usually a neural network) that 
converts a patch xn into an instance level probability, score or prediction 
and is parameterised by θ. The function g is the aggregation function 
that takes the predictions of fθ(xi), ∀i and combines them into a slide- 
level prediction. It can have learnable parameters of its own, denoted 
by φ , or it can be non-parameterised. 

Broadly speaking, three types of approaches for defining the function 
g can be found in the literature, as described in the remainder of this 
section. 

3.1. Heuristic/statistical aggregation 

Heuristic approaches also known as global pooling approaches 
require no machine learning and are not data dependent. Each instance 
is processed independently and then the scores are aggregated using a 
fixed formula. All the pooling approaches condense a set of tile-level 
scores into a slide-level score in some way. There are many different 
formulations for g(⋅) but the most commonly used ones are:  

• Mean: g(y) = 1
n
∑n

i=1yi where n is the number of tiles in the WSI.  
• Max: g(y) = max(yi); i = {1,2, …, n}

Others include Majority voting (mode), Generalised mean (Xu et al., 
2014), Noisy-OR (Kraus et al., 2016) and Noisy-AND (Skrede et al., 
2020). 

3.2. Data-driven aggregation 

In data-driven approaches, the function g has a set of learnable pa
rameters φ . The most commonly used approach is a form of attention 

aggregation proposed by Ilse et al. (2018), which takes a set of feature 
vectors z extracted from the input bag of instances X using a neural 
network f parameterised by θ 

z = fθ(X) = {z1, z2, …, zn} (2) 

The bag/slide label is obtained via the following formulation, 

ywsi = g(z) =
∑n

i=1
aizi (3)  

where 

ai =
exp

{
wT tanh

(
VzT

i

)}

∑n
j=1exp

{
wT tanh

(
VzT

j
)} (4)  

and w ∈ RL× 1and V ∈ RL×Nare learnable parameters. It is worth noting 
that this formulation assumes all instances are independent. 

There are many other formulations that have been proposed 
including extensions of this attention MIL (Lipkova et al., 2022; Lu et al., 
2021), variations that use positional encodings in the attention structure 
(Shao et al., 2021), ones that use a Recurrent Neural Network (RNN) 
(Campanella et al., 2019) or a Transformer (Chen et al., 2022) as the 
aggregation function instead of the attention mechanism. Gildenblat 
et al. (2021) proposed a data-driven mechanism of certainty pooling in 
the MIL framework showing better performance than attention mecha
nism and heuristic aggregation like mean and max pooling. 

Other approaches for the data-driven aggregation includes graph 
learning (Lu et al., 2020) and the application of classification machine 
learning like random forest, logistic regression, support vector and 
gradient boosting machines with the handcrafted features of WSI 

Fig. 2. Aggregating the aggregation literature: use cases, input type and methods of aggregation.  
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obtained from the tiles, cells, and glands (Diao et al., 2021; Ho et al., 
2022). Handcrafted features take the tile-level prediction scores or 
probabilities in the same way as the prior two methods but instead of 
aggregating these to the prediction for the WSI level label directly they 
extract features from the tile scores such as a histogram of tile prediction 
scores. Other examples include morphological or statistical features 
extracted from the prediction maps. 

3.3. Clinically-driven aggregation 

The final class of aggregation methods use clinical formulae devel
oped by pathologists and currently used in clinical tasks. For example, in 
breast cancer to categorise the amount of HER2 receptor protein on the 
surface of cells in the sample, the Royal College of Pathologists (RCPath) 
guidelines suggest specific criteria as defined in RCPath report, p.99 
(Ellis et al., 2016). Other examples of aggregation using domain specific 
knowledge include mismatch repair assessment to determine microsat
ellite instability (MSI) status of the sample using the expression of 
immunohistochemistry (IHC) with 4 antibodies (MMR-IHC: MLH1, 
MSH2, MSH6 and PMS2) (Awan et al., 2022) and assessment of PD-L1 
protein expression using tumour proportion score (Pagni et al., 2020). 
The latter approach detects and quantifies tumour cells in a WSI in terms 
of the amount of IHC stain that has been absorbed and then compute the 
percentage of tumour cells that are strongly stained and compare it with 
these criteria. 

4. Multiple instance learning 

Multiple instance learning or MIL is a paradigm of supervised ma
chine learning that deals with incomplete and ambiguous information of 
labels in training data. The learner receives a set of labelled bags where 
each bag has multiple unlabelled instances. Dietterich et al. (1997) first 
coined the term. In its basic form, the MIL problem restricts to a binary 
classification of bags (Babenko, 2008), but other forms of multiple 
instance regression (Ray, 2001) and multi-instance multi-label learning 
(Zhou & Zhang, 2007) can also be found in the machine learning liter
ature. The basic MIL assumption is that every positively labelled bag 
contains at least one positive “witness” or “key” instance (Babenko, 
2008). It implies that all instances in a negatively labelled bag are 
negative instances. Babenko (2008) presents a thorough review of 
different MIL methods from classical machine learning for further 
reading. We have choices of modelling the MIL problem as an instance 
classifier, a bag classifier (Babenko, 2008) or a combination of instance 

Table 1 
Summary of aggregation methods in CPath.  

Authors Cancer type 
(s) 

Clinical Problem(s) Aggregation 
Method 

Non-data driven methods 
Schmauch 

et al. (2020) 
28 cancer 
types 

Gene expression Weighted average 
pooling 

Gildenblat 
et al. (2021) 

Breast cancer Metastases detection Certainty Pooling 

Skrede et al. 
(2020) 

Colorectal 
cancer 

Cancer specific 
survival 

Noisy And Pooling 

Bilal et al. 
(2021) 

Colorectal 
cancer 

Molecular pathways / 
Mutation prediction 

Iterative draw and 
rank sampling 
(IDARS), average 
probability 
aggregation 

Yamashita 
et al. (2021) 

Colorectal 
cancer 

Microsatellite 
instability prediction 

Tissue phenotype 
classification and 
average probability 
aggregation 

Bilal et al 
(2022) 

Colorectal 
cancer 

Cancer screening IDARS, Average (of 
tiles with 
probability greater 
than median) 
probability 
aggregation 

Kather et al. 
(2019) 

Colorectal / 
Gastric 
cancer 

Molecular subtypes / 
Mutation prediction 

Naive MIL, 
Proportion of 
positive predicted 
tiles 

Su et al. (2022) Gastric 
cancer 

Microsatellite 
instability recognition 

Majority voting 

Kanavati et al. 
(2020) 

Lung cancer Sub-type classification 
/ Metastases detection 

Max pooling 

Parameterised methods 
Diao et al. 

(2021) 
5 cancer 
types 

Molecular phenotype 
prediction 

Classical machine 
learning based 
aggregation 

Chen et al. 
(2022) 

8 cancer 
types 

Sub-type classification 
/ Survival prediction 

Hierarchical 
transformer 
aggregation 

Lipkova et al. 
(2022) 

Allograft 
rejection 

Rejection conditions / 
Grade prediction 

Multitask attention 
MIL 

Hashimoto 
et al. (2020) 

Blood cancer Sub-type classification Domain adversarial 
attention MIL 

Lu et al. (2021) Brain cancer Sub-type classification Contrastive and 
sparse-attention 
based MIL 

Sharma et al. 
(2021) 

Breast / 
Gastric 
cancer 

Metastasis detection / 
Celiac prediction 

Clustering and 
Attention MIL 

Lu et al. (2021) Breast / 
Kidney / 
Lung cancer 

Sub-type classification 
/ Metastases detection 

Attention MIL and 
Instance-level 
clustering 

Li et al. (2021) Breast / Lung 
cancer 

Sub-type classification 
/ Metastases detection 

Dual instance and 
bag aggregation 

Campanella 
et al. (2019) 

Breast / 
Prostate / 
Skin cancer 

Metastases detection / 
Grade prediction 

Top-k learning, 
RNN aggregation 

Lu et al. (2022) Breast cancer Mutation prediction 
(HER2) 

