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• Context.—Automated prostate cancer detection using
machine learning technology has led to speculation that
pathologists will soon be replaced by algorithms. This review
covers the development of machine learning algorithms and
their reported effectiveness specific to prostate cancer
detection and Gleason grading.

Objective.—To examine current algorithms regarding
their accuracy and classification abilities. We provide a
general explanation of the technology and how it is being
used in clinical practice. The challenges to the application
of machine learning algorithms in clinical practice are also
discussed.

Data Sources.—The literature for this review was
identified and collected using a systematic search. Criteria
were established prior to the sorting process to effectively
direct the selection of studies. A 4-point system was
implemented to rank the papers according to their relevancy.

For papers accepted as relevant to our metrics, all cited and
citing studies were also reviewed. Studies were then
categorized based on whether they implemented binary or
multi-class classification methods. Data were extracted from
papers that contained accuracy, area under the curve (AUC),
or κ values in the context of prostate cancer detection. The
results were visually summarized to present accuracy trends
between classification abilities.

Conclusions.—It is more difficult to achieve high
accuracy metrics for multiclassification tasks than for
binary tasks. The clinical implementation of an algorithm
that can assign a Gleason grade to clinical whole slide
images (WSIs) remains elusive. Machine learning technol-
ogy is currently not able to replace pathologists but can
serve as an important safeguard against misdiagnosis.

(Arch Pathol Lab Med. doi: 10.5858/arpa.2022-0460-RA)

The adoption of WSI scanners in clinical practice was
accelerated by US Food and Drug Administration

approval in 2017, which allowed primary pathologic diagno-
ses to be made on scanned images. Images in the digital
domain allow the application of pathology artificial intelli-
gence (AI), including clinical decision support with algo-
rithms performing specific diagnoses.1,2 These algorithms, if
trained properly, could go beyond the ability of human
observation to detect and quantify features that are not
recognizable by human perception.1,3,4

Prostate cancer is an ideal target for AI diagnostic support.
Criteria for prostate adenocarcinoma diagnosis from histo-
logic slides are well defined, and a corresponding grading
system known as the Gleason system provides prognostic
information and guidelines for treatment.5 Prostate cancer is
the second most frequent cancer and the fifth leading cause

of death in men. Pathologists diagnose prostate cancer by
examining 6 to 12 needle core biopsies of the prostate. The
already-problematic shortage of pathologists is expected to
worsen, driving the need for the implementation of AI-based
screening tools.6,7 The Gleason grade system, which denotes
the advancement of cancer in the tissue, suffers from diagnostic
variation among pathologists. Pathology AI is intended to
reduce diagnostic variation and increase the productivity of
pathologists, leading to improved patient treatment.8

This review summarizes recent literature regarding the
use of AI to diagnose prostate adenocarcinoma. Its purpose
is to provide an accessible explanation of the current
machine learning methods and an overview of the current
state of classification ability for working surgical patholo-
gists. It begins by outlining the systematic review process
that was followed to produce this literature review. A general
machine learning algorithm based on the algorithms uncovered
in the literature will then be described, following which the
methods used to compare these algorithms will be presented
and justified. Finally, a summary of the results found, both
qualitative and quantitative, will be given and future implica-
tions will be considered.

SYSTEMATIC REVIEW PROCESS

The research process used to conduct this literature review
is summarized in Figure 1. The primary questions guiding
this review were: What is the current state of AI-driven
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automatic Gleason grading of prostate WSIs? Are any
machine learning algorithms currently being implemented
in clinical practice, and if not, what are the most pressing
and current functional challenges to the implementation of
this technology? What are the common grading methods
used by machine learning technology?

Search Terms and Criteria

The search expression was broadly descriptive of AI, as
there are many terms commonly used to describe machine
learning. Although broad, the search expression required that
a given paper include the words “Gleason” and “prostate”
The search criteria expression was “Gleason” AND (“cancer”
OR “adenocarcinoma”) AND “prostate” AND (“machine
learning” OR “artificial intelligence” OR “neural network”
OR “deep learning”) AND (“H&E” OR “hematoxylin and
eosin”) AND (“WSI” OR “whole slide”).