GNN aggregation 

Naik et al. 
(2020) 

Breast cancer Mutation prediction Attention MIL 

Tellez et al. 
(2019) 

Breast cancer Metastases detection / 
Tumour proliferation 
speed 

Neural Image 
Compression 

Schirris et al. 
(2022) 

Breast 
cancer/ 
Colorectal 
cancer 

Mutation prediction SSL encoder and 
VarMIL 

Shao et al. 
(2021) 

Breast/ 
Kidney / 
Lung cancer 

Sub-type classification 
/ Metastases detection 

Transformer 
aggregation 

Park et al. 
(2022) 

Colorectal / 
Gastric 
cancer 

Microsatellite 
instability prediction 

Mean aggregation & 
light gradient 
boosting machine  

Table 1 (continued ) 

Authors Cancer type 
(s) 

Clinical Problem(s) Aggregation 
Method 

Saillard et al. 
(2021) 

Colorectal / 
Gastric 
cancer 

Microsatellite 
instability prediction 

SSL encoder, top 
and bottom scores, 
and Chowder 

Reisenbüchler 
et al. (2022) 

Colorectal / 
Stomach 
cancer 

Mutation prediction Local attention 
graph transformer 

Ho et al. (2022) Colorectal 
cancer 

Cancer detection Gland segmentation 
and aggregation by 
gradient-boosted 
decision tree 

Tomita et al. 
(2019) 

Esophageal 
cancer 

Sub-type classification Attention MIL 

Xie et al. (2022) Lung cancer ICI treatment response 
prediction 

End-to-end part- 
learning GNN 

Chang et al. 
(2021) 

Lung cancer Survival analysis Hybrid aggregation 
network 

Pinckaers et al. 
(2020) 

Prostate 
cancer 

Grade prediction Streaming CNN 

Zhang et al. 
(2022) 

Rectal cancer Chemoradiotherapy 
efficacy prediction 

Multi-scale CNN 
bilinear attention 
MIL  
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and bag classifiers. 
Predictive modelling in CPath is analogous to the MIL problem if it 

considers the WSI as a bag with a single label for the purposes of pre
dictive modelling, which is often the case in CPath workflows. Having 
multiple classes and several labels for each WSI (or bag) is also possible 
in CPath problems, where the basic assumption of the MIL problem may 
violate. For some CPath problems, bags may also have instances irrele
vant to the prediction task. In other words, both the positive and 
negative bags may have noisy samples, which are not related to the 
given label of the WSI. An alternate term of weakly-supervised learning 
might be more appropriate in such scenarios. 

4.1. Multiple instance learning in CPath 

In this section, we review recent well-known MIL methods in CPath. 
Fig. 3 illustrates six recently published MIL methods, which consider a 
WSI as a bag of patches. We group these methods according to their 
representation, learning and aggregation modules. 

A naive MIL approach fine-tunes all or a few of the last layers of a 
convolutional neural network (CNN), InceptionV3 in (Coudray et al., 
2018) and ResNet18 in (Kather, Pearson, et al., 2019), pre-trained on 
ImageNet. Each patch gets the same label as the bag (or WSI) during the 
model’s fine-tuning, which means all patches in the positive bag get the 
positive label. It adds a potential noise in the model training by forcing 
the network to learn irrelevant or negative instances as positive. The 
model training follows an instance classifier approach. The model 
testing applies an average or a majority voting scheme to aggregate 
probabilities of image patches into scores of a bag or WSI. The majority 
vote measures a ratio of positively predicted instances over all instances 
in the bag. Several publications have used naive MIL approach to predict 
diagnostic and molecular labels of WSIs. 

Campanella et al. (2019) proposed an advanced MIL approach for 
clinical-grade diagnosis of prostate cancer, basal cell carcinoma and 
breast cancer metastasis. During training, they fine-tune a pretrained 
CNN (ResNet34) before the CNN is used to predict a score for each tile 
and then only the top tiles of positive class in each WSI are used for 
training. In the first stage, this pair of inference followed by training recurs 
for maximum number of iteration (e.g. 100) to obtain a trained CNN. In 
the second stage, the trained CNN predicts a few top (e.g. 20) positive 
tiles from each slide for training an aggregation network. As an aggre
gation network, they train recurrent neural network on last layer fea
tures of selected top tiles and compare it with a random forest trained on 
the hand-crafted feature of top twenty tiles. This was shown to achieve 
clinical-grade performance for binary diagnostic tasks when a large 
number of WSIs were used for training the model. 

Clustering-constrained attention multiple instance learning (CLAM) 
(Lu et al., 2021) is another MIL based aggregation method that repre
sents each WSI as a fixed size bag and each input image patch using fixed 
features of ResNet50 pre-trained on ImageNet. It performs data-driven 
aggregation, which involves multi-class attention-based learning to 
identify associated diagnostic subregions to accurately classify WSI and 
instance-level clustering over the identified representative regions to 
constrain and refine the feature space. Several recent studies have 
employed this method for WSI label predictions. 

Bilal et al. (2021) proposed iterative draw and rank sampling 
(IDaRS) for fine-tuning a CNN (ResNet34) on two smaller subset 
(random (r) and top (k)) of tiles from each WSI. After initiating the 
training with random tiles (50 or 11%), they obtain top k (5 or 1%) 
positive tiles in each subsequent iteration to combine with random (r) 
tiles from each WSI for training. For aggregation, they experiment with 
several pooling methods like average of positive probability of all tiles or 
selective tiles (top few (5 or 10), top half (50%)), and weighted average. 
They report better AUC-ROCs and average precision of PR-curves with 
average and top half aggregation for molecular (Bilal et al., 2021) and 
diagnostic (Bilal et al., 2022) labels predictions. 

Recently, self-supervised learning based (Saillard et al., 2021), 
(Schirris et al., 2022) have been proposed for various histopathology 
tasks. Saillard et al. (2021) use self-supervised learning to fine-tune a 
pretrained CNN (ResNet50). For each tile, they use an autoencoder to 
reduce the last layer features of trained ResNet50 to a 256-dimensional 
vector. They predict microsatellite instability with three different MIL 
frameworks for aggregation. A better performing aggregation network 
consists of two multilayer perceptron (MLP) networks. The first MLP 
processes features to score each tile for the selection of R (R=10, 25, or 
100) top and bottom scores per WSI for the training of second MLP. The 
second trained MLP processes concatenated top and bottom scores to 
infer a final aggregated score. In first stage of the DeepSMILE (Schirris 
et al., 2022), authors use self-supervised learning for fine-tuning a 
pre-trained CNN (ResNet18 and ShuffleNetV2). In second stage, Deep
SMILE proposes MLP-based aggregation network. The aggregation 
network uses the last layer features of the trained CNN and learns 
attention followed by a classification module to get an aggregated 
output for the prediction of MSI and homologous recombination defi
ciency (HRD). 

5. Context in aggregation 

In visual processing systems, data-driven modelling requires visual 
context without losing an appropriate level of finer details. In CPath, 
processing bags of image tiles without spatial information compromises 

Fig. 3. Popular multiple instance learning pipelines in computational pathology.  
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the wider visual context. Capturing visual context with constrained 
computational resources results in losing the finer details and raises a 
trade-off between visual details and context. If we retain a fuller context 
at the lowest level of resolution, we will lose essential details of the WSI 
that impedes predictive modelling. In its trivial form, MIL-based ap
proaches described in Section 4.1 considered patching at an appropriate 
resolution but with a limited context and without retaining the spatial 
information of image patches. The aggregation attempts to recover the 
lost context from disjoint patches in the bag. Yet, this may be a subop
timal solution until we can process an entire WSI as a single sample or 
retain deep features besides spatial location and awareness of their role 
in the final prediction. Another approach often found in the literature 
analyses patches at multiple resolutions, which can be beneficial to 
capture the heterogeneity of data from multiple regions (Zhang et al., 
2022). Next, we describe the global context and graph-based aggrega
tion approaches attempting WSI image analysis with a global context 
and spatial interaction. 