Point System Filter

The database selected was Google Scholar; only studies
published after 2017 were considered. The initial search was
conducted on March 31, 2022; it yielded a total of 474 results.
Relevant papers that were published while this literature
review was being written were noted and included.
For the filtering process, we created a system based on 4

key factors. The study received 1 point for each factor
satisfactorily checked. These factors were established to
maximize uniformity and minimize human subjectivity in
the sorting and classification processes. The 4 factors were:
Does the paper use a machine learning model aimed at
detecting prostate cancer? Does the paper contain a
quantifiable measurement of their machine learning model’s
performance? Does the paper compare its performance with
that of actual pathologists, or does it consider the model’s
performance in a real-world clinical setting? Does the paper
present a high-impact feature, such as a considerable number
(.20) of others who have cited it, or any other novel feature
that may make it useful in comparison?

Of the 474 papers we initially reviewed, 40 papers were
awarded a score of 4; 78 were awarded a 3; 145 were awarded
a 2; and 211 were awarded a 1 or 0.

Forwards/Backwards Search

From this point, we conducted a forward and backward
search of the literature that received at least 3 points. For
this, all papers cited by a relevant paper and those citing it
were manually investigated and considered as potentially
relevant. Papers that were added during the forward and
backward search were also subjected to the point-system filter;
accordingly, 24 papers were added to the existing pool of 118
papers scoring 3 or higher. We ultimately identified a total of
142 studies (see full list in the Supplemental Table in the
supplemental digital content) with a score of at least 3 points.

In-Depth Review

To further categorize these 142 studies, we examined each
paper in depth according to 4 designated topics. The 4 topics
were data sets, preprocessing techniques, training strategies,
and testing approach. For each article, the relevant informa-
tion regarding these topics was extracted and recorded.

MACHINE LEARNING

Introduction

The field of computer-aided diagnosis for prostate cancer
relies on the skillful application of deep learning systems.
Deep learning systems imitate the human brain to glean
patterns from copious amounts of data.9 When applied to
cancer, these systems accurately detect and classify prostate
tissue in WSIs.10 The modern prostate cancer detection
algorithm uses a multilayered neural network as its
backbone.11–14 The network of choice is almost exclusively
the convolutional neural network (CNN), which mimics the
human visual system.15 The first CNN was introduced in
1989, when LeCun et al16 created LeNet to recognize
handwritten zip code digits in a data set provided by the
US Postal Service. Today, dozens of competitive CNNs are

Figure 1. Process of the systematic literature
review. The sorting and screening sections
refer to how papers were selected based on
their relevancy. The ranking section describes
the in-depth review that was performed to
guide organization and writing.
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being used to detect cancer. The generic machine learning
process that will be explained in this section is summarized
in Figure 2.

Data Sets

Regarding data sets, the idiom “what you get out is what
you put in” applies quite well. If the data set used to train an
algorithm is small and of inferior quality, then the algorithm
will produce poor results or have low generalizability to
clinical practice.17–19 Machine learning algorithms must be
trained on large, high-quality data sets, which are ideally
composed of WSIs representative of those seen in clinical
practice.20–24 Quality as used here refers to the resolution of
the WSI scan and the kind of annotation used to label it. The
annotation of the WSI in most data sets is at least overseen
by a pathologist and can range from a single slide–level label
of an overall Gleason score (GS) or Gleason grade25 to
individual gland–level Gleason pattern assignments.26,27

Some studies attempt to strengthen the generalizability
of their algorithm by using multiple data sets because
annotation variation exists in clinical practice.26,28–33

Another point that must be considered is that annotations
are only as good as the person making them. Observer
variability is known to be an issue to the consistency of
Gleason grading among pathologists,34 leading some
researchers to look at possible genetic indicators for cancer
detection instead of hematoxylin and eosin (H&E) slide
annotation.35 There are a number of factors that could explain
the difference in Gleason grading among pathologists,
including the experience of the pathologist assigning the
grade, the time spent examining the slide, or the quality of
the image. Assigning a Gleason grade is somewhat subjective
to the pathologist. Training an algorithm on data that may be
specific to an individual or a small group of pathologists can
limit its generalizability to clinical practice.27 One solution
that has been implemented to enhance generalizability is a
model wherein multiple pathologists’ annotations are
merged and averaged into a single ground truth label for
training purposes.36