5.1. Global context 

Global context aggregation approaches attempt to address the limi
tations of local context approaches where the narrow field of view 
considered in the tile aggregation approaches limits the incorporation of 
global features. The typical tile size in computational pathology prob
lems is 256 × 256 or 512 × 512 pixels. Particularly at higher magnifi
cations, e.g. 20 or 40x, this results in a bag of instances with no 
consideration for the spatial relationship between the different in
stances. Efforts to address this problem outside of graph structures are 
few but varied. 

5.1.1. Transformers 
The Transformer architecture (Vaswani et al., 2017) has quickly 

become the state-of-the-art for many language tasks and recently with 
the introduction of the Vision Transformer (Dosovitskiy et al., 2021) has 
been applied extensively for computer vision tasks as well. It uses a 
multi-head self-attention mechanism which unlike RNNs does not 
consider the order or relative position of tokens in an input sequence. To 
address this, the transformer uses a positional encoding with each input 
token adding in the relative position of each component in the sequence. 
This allows the Transformer to have greater awareness of longer-range 
dependencies in the input data compared to other models like a CNN’s 
kernels that have a fixed window size. As such it lends itself to address 
the lack of context problem associated with the local aggregation 
methods. 

To aggregate image tile instances for WSI classification, several 
methods using Transformers have been used such as SMILE (Lu et al., 
2021), TransMIL (Shao et al., 2021), GTP (Zheng et al., 2021) and HIPT 
(Chen et al., 2022). They operate on a similar paradigm to the local 
context approaches but attempt to encode in the feature vectors an 
aspect of the given feature vector’s spatial positioning with respect to 
other feature vectors. The construction of a bag of instances is usually 
handled in the same way as the local context methods, ie a tissue mask is 
used to extract only tissue tiles which are then fed through a pre-trained 
or a fine-tuned encoder, usually a ResNet50. It is after this step that the 
Transformer approaches differ. SMILE uses a SAM (Sparse-Attention) 
module to extract the top-N feature embeddings from the bag of in
stances which is then fed forward into a transformer module. TransMIL 
uses a Pyramid Position Encoding Generator (PPEG) combined with an 
alternative Transformer architecture which approximates the 
self-attention mechanism the Nyströmformer (Xiong et al., 2021). GTP 
posits that combining ViTs along with graphs can lead to a more efficient 
approach. They build a graph from the extracted feature vectors and 
then passes the graph through a GCN and pooling layer before passing 
this to a transformer layer with the associated positional encodings. 

Transformer methods have been shown in ablation studies to have a 
positive impact on model performance for a variety of tasks including 

glioma subtyping (Lu et al., 2021), metastasis detection (Shao et al., 
2021), lung cancer subtyping (Shao et al., 2021; Zheng et al., 2021) and 
kidney cancer subtyping (Shao et al., 2021). Although some works 
(Shao et al., 2021) alter the structure of the positional encoding the 
majority of Transformer based approaches assume that the existing si
nusoidal encoding approach proposed in (Dosovitskiy et al., 2021) is 
sufficient to include the required global context. While the Transformer 
proposals show they can outperform other existing approaches such as 
CLAM (Lu et al., 2021) unfortunately there is not currently a comparison 
between the different transformer methods on the same tasks(s). 

5.1.2. Context-aware methods 
To remedy the lack of context present in the bag of instance ap

proaches described above several different methods outside of the 
Transformers have attempted to consider the spatial arrangement of 
instances as part of their pipeline. 

Neural Image Compression (NIC) (Tellez et al., 2019) uses a repre
sentation learning approach. By training a tile encoder with a GAN and 
re-arranging the extracted feature vectors with the same spatial 
arrangement as the original tiles in the WSI they are able to compress the 
original WSI into a format which a CNN can hold in memory. Once 
extracted for each WSI this compressed image representation is then 
used to train a standard CNN architecture. This process assumes that by 
passing the instances through the GAN, the spatial relationships be
tween them are preserved in the deep feature space. 

Context-Aware CNN (Shaban et al., 2020) uses a similar idea but 
instead of just spatially re-arranging the instances in the same way they 
also use an attention block with the deep feature cube to include an 
encoding of the spatial context. This feature cube, with the spatial 
context encoded, is then passed to a classification CNN as in NIC. While 
Context-Aware CNN was only tested on HPFs of order 10^3 × 10^3 pixels 
it is very similar to NIC in terms of the overall pipeline and there’s 
nothing preventing the approach from being applied at the WSI level. 

Another approach to the same idea is Streaming CNN (Pinckaers 
et al., 2020). Here the authors attempt to train a CNN with arbitrary 
input image size by streaming the input image through the model in a 
series of large tiles and using gradient checkpointing to reduce the 
memory required to store the activations. By aggregating the gradients 
over large tile sizes e.g., 4096 or 8192 pixels they are able to train an 
end-to-end model for WSI classification for regressing to the PAM50 
score (a measure for tumour growth) and for classifying metastases in 
breast cancer without aggregating a bag of instances. Streaming CNNs 
(Huang et al., 2022) have also shown improved lymph node metastatic 
detection in gastric cancer. 

Sparse Convolutional Context-Aware MIL (SparseConvMIL) by Ler
ousseau et al. (2021) is a fully differentiable context-aware multiple 
instance learning paradigm. SparseConvMIL uses a sparse map from tiles 
embeddings and sparse-input CNN for WSI classification to exploit the 
spatial relationship of tiles in MIL approach for WSI classification. 

The final paradigm is to not just incorporate an awareness of the 
spatial arrangement of instances but also of their hierarchical relation
ship as well into the overall pipeline. WSIs and other very high- 
resolution image formats use an image pyramid structure to store the 
image at different resolutions so they can display the region required at 
different magnifications. Similar to multi-resolution approaches one 
proposal (Jewsbury et al., 2021) splits HPF regions with a quadtree 
approach to create a bag of instances at different magnifications. 

CellMaps (AlGhamdi et al., 2021) is another method for represen
tation of histology images, which uses the cellular density of given 
image to represent the entire WSI. It can represent various cell types, 
each of which is corresponded in an image layer. The size of the Cell
Maps can be compressed to the desired level that the model/algorithm 
can handle, while all the relevant information is kept intact while 
reducing the image size. Besides, this representation captures the spatial 
information of cellular level details from the original image. AlGhamdi 
et al. (2021) show that the prediction performance is improved when 
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model is trained with the CellMaps representation, comparing with the 
raw H&E images. 

5.2. Graph aggregation 

Most of the aggregation approaches we have looked at in other 
sections, treat instances as entities with no specific relationship beyond 
belonging to the same slide, ignoring the spatial relationship of patches, 
cells, or histological entities in the sample. This results in loss of useful 
information from the spatial relationships and does not account for the 
importance of context in pathology diagnosis. Pathologists often place a 
lot of importance on the context in which biological features appear 
when trying to understand and diagnose a sample. 

Graph neural network approaches preserve these spatial relation
ships, by modelling the tissue as a graph of instances (in Graph termi
nology, the individual instances are referred to as nodes). This allows 
context from local neighbourhoods to be used when learning instance 
scores or representations, and can be used to inform global aggregation 
by identifying important nodes based on graph structure (Lu et al., 
2022). 

There are several excellent review articles covering graph neural 
networks in general (Wu et al., 2021) and GNNs in computational pa
thology (Ahmedt-Aristizabal et al., 2022), which we refer the reader to 
for an in-depth survey of GNN techniques. Here, we will present an 
overview of graph neural networks from the viewpoint of aggregation, 
focussing on the aspects most relevant in that context. 

5.2.1. Graph representation 
Let G = (V, E) denote a graph, where V and E are the sets of nodes 

and edges respectively. Each node v ∈ V is associated with a feature 
vector Fv. In the context of CPath, each node v is often a histological 
entity such as a cell (Wang et al., 2019). It may also be a representation 
of a tissue region, such as a patch, or a cluster of patches or cells [4,45]. 
Some methods have also used pixel-based clustering methods such as 
SLIC to generate the nodes (Pati et al., 2020).The features Fv will 
describe characteristics of the cell or tissue region. In general, graphs 
often also have associated edge features Fe, though this is less common in 
the context of CPath. 