Pretraining/Transfer Learning

Just as humans learn patterns in one domain and apply
those patterns elsewhere, strategically designed algorithms
can also transfer what they learn. The modern prostate
cancer detection algorithm first learns patterns from a
generic data set. Popular generic data sets used in the
literature are ImageNet, Microsoft Common Objects in
Context, and Canadian Institute for Advanced Research, all
of which include millions of annotated images with hundreds
of classes.37,38 A model trained on a generic data set learns
general image detection principles, such as the detection of
edges, shapes, and objects; this is an algorithm’s version of
first learning to walk before learning to run.
A pretrained model has a head start when applied to the

image detection task of classifying prostate tissue WSIs.39

The already-experienced model is better at detecting cancer
than a nascent model, which has not learned general
patterns from pretraining. Today’s cancer detection machine
learning models often learn patterns from one type of cancer
and apply these patterns to another type of cancer. This
method of machine learning, known as cross-domain
transfer learning, is making cancer detection more accurate
and bridges the gaps between models trained on different
types of tissue. For example, a model that pretrains on
breast cancer WSIs and applies its knowledge to prostate

cancer WSIs is far more accurate than a model that learns
without pretraining, beginning training from a blank
slate.29,40

Image Preprocessing

Image preprocessing prepares images in a data set for use
in training. It enhances the contents of a data set to improve
the performance of the overall machine learning model.41–43

Figure 2. General representation of the process by which a neural
network is trained to differentiate whole slide images. At the end of the
flow chart the line is broken into 4 categories; for detailed discussion
see the Methods section.
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In this process the overall qualities of each image, such as
color, orientation, and size, are normalized.27 Hospitals and
medical centers commonly have unique staining protocols
and varying whole slide scanners, so prostate tissue data
sets suffer from intercenter variation in magnification, stain
color saturation, image noise, etc.44–46 To combat this
variation, a cancer detection algorithm uses a preprocessing
step to make a data set’s images ideally formatted for the
machine learning algorithm.47–53

Generally, a cancer detection algorithm would perform 3
main functions during image preprocessing: filtering (or
tiling), color normalization, and image denoising. A generic
image preprocessing step would proceed as follows:
First, a sliding box, termed “filter,” is passed over a WSI at

different magnifications.28 Each frame of reference produced
as the box slides over the WSI creates a unique subimage,
called a tile.17,29,54 Therefore, a region of tissue may exist in
multiple tiles if the tiles are of different sizes.55 This allows
the machine learning model to learn from multiple
magnification levels of the same tissue.
Next, each tile is color normalized to produce a set of

images with homogeneous stain distribution.29,56 If 2 tiles
have significantly different saturations, then they are
transformed into tiles of similar stain profiles.57

Third, the tiles are denoised.58 In a data set, image noise
exists as unwanted, random brightness or color variation
produced by a scanner’s image sensor. Noise, which
negatively affects an algorithm’s performance, can be reduced
before each tile is passed onward in the network.27,46 It is clear
that images in a data set can be preprocessed to increase the
performance of a model; a model’s accuracy can also be
further improved by augmenting the resulting tiles from the
preprocessing stage.59

Data Augmentation

An algorithm is not limited in learning to the tiles from
the image preprocessing phase. In fact, most algorithms
augment these tiles to produce a more robust data set. A
model’s performance is dependent on the size of the data
set it is trained on.21,23 An algorithm can leverage this
principle by artificially increasing, or augmenting, the size of
a data set.24 It is also necessary to augment the distribution
of tissue classes, so that a data set is balanced for each class
of tissue. The most straightforward augmentations are
achieved by transforming tiles.
The most common tile transformations used to augment

data sets include mirroring, rotating, differentiable zooming,
and scaling tiles.60–62 Class balancing is commonly achieved
by oversampling underrepresented classes (reusing the
same data points repeatedly) or undersampling overrepre-
sented classes (selecting a random subsample of data
points).
The tile transformations and class distribution enhance-

ments increase model performance; thus, the best-performing
prostate cancer detection algorithms use both types of
augmentations.63,64

Segmentation

After preprocessing and augmenting, the machine learn-
ing model looks at each tile with a granular approach.65,66 As
pixel-wise occurrences like artifacts, cribriform patterns, or
Gleason patterns are detected in each tile, the network
associates related pixels with a certain class.67,68 When 2
separate instances of the same tissue differentiation occur,
the algorithm classifies them as similar but unique cases.69 A

region of tissue can be segmented multiple times—once for
each magnification level. Segmentation for prostate cancer
detection and classification produces regions of interest
(ROIs), which are areas of notable tissue differentia-
tion.30,70–73 The ROIs at different magnifications are passed
onward so the model can extract features from them; the
uninteresting, nondifferentiated tissue is excluded.74–76