In learning instance (node) representations, GNNs aggregate infor
mation from a local neighbourhood, as illustrated in Fig. 4a. The way in 
which this is done differs depending on the type of GNN it is. 

A node v in a graph has a local neighbourhood Nv which is the set of 
all nodes to which it is connected by edges. Aggregation at a represen
tational level usually occurs through messages passed to a node from the 
nodes in its neighbourhood. 

The most general form of a spatial convolutional GNN is: 

h(k)
v = fθk

(
h(k− 1)

v , h(k− 1)
u

⃒
⃒u ∈ Nv

)
(5) 

A typical CGNN will have a small number (usually <10) of such 
layers, where at each layer the representation at a node aggregates in
formation from a steadily larger region of the graph, as illustrated in 
Fig. 4b. Depending on the connectivity of the graph and size of the in
dividual instances, this can end up aggregating information from quite a 
large region of a WSI. 

There has been a proliferation of suggestions in the literature for the 
form of Eq. (5), each trying to incorporate some specific intuition or 
satisfy some mathematical requirement on how a graph convolutional 
layer should be. 

The EdgeConv graph convolution was introduced in Wang et al. 
(2019), and focusses on differences between the central node and its 
neighbours. It has been used for example in HER2 status prediction in 
[45]. 

In Xu et al. (2019) the authors show that there are some graph 
structures that popular GNN variants cannot distinguish between, and 
propose the Graph Isomorphism network (GIN) to address this. This 
form allows for a weighting between the importance we place on the 
information in the central node, compared to the information aggre
gated from surrounding nodes in its neighbourhood N. It has been 
applied to breast cancer subtyping in Pati et al. (2020). 

Furthering the theme of investigating the expressiveness and repre
sentational learning power of graph neural networks, in Corso et al. 
(2020) the authors identify that commonly used functions to aggregate 
the messages from a node’s neighbourhood fail to distinguish between 
different message sets. Their proposal to solve this, Principal Neigh
bourhood Aggregation (PNA) involves using multiple different aggre
gators, as well as some degree-dependent scaling, to define a message 
aggregation function which can distinguish between a far larger variety 
of message sets. 

Another popular method is GraphSage [51], a distinguishing feature 
of which is a sampling of a fixed size set of neighbours during aggre
gation. This can be especially useful to make learning a highly connected 
network computationally tractable. GraphSage has been used for cancer 
grading in Wang et al. (2019); Zhou et al. (2019). 

5.2.2. Global graph aggregation 
The second level at which a GNN aggregates information occurs at a 

global level, in a way much more directly analogous to the WSI aggre
gation covered in other sections. Given a GNN that outputs node-level 
scores, a ‘graph readout’ function is used to provide a graph level pre
diction. As the goal is simply to calculate a single score from a set of 
instance scores/representations, here we are back in the context of many 
of the other aggregation methods covered in this survey. We can take the 
mean, max, use attention, and so on. 

A key concept in aggregation is the notion of node importance. The 
choice of aggregation method reflects our assumptions on which nodes 
are important to the aggregated prediction. The simplest (and 

Fig. 4. (a) Local neighbourhood of a node. (b) Aggregation of information over a progressively larger region in successive layers of a spatial GNN.  
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surprisingly often used) aggregation method is to take the mean of the 
instance scores. In this case, we are implicitly assuming all instances are 
equally important. Many global aggregation strategies incorporate an 
estimate of node importance in the form of weighting or selection on the 
instances, either based on the instance score (e.g max/top N aggrega
tion), or based on some representation of the instance (e.g attention 
based methods). 

The spatial structure and relationships built into a graph represen
tation can help us with this, by allowing us to define topological mea
sures of importance on the graph structure. There has been much work 
in the literature on metrics to quantify the structural importance of a 
node in a graph, and for an in-depth review we refer the reader to Lalou 
et al. (2018); Landherr et al. (2010). The most common approaches to 
global aggregation in CPath thus far have been simple aggregators such 
as the mean, as used in [45], [4], or attention-based approaches such as 
that in [48]. Another example of a learnable global aggregation is in 
[49], where node level representations output by a GNN are simply 
concatenated, and an MLP with learnable weights produces the global 
graph score. 

5.2.3. Graphs in computational pathology 
Here we will look in brief at a few examples of graph based ap

proaches in CPath which illustrate the information aggregation aspects 
of graph-based methods particularly well. For a more general review of 
graph-based methods in CPath, we refer readers to [47]. 

Graph approaches in CPath usually consist of the following steps. 1. 
Entity detection/definition, 2. Feature embedding, 3. Graph construc
tion, 4. GNN model training and prediction, 5. Model interpretation (for 
example using GNNExplainer (Ying et al., 2019)). 

A good example of the different levels at which a graph based 
approach can aggregate information can be found in the SlideGraph+
[45] approach to building graphs for HER2 status prediction on WSIs. In 
this approach, the basic entities are image patches, which are repre
sented by resnet50 (imagenet pretrained) features. Patches are clustered 
based on proximity in both position and feature space to form the graph 
nodes, which have the mean position/feature representation of the 
patches in the cluster. A further stage of aggregation then occurs during 
the learning of the graph representation of the node, and depending on if 
problem is a node or whole graph prediction task this could undergo a 
final stage of global aggregation such as a mean of node scores. The 
information in the slide is aggregated in stages: patches -> patch clusters 
-> graph aggregation over neighbouring patch clusters (nodes) -> global 
aggregation of node scores into a slide score. 

A similar approach is Hact-Net, applied to both breast cancer sub
typing (Pati et al., 2020), and gleason grading (Anklin et al., 2021). In 
this method, tissue regions are generated using a SLIC super-pixel 
approach. Texture features in these regions are combined with fea
tures from a cell-graph embedding of the cells in each region. Then a 
larger tissue graph is constructed using the tissue regions as the nodes. 

Again, this is an excellent example of aggregation at multiple levels: 
Cells and the surrounding tissue pixels are aggregated into superpixels, 
in which one level of graph aggregation takes place. The superpixels are 
in turn used to build a graph, in which aggregation at a higher level 
occurs. 

In other examples of graph-based approaches in CPath, in Wang 
et al. (2019) cell graphs using morphological and local textural features 
are used for scoring of prostate cancer Tissue Micro-array (TMA) cores. 
Another grading application on, colorectal cancer, can be found in Zhou 
et al. (2019). A cell graph built on larger images is achieved by sub
sampling the detected cells in an image in a way that produces a 
representative sampling of nuclei across the image, from which a cell 
graph is then built. 

6. Evaluation and comparative analysis 

There are some challenges in CPath that pose the generalizability and 

verifiability crises. These challenges make it difficult for a single ag
gregation method to outperform the other methods in all CPath prob
lems. Below we describe the two problems:  

(1) Generalizability: In routine clinical practice, tissue block is 
sectioned at multiple levels which are then mounted onto mul
tiple slides. However, researchers in CPath are usually provided 
with one or two WSIs for each case. A major challenge is whether 
the data being provided (i.e., 1 or 2 images per case) contains the 
information needed for the downstream analysis. It is likely that 
the amount of information varies when providing different cohort 
for the same problem, due to the fact that the provided slide (or 
two) for each case does not necessarily always comprise the same 
information. The likelihood of such data variability is even higher 
when the tumour size is large, as the number of slides that can be 
sectioned is larger. 

(2) Verifiability: One of the objectives of the utilisation of ML tech
niques is to find novel biological insights, which has led some 
researchers to provide heatmaps showing some tissue regions 
playing significant roles in the downstream analysis. However, 
verifying whether the network/algorithm always picks the re
gions that are actually the causation of the problem being studied 
remains a challenge. It is possible that the “hot” tissue regions are 
just meaningless signals that correlated with the trained ground 
truth. One may argue that it is easy to identify whether the “hot” 
regions picked by the network are meaningful signals that 
correlated with the ground truth. This is true with problems like 
tumour region classification. In contrast, it is challenging when 
the aim of the study is to predict survival or molecular subtypes. 
In the absence of localized ground truth (i.e., particularly which 
tissue regions are directly the actual signals to some CPath 
problems), verifiability remains a challenge in this domain. 

These challenges make it difficult to suggest a standardized solution 
for the CPath problems. Each problem with its own data can be analyzed 
with a specific computational solution, including the aggregation 
method. In the literature, there are a few studies that presented a 
comparison between different aggregation methods. For example, Laleh 
et al. (2022) compare the performance of several aggregation methods, 
including MIL-based methods and simple weakly-supervised (WS) 
methods. These methods are tested/evaluated against six different 
CPath problems. Their results show that the simple patch-based methods 
outperform the MIL-based methods. 

In contrast, Zeng et al. (2022) present an opposite finding. The 
simple patch-based methods show the worse performance, comparing 
with the MIL-based methods. Such a contradiction proves the general
izability crisis in the CPath, where it is challenging for a single method to 
generally outperform in all problems and experimental settings. It is 
likely that for each CPath problem, a different aggregation method is 
more suited, based on its assumption and experimental setups (e.g., 
amount of available data). The top method for that problem might fail 
when the data or the problem is a different one. 

Primarily, the experimental analysis evaluates the overall perfor
mance of the prediction accuracy, the generalization, and verification of 
the prediction for the downstream prediction tasks, as performed by 
Laleh et al. (2022). We identify aggregation as an essential part of CPath 
applications. The goal of the aggregation method is to combine all the 
processed information available in a WSI into a final score or category. 
We argue that factors like aggregation, the type, nature, and amount of 
input data, features and the underlying machine learning approach 
impact the overall performance of slide-level predictions. Laleh et al. 
(2022) partially considered this part of the comparative evaluation in 
their benchmarking study. However, they did not make a fair compar
ative analysis of different aggregation methods in the MIL-based setting. 
Therefore, we conduct a case study of head-to-head comparative anal
ysis of various benchmark aggregation methods. 
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6.1. Case study: Fair comparative analysis of popular aggregation 
methods 

It is crucial to conduct a fair head-to-head comparison to evaluate the 
performance of different aggregation methods by fixing all the compo
nents within the pipeline apart from the aggregation method they 
choose. Laleh et al. (2022) conducted comprehensive experiments for 
benchmarking different end-to-end CPath pipeline. However, their re
sults might not be appropriate for comparing different aggregation 
methods. In their paper, ResNet (He et al., 2016), EfficientNet (Tan & 
Le, 2021) and ViT (Dosovitskiy et al., 2021) were all pre-trained on 
ImageNet and then fine-tuned on the target datasets, while MIL (Cam
panella et al., 2019; Dietterich et al., 1997), Attention MIL (Ilse et al., 
2018) and CLAM (Lu et al., 2021) used a ResNet feature extractor, which 
was only pre-trained on ImageNet. Secondly, different methods in their 
work used different backbone networks. The ResNet approach in their 
paper used ResNet-18 structure, EfficientNet used efficientnet-b7 
structure, ViT used vision transformer and the MIL, Attention MIL and 
CLAM used ResNet-50 structure. Moreover, based on the published code 
for CLAM, feature extraction uses the features extracted after the third 
ResNet block, whereas the standard procedure is to use the features 
generated before the final classification layer. There are so many vari
ables in existing approaches that had not been controlled and may 
introduce bias into the comparisons. Therefore, we conduct a case study 
where we attempt to fairly compare different aggregation methods. 
Moreover, our case study shows that there are many components within 
an end-to-end framework which can impact the overall performance of 
the algorithm, sometimes even more than the aggregation method does. 

6.1.1. HPV infection prediction in head and neck cancers 
We chose the problem of Human papillomavirus (HPV) infection 

status prediction in head and neck cancers as a case study for comparing 
some popular aggregation methods. HPV infection status is an important 
biomarker in head and neck cancers which can affect the prognosis, 
survival and the treatment selection (Fig. 5). 

While immunohistochemistry and PCR are the gold standard for HPV 
infection diagnosis in the clinical practice, there have recently been a 
few attempts in the CPath community to solve this problem from ana
lysing digital H&E slides (Kather, Schulte, et al., 2019; Klein et al., 
2021). 

We believe this problem is ideal as a case study for comparing ag
gregation methods for several reasons. First of all, like other CPath 
problems, it requires aggregating predictions from tiles extracted from 
WSIs. Secondly, clinicians have categorised many histological differ
ences between HPV+ and HPV- H&E slides (Westra, 2012). However, 
none of these are distinct enough to become a gold standard for human 
pathologists to reach a diagnosis. It is, therefore, quite possible that the 
data we provide to the algorithm contains information to enable 
discrimination between two types of carcinomas, as well as posing some 
challenges. 

6.1.2. Experimental Settings 
The dataset we used was retrieved from the Head and Neck Squa

mous Cell Carcinoma cohort of The Cancer Genome Atlas (TCGA) 
project. The study by Campbell et al. (2018) provides us with the HPV 
infection status for these patients. We extracted patches of size 256 ×
256 at 10 × magnification from tissue regions for each slide. In total 
there are 412 cases with 364 HPV- and 48 HPV+, this corresponds to 1, 
028,288 negative patches and 120,685 positive patches for a total of 1, 
148,973 patches; the fact that this problem is highly imbalanced adds an 
additional challenge to the task for evaluating the different methods. 
Three-fold cross validation experiments were conducted where the 
dataset was split into 3 folds of equal size randomly while stratifying so 
the class distribution was the same in each fold. The folds were created 
at the patient level so if a patient had multiple slides they were not 
included in different folds. The random split was saved and used for each 

experiment to ensure a fair comparison. In each fold models were fitted 
on the training set, while the validation set was used for early stopping 
and model selection. The mean and standard deviation of the AUC-ROC 
and AUC-PR were reported over the test set experiments as the metrics 
for evaluation. 

We chose 7 different aggregation methods for our case study, which 
are majority voting, mean pooling, max pooling, median pooling, 
attention MIL (Ilse et al., 2018), CLAM (Lu et al., 2021) and a context 
aware GNN based approach (Lu et al., 2022). We selected four different 
backbone networks for feature extraction, ResNet50 (He et al., 2016), 
DenseNet161 (Huang et al., 2017), EfficientNet-b5 (Tan & Le, 2019), 
ConvNeXt-tiny (Liu et al., 2022) These were chosen as they represent the 
changes and progression of CNN architectures over the last 7 years and 
have approximately the same number of trainable parameters. For our 
experiments, we used each network pre-trained on ImageNet as a feature 
extractor and also trained each one in a weakly supervised manner on 
the training set from the corresponding fold to learn domain specific, 
finetuned features. All weakly supervised networks were trained for 50 
epochs with a batch size of 64, learning rate of 3e-3, stochastic gradient 
descent with momentum=0.9, weight decay=1e-4. The AUC-PR on the 
validation set was used to select the final, finetuned network. 

For majority voting, mean, max and median pooling, each of these 
pooling methods was tested for generating a WSI-level score from tile- 
level features, a model was trained using ranking loss (Wang et al., 
2022) to output a probability for the positive class for each tile for the 
given case and then these probabilities were pooled using the given 
heuristics. Gated attention module was used for attention MIL and 
single-attention-branch model was used for CLAM. For the GNN based 
approach from each slide we created a slide level graph according to the 
scheme defined in (Lu et al., 2022) and used each feature extractor to 
generate the node features from the corresponding patch in the slide. We 
used a 4-layer GNN consisting of a linear embedding layer, 2 edge 
convolution layers and then a linear layer to classify the concatenated 
features from the other layers to compute the final slide level score. For 
all aggregation methods we set the internal embedding dimension to be 
equal to half of the input feature size for consistency. 