Feature Extraction

During feature extraction, a network detects features in
ROIs to simplify complex data. Features are numbers that
represent specific qualities of the ROI.77 Prostate cancer
detection algorithms extract features that describe the
concentration of nuclei, the sizes of tumors, and even the
borders of malignant tissue.78,79 With tiles and ROIs of
the same tissue area present in different magnifications, the
features must be combined in a meaningful way.29,65 The
tiles’ data are merged to decrease computational expenses
while maintaining algorithm performance; the tiles of
prostate tissue are represented by a grid filled with numbers,
also known as a matrix. The matrices are stacked to form a
three-dimensional matrix stack that contains the feature
information of the preliminary matrices.1,10 The higher
priority the feature, the more weight the feature holds in
the new matrix.80,81 After the data are stacked in a process
called pooling, the feature information is used to delegate
ROIs into specific classes during the classification step.82,83

Classification

Classification is the culmination of a prostate cancer
detection algorithm.84 All previous processes, transforma-
tions, and computations lead to the final class predictions of
a model. These predictions are made by a fully convolutional
(FC) head. The FC head is the last step, or layer, in a neural
network. The flattened data from the previous pooling layer
are given to the FC head, which ultimately decides how an
ROI should be classified according to the probability that the
region belongs to a certain class.28,85 Classification methods
can be binary (between 2 outputs) or multi-class (among
more than 2 outputs); the FC head’s classification method is
determined before the neural network is trained.86–91

METHODS

Classification Groups

After the in-depth review, we performed an aggregation of the
reported classification methods. Studies with explicit numerical
results were examined and categorized according to 4 classification
categories, which are depicted in Figure 3.74 We found 65 papers
containing results useful for comparison. These categories reflect 4
general types of classification approaches taken in the literature
reviewed.

The first group, labeled Binary 1, contains studies that
implemented machine learning methods to distinguish between
cancerous and noncancerous regions of the prostate WSI. Also
included in this category were studies that labeled regions of the
WSI as benign or malignant and those that labeled slides as
suspicious or nonsuspicious. Some applied a binary label to the
entire WSI, whereas others applied the label to specific regions on
the slide. This category is designated as Binary 1 because the
decisions made by the machine learning models were binary in
nature: suspicious/nonsuspicious, benign/malignant, cancerous/
noncancerous.

The second group, titled Binary 2, refers to studies in which
machine learning models made binary decisions but in the context
of a Gleason classification. Included in Binary 2 are those models
that could distinguish between WSIs with a GS of greater than 6 or
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less than or equal to 6 (GS .6 versus GS !6). Some distinguished
between slides with a Gleason Grade Group of 3 or greater than 3,
and others distinguished between a Gleason pattern of 3 and a
Gleason pattern of 4 or greater. As seen in the chart, these
distinctions are similar in their nature and difficulty; thus, they were
combined into one category.
The third group, called Multiclassification 1, contains studies that

attempted to perform more than one classification, specifically in
terms of Gleason Grade Groups. Studies included in this category
distinguish Gleason Grade Groups 0 through 5, with Gleason
Grade Group 0 in this context referring to benign tissue. Studies
that distinguished between Gleason Grade Groups 2 through 5 or 3
through 5 were also included in this category. These studies are
distinct from those in Binary 2, which classified only between slides
that had a Gleason Grade Group of 3 or greater than 3. Although
the distinction between Gleason Grade Groups 3 and 4 is critical,
the distinction between Gleason Grade Groups 4 and 5 also affects
treatment plans and the prospects of surgery.
Finally, the fourth group, which is called Multiclassification 2,

refers to studies that performed more than one classification but
not specifically in terms of a Gleason Grade Group. These studies
classified Gleason patterns 1 through 5 or 3 through 5. Some
studies classified their slides as Gleason score 6 through 10.

Measurements Taken Into Consideration

The κ values, AUC values, and accuracy values were collected for
each of the 4 classification groups. All 3 values were collected and
included in Figure 4 if they were reported. For example, if both a κ
and an AUC value were reported, both values were added to the
figure. This could raise the concern of counting the same paper
twice, but by separating these values into distinct categories, the
additional data points facilitate comparison among different
accuracy measurements. Sometimes algorithms were tested on
multiple data sets or trials and thus had multiple reported values for
the same measurement. In these cases, 1 of each given

measurement, either accuracy, κ, or an AUC value, was selected.
Some studies included additional measurements like F-1 scores
and sensitivity and specificity values to quantify accuracy, but they
were excluded, as infrequent use prevented comparison.

The accuracy values are determined by comparing the number of
correct responses and the number of incorrect responses given by
the machine learning algorithm. Accuracy for machine learning