Seventeen patients in the cohort had multiple slides. For these pa
tients in the GNN approach we created a graph where each slide was 
represented by a subgraph in the overall graph, I.e., if a patient had 2 
slides each with 1 piece of tissue, then their corresponding graph had 2 
subgraphs representing each slide. For all other methods we created one 
overall bag of instances containing the extracted features from all 
patches found in that case’s slides. 

We used the following hyperparameters for the trainable compo
nents of all aggregation methods we tested in this study. We used sto
chastic gradient descent with a loss rate of 2e-4, weight decay was set to 
1e-5 and momentum=0.9, gamma=0.1. All models were trained for a 
maximum of 200 epochs with early stopping if the validation loss did not 
improve for 20 epochs after the 50th epoch. These were chosen as they 
were the original CLAM paper’s hyperparameters and in our experi
ments they resulted in all models converging to at least a good local 
optimum. All other hyperparameters used by CLAM were kept the same 
as the original paper’s implementation. 

6.1.3. Benchmark performance metrics 
The area under the receiver operating characteristic (AUC-ROC) and 

area under the precision recall curve (AUC-PR) were chosen to be the 
quantitative metrics for evaluating the performance of different aggre
gation methods. They are both widely used in machine learning research 
to evaluate the performance of classifiers. The ROC curve is plotted with 
the true-positive rates and the false-positive rates generated by varying 
the classification threshold while the precision-recall curve is plotted 
with precision and recall values. The AUC-ROC is a quantitative metric 
for describing the ROC curve with a higher AUC-ROC score indicating 
better classification performance. Similarly, the AUC-PR is a quantita
tive metric for describing the performance of an algorithm in terms of 
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Fig. 5. Overview of the pipeline used for our case study into HPV prediction. (a) Tissue patches and their spatial coordinates are extracted from the tissue regions of a 
WSI. (b) Backbone network architectures are selected for evaluation. (c) Feature extractors are defined. chosen network architectures are finetuned using weakly 
supervised learning on extracted patches from training data in addition to using imagenet-pretrained weights of the same architectures. (d) Patches are encoded into 
feature representations. (e) Corresponding aggregation methods are trained, and slide-level performance is assessed. 
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precision and recall with a higher AUC-PR indicating better perfor
mance. The ROC curve is used to analyse the clinical sensitivity and 
specificity of a proposed algorithm, while the PR curve is particularly 
useful for evaluating algorithms in scenarios where there is a severe class 
imbalance, as is the case in the problem we have chosen here. Both are 
widely used in medical research to assess the diagnostic accuracy of 
proposed machine learning algorithms. 

6.1.4. Results 
To illustrate the performance effect of different aggregation methods 

for this problem, Table 2 lists the 7 different aggregation methods and 
their corresponding results in terms of AUROC and AUC-PR values. 
Additionally, we include the inference time for each method and the 
number of trainable parameters to illustrate the computational 
complexity and memory requirement of each method. They show that in 
terms of AUC-ROC and AUC-PR the aggregation methods have similar 
levels of performance with the parameterised methods having slight 
performance gains in terms of AUC-PR on average at the cost of addi
tional inference time and model complexity. This trend was also 
observed for the other 3 backbone networks tested and also with 
ImageNet features instead of finetuned features. 

To show the effect of the backbone network architecture, Fig. 6 
shows the AUC-ROC and AUC-PR curves for all 4 network architectures 
using average pooling in Fig. 6a (a heuristic approach) and CLAM (a 
parameterised approach) in Fig. 6b. It shows that all network architec
tures have approximately similar performance. While there are slight 
differences for a given network across aggregation approaches, e.g., the 
ConvNeXt features performs the best with CLAM while for average 
pooling it is the DenseNet features, there is no single architecture that 
universally performs best across all the models. We observed that with 
ImageNet features some aggregation approaches would have outlier 
backbone networks with significantly reduced performance compared to 
the others; however, this was not seen for any approach when finetuned 
features were used. 

Finally, Table 3 presents a comparison with respect to the features 
used by the aggregation approaches. We see that for all aggregation 
methods finetuned features lead to improved performance, up to 0.22 
AUC-PR. This was observed for all methods for all backbone architec
tures. This provides evidence that in terms of performance the instance 
level features used are the most important aspect of the overall CPath 
pipeline. While ImageNet features can still achieve good performance, 
particularly with CLAM, this indicates that even weakly supervised 
finetuning allows the backbone networks to extract domain specific 
features that are useful for this downstream task of HPV status 
prediction. 

Our experiments show that some components within the CPath 
pipeline other than the aggregation method can have a greater impact 
on the final performance in this problem. Therefore, we believe re
searchers should be extremely careful when reaching a conclusion that 
one aggregation method is better than another. For this problem the 
choice of aggregation method should be tailored towards what down
stream capabilities are required. The instance level features have been 
shown to be by far the most important aspect with respect to down
stream performance for this problem. 

7. Discussion 

We analysed a significant variety of computational pipelines for 
predictive modelling in CPath and grouped them in terms of data and 
computational frameworks. CPath offers data with different levels of 
details and contextual information, from pixel to patch and cell or gland 
to tissue phenotypes. Consequently, the computational frameworks 
originated in relation to the scheme of representing different levels and 
types of data and the contextual information, e.g., from individual 
patches or cells to their connectivity through graphs. Besides, the output 
aggregation methodologies came in as simple pooling, data-driven like 
machine learning, and clinical rules. In addition, the computational 
resources, time, and related costs have their impacts on the modelling. 

Each of these components of computation pipelines contributes to 
the success within a given problem frame, but none of it comes without 
challenges or trade-offs and can be called a single best solution for all 
CPath problems. It’s critical to identify the input and the main goal, 
design the best solution for the given problem, and define metrics for the 
success. The significant most metrics are the predictive performance and 
interpretability or explainability of the predictions. In terms of predic
tive performance, e.g., in the diagnostic applications the ultimate goal 
may be a performance comparable to existing systems i.e., clinical 
practice, and even further improvement through an objective analysis. 
Both these, the predictability and explainability, are open research 
problems so far and offer multidisciplinary contributions to impactful 
solutions and novel insights. 

The case study conducted in this paper validates the above argument. 
Our case study explicitly shows that there are at least two aspects in a 
CPath pipeline other than the aggregation method. These are different 
backbone networks and pretraining approaches for feature extractor, 
which can have an impact on the overall performance of the aggregation 
workflow. In a fair comparative analysis of aggregation method, it is 
essential to control all the variables of experiments other than the ag
gregation method chosen. For those who want to choose the best ag
gregation method for their research, it is important to consider the 
pipeline, the clinical explainability and the problem in question. This is 
because the performance of different aggregation methods varies 
depending on many aspects, making it challenging to determine the 
most optimal one. More importantly, we believe all CPath researchers 
should also bear in mind that the quantitative metrics are not the only 
thing to pursue. Instead, the generalizability, verifiability of the CPath 
approach, the biological interpretability and explainability, the ability 
to generate localised predictions and novel insights into the aetiology of 
diseases might be more important than a high accuracy. Asif et al. 
(2021), in their review article, urged the need of rigorous testing of AI 
model as one of CPath challenges and limitations associated with the AI 
development lifecycle. 

Our case study shows (both in Tables 2 and 3) that fine-tuning 
resulted in better performance than the ImageNet pre-trained features. 
It allowed both pooling and data-driven aggregation approaches to 
achieve broadly the same performance. CLAM (Lu et al., 2021) relies 
only on transfer learning and data-driven aggregation. The authors 
choose to build a data- and resource-efficient pipeline by excluding 
fine-tuning and using less than 100% data for training efficiency in some 
experiments. Though, the feature extraction also has additional costs in 
extracting and storing feature vectors of all the patches. Their 

Table 2 
Results comparison between different aggregation approaches using finetuned 
ResNet50 features. Inference time is the mean for a single fold ± standard de
viation. Bold values indicate best performance or lowest complexity (in time and 
parameter count), underlined values indicate second best.   

Aggregation AUC- 
ROC 

AUC-PR Inference 
time (s) 

Parameters 

Heuristic Majority 
vote 

0.824 
±0.038 

0.489 
±0.043 

9.683 
±1.334 

2,099,201 

Average 
pooling 

0.872 
±0.030 

0.521 
±0.065 

9.672 
±1.334 

2,099,201 

Max pooling 0.758 
±0.034 

0.294 
±0.059 

9.670 
±1.334 

2,099,201 

Median 
pooling 

0.870 
±0.033 

0.533 
±0.064 

9.687 
±1.342 

2,099,201 

Parameterised Attention 
MIL 

0.870 
±0.035 

0.522 
±0.063 

14.377 
±1.108 

4,199,426 

CLAM 0.871 
±0.033 

0.544 
±0.034 

22.501 
±11.711 

4,204,551 

Graph 0.863 
±0.012 

0.504 
±0.039 

17.269 
±3.125 

9,448,451  
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Fig. 6. ROC and PR curves for all the backbone networks assessed. (a) ROC and PR curves for the average pooling aggregation method (heuristic). (b) Curves for the 
CLAM aggregation approach (parameterised). Dotted black lines indicate performance of a random classifier. All curves shown are using the corresponding network 
with finetuned features. 

Table 3 
Results comparison between aggregation approaches using ImageNet pre-trained and finetuned DenseNet161 features. Bold values indicate best performance, 
underlined values indicate second best.   

AUC-ROC AUC-PR  

ImageNet Finetuned Difference ImageNet Finetuned Difference 

Majority vote 0.827±0.037 0.839±0.053 0.0120 0.444±0.037 0.539±0.111 0.095 
Average pooling 0.814±0.039 0.894±0.037 0.0802 0.453±0.023 0.584±0.063 0.131 
Max pooling 0.780±0.067 0.821±0.038 0.0418 0.422±0.144 0.521±0.076 0.099 
Median pooling 0.787±0.024 0.890±0.043 0.1033 0.417±0.008 0.588±0.081 0.171 
Attention MIL 0.790±0.034 0.888±0.034 0.0977 0.341±0.04 0.561±0.051 0.221 
CLAM 0.852±0.029 0.883±0.027 0.0309 0.504±0.089 0.558±0.072 0.054 
Graph 0.818±0.018 0.878±0.033 0.0612 0.387±0.063 0.562±0.047 0.175  
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aggregation method has the least difference between using fine-tuned 
features and pre-trained features. However, it requires further 
improvement to make the fine-tuning non-essential for aggregation in 
CPath as compared to RankMIL workflow(Wang et al., 2021) as shown 
in our case study and a naïve MIL workflow for six different benchmark 
problems in (Laleh et al., 2022). 

Several bottom-up workflows for WSI level prediction have been 
developed recently. A major advantage of bottom-up approach over the 
top-down approach is its better explainability and interpretability. 
Predictive modelling of such methods requires detailed cell and region- 
level annotations but often work well with small amount of data as 
compared to top-down modelling. Diao et al. (2021) have demonstrated 
use of human interpretable features to predict diverse molecular sig
natures (AUC-ROC 0.601–0.864), including expression of four immune 
checkpoint proteins and homologous recombination deficiency, with 
performance comparable to but not better than top-down approaches as 
found in our comparative analysis with slideGraph. Ho et al. (2022) got 
similar findings with their gland segmentation based bottom-up 
approach for the screening of colorectal cancer. Yamashita et al. 
(2021) has demonstrated better prediction of MSI status than naïve MIL 
top-down approach (Kather et al., 2019). For slide-level MSI prediction, 
Park et al. (2022) have compared a top-down approach with a 
bottom-up approach in which they have combined features from mul
tiple objects and levels of inputs including tissue phenotypic, cells, and 
glands. The top-down approach produced better AUC-ROC scores 
whereas the bottom-up produced explainable features to verify differ
entiating features with expert knowledge. 

AI algorithms are prone to biases particularly introducing positive 
bias when developed and validated in siloed manners that results in 
deteriorated performances on external cohorts revealing generalisation 
deficiencies. This commonly occurs as developers have control on 
establishing validation cohorts and readout experiments. Therefore, it is 
crucial to evaluate the generalisation of AI algorithm independently 
across different patient populations, pathology labs, digital pathology 
scanners, reference standards derived from global panel (Bulten et al., 
2022). Data bias, quality and reproducibility of the results are also key 
challenges in the AI development life cycle (Asif et al., 2021). 

Global AI competitions have been an effective approach to overcome 
the pitfalls of soiled development by crowd sourcing the development of 
the performant algorithms. These competitions can also overcome 
generalisation issues if they implement an independent evaluation 
appropriately, such as in a recent Prostate cANcer graDe Assessment 
(PANDA) competition (Bulten et al., 2022), which is a single largest 
competition in pathology to date. They were able to fully-reproduce 
top-performing 15 algorithms and externally validated their general
isation to independent US and EU cohorts and compared them with the 
reviews pf pathologists. 

In PANDA challenge, a total of 1,010 teams, consisting of 1,290 
developers from 65 countries participated and submitted at-least one 
algorithm of total 34,262 versions. The winner and the most leading 
teams, adopted an aggregation approach in which a sample of smaller 
tiles are processed by CNNs and predictions are concatenated in the final 
classification at WSI-level, without requiring any detailed region/pixel- 
level annotations. Two of the exciting findings include the similar to and 
higher statistically significant agreement of algorithm with the uropa
thologists and higher sensitivities for tumour identification than repre
sentative pathologists on external validation subsets of both EU and US, 
respectively. 

All three workflows alongside different aggregation approaches have 
advantages and challenges associated with them. The bottom-up ap
proaches proposed in (Diao et al., 2021; Park et al., 2022) combined 
tissue phenotype based workflow (third workflow in Fig. 2) with objects 
(cells and glans) level workflows, which is likely to be explored further 
in subsequent studies as its potential and comparative advantages are 
unconclusive. The emerging trends in CPath combine MIL, attention/
transformer mechanisms, graph representation, and learning for better 

accuracy, generalization, and interpretation of data for various clinical 
applications (Bilal et al., 2022; Bilal et al., 2022; Chen et al., 2022; Guan 
et al., 2022; Javed et al., 2022; Kosaraju et al., 9AD; Zheng et al., 2022). 
Next-generation CPath workflows could have priority research problems 
concerning transparency and interpretability of predictions in 
MIL/top-down workflows, versus clinical-grade/better predictability in 
interpretable bottom-up workflows. 

Other factors may include data efficiency, which assesses the amount 
of data and the labelled data needed for robust and efficient machine 
learning. The efficiency of computational resources, the hardware, and 
the turnaround time required to reach the final WSI-level prediction 
becomes important when implemented in a real-world setting. To 
accelerate predictive modelling for CPath solutions to the next level may 
also require considering the notion of learning paradigm, e.g., end-to- 
end learning and self/unsupervised learning and new ways of model
ling attention mechanism and data loading pipeline for selection of most 
relevant image tiles for training. It is, however, expected that future 
research and development will produce more data and allow a broader 
evaluation to rank approaches for different CPath use cases and per
formance criteria. 

8. Conclusions 

In conclusion, there is no one-size-fits-all solution when it comes to 
choosing an appropriate aggregation method. The choice of method 
depends on several factors including the input data, problem-solving 
goal, success metrics, and computational efficiency. Our case study 
showed that feature choice via fine-tuning had a greater impact on 
performance than aggregation method for the task of HPV status pre
diction. All aggregation methods with all backbone networks tested 
proved to be more effective with fine-tuned features compared to 
ImageNet features. However, this result may not hold for other predic
tive tasks in CPath. Further research is required to understand the 
impact of different factors on the performance of aggregation methods 
and to make predictions more generalizable, verifiable, biologically 
interpretable, and explainable. Bottom-up approaches provide inter
pretability. It is important to remember that while interpretability is 
important, limiting the use of data-driven analytics to human inter
pretability only may hinder its potential to deliver novel and discovery- 
driven results, as top-down approaches have been shown to perform 
similarly or even outperform human experts in some cases, such as with 
tumor identification. Data biases and global competition play a crucial 
role in the generalization and reproducibility of AI algorithms and must 
be considered in the clinical evaluation of any AI solution. 

CRediT authorship contribution statement 

Mohsin Bilal: Conceptualization, Writing – original draft, Investi
gation, Writing – review & editing, Visualization, Project administra
tion. Robert Jewsbury: Writing – original draft, Investigation, 
Visualization, Methodology, Software, Validation, Writing – review & 
editing. Ruoyu Wang: Methodology, Software, Validation, Writing – 
original draft, Visualization, Writing – review & editing. Hammam M. 
AlGhamdi: Writing – original draft, Investigation, Visualization. Amina 
Asif: Investigation, Writing – review & editing. Mark Eastwood: 
Writing – original draft, Investigation, Writing – review & editing, 
Visualization. Nasir Rajpoot: Supervision, Conceptualization, Investi
gation, Writing – review & editing, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

M. Bilal et al.                                                                                                                                                                                                                                    



Medical Image Analysis 88 (2023) 102885

14

Acknowledgment 

Authors are grateful to members of the Tissue Image Analytics (TIA) 
centre for their feedback on some of the initial ideas for this paper. 

References 

Abels, E., Pantanowitz, L., Aeffner, F., Zarella, M.D., Laak, J., Bui, M.M., Vemuri, V.N., 
Parwani, A.V., Gibbs, J., Agosto-Arroyo, E., Beck, A.H., Kozlowski, C., 2019. 
Computational pathology definitions, best practices, and recommendations for 
regulatory guidance: a white paper from the digital pathology association. J. Pathol. 
249 (3), 286–294. https://doi.org/10.1002/path.5331. 

Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L., 2022. 
A survey on graph-based deep learning for computational histopathology. Comput. 
Med. Imaging Graph. 95, 102027 https://doi.org/10.1016/j. 
compmedimag.2021.102027. 

AlGhamdi, H.M., Koohbanani, N.A., Rajpoot, N., Raza, S.E.A., 2021. A novel cell map 
representation for weakly supervised prediction of ER & PR status from H&E WSIs. 
Proc. MICCAI Workshop Comput. Pathol. 156, 10. 

Anklin, V., Pati, P., Jaume, G., Bozorgtabar, B., Foncubierta-Rodriguez, A., Thiran, J.P., 
Sibony, M., Maria, G., Goksel, O., de Bruijne, M., 2021. Learning whole-slide 
segmentation from inexact and incomplete labels using tissue graphs. In: 
Proceedings of the International Conference on Medical Image Computing and 
Computer-Assisted Intervention, 12902. Springer, pp. 636–646. 

Asif, A., Rajpoot, K., Snead, D., Minhas, F., Rajpoot, N., 2021. Towards Launching AI 
Algorithms for Cellular Pathology into Clinical & Pharmaceutical Orbits. arXiv. htt 
p://arxiv.org/abs/2112.09496. 

Awan, R., Nimir, M., Raza, S.E.A., Bilal, M., Lotz, J., Snead, D., Robinson, A., Rajpoot, N., 
2022. Deep Learning based Prediction of MSI Using MMR Markers in Colorectal 
Cancer. arXiv. http://arxiv.org/abs/2203.00449. 

Babenko, Boris, 2008. Multiple Instance Learning: Algorithms and Applications. 
Bilal, M., Raza, S.E.A., Azam, A., Graham, S., Ilyas, M., Cree, I.A., Snead, D., Minhas, F., 

Rajpoot, N.M., 2021. Development and validation of a weakly supervised deep 
learning framework to predict the status of molecular pathways and key mutations 
in colorectal cancer from routine histology images: a retrospective study. Lancet 
Digit. Health 3 (12), e763–e772. https://doi.org/10.1016/S2589-7500(21)00180-1. 

M. Bilal, Y.W. Tsang, M. Ali, S. Graham, E. Hero, N. Wahab, K. Dodd, H. Sahota, S. Wu, 
W. Lu, M. Jahanifar, A. Robinson, A. Azam, K. Benes, M. Nimir, K. Hewitt, A. 
Bhalerao, H. Eldaly, S.E. Ahmed Raza, N. Rajpoot (2022). Development and 
validation of AI-based pre-screening of large bowel biopsies [Preprint]. Pathology. 
10.1101/2022.11.30.22282859. 

Bilal, M., Nimir, M., Snead, D., Taylor, G.S., Rajpoot, N., 2022. Role of AI and digital 
pathology for colorectal immuno-oncology. Br. J. Cancer. https://doi.org/10.1038/ 
s41416-022-01986-1. 

Bilal, M., Tsang, Y.W., Ali, M., Graham, S., Hero, E., Wahab, N., Dodd, K., Sahota, H., 
Lu, W., Jahanifar, M., Robinson, A., Azam, A., Benes, K., Nimir, M., Bhalerao, A., 
Eldaly, H., Ahmed Raza, S.E., Gopalakrishnan, K., Minhas, F., Rajpoot, N., 2022. AI 
Based Pre-Screening of Large Bowel Cancer via Weakly Supervised Learning of 
Colorectal Biopsy Histology Images. MedRxiv. https://doi.org/10.1101/ 
2022.02.28.22271565 (2022.02.28.22271565) [Preprint]. Pathology.  

Bulten, W., Kartasalo, K., Chen, P.H.C., Ström, P., Pinckaers, H., Nagpal, K., Cai, Y., 
Steiner, D.F., van Boven, H., Vink, R., Hulsbergen-van de Kaa, C., van der Laak, J., 
Amin, M.B., Evans, A.J., van der Kwast, T., Allan, R., Humphrey, P.A., Grönberg, H., 
Samaratunga, H., Park, J., 2022. Artificial intelligence for diagnosis and Gleason 
grading of prostate cancer: the PANDA challenge. Nat. Med. 28 (1), 154–163. 
https://doi.org/10.1038/s41591-021-01620-2. 

Campanella, G., Hanna, M.G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva, V., 
Busam, K.J., Brogi, E., Reuter, V.E., Klimstra, D.S., Fuchs, T.J., 2019. Clinical-grade 
computational pathology using weakly supervised deep learning on whole slide 
images. Nat. Med. 25 (8), 1301–1309. https://doi.org/10.1038/s41591-019-0508-1. 

Campbell, J.D., Yau, C., Bowlby, R., Liu, Y., Brennan, K., Fan, H., Taylor, A.M., Wang, C., 
Walter, V., Akbani, R., Byers, L.A., Creighton, C.J., Coarfa, C., Shih, J., Cherniack, A. 
D., Gevaert, O., Prunello, M., Shen, H., Anur, P., Mariamidze, A., 2018. Genomic, 
pathway network, and immunologic features distinguishing squamous carcinomas. 
Cell Rep. 23 (1), e6 https://doi.org/10.1016/j.celrep.2018.03.063. 

Chang, J.R., Lee, C.Y., Chen, C.C., Reischl, J., Qaiser, T., Yeh, C.Y., de Bruijne, M., 
Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C., 2021. Hybrid 
aggregation network for survival analysis from whole slide histopathological images. 
In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 
12905. Springer International Publishing, pp. 731–740. https://doi.org/10.1007/ 
978-3-030-87240-3_70. 

Chen, H., Li, C., Wang, G., Li, X., Mamunur Rahaman, M., Sun, H., Hu, W., Li, Y., Liu, W., 
Sun, C., Ai, S., Grzegorzek, M., 2022. GasHis-transformer: a multi-scale visual 
transformer approach for gastric histopathological image detection. Pattern 
Recognit. 130, 108827 https://doi.org/10.1016/j.patcog.2022.108827. 

Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F., 2022. 
Scaling vision transformers to gigapixel images via hierarchical self-supervised 
learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 16144–16155. 
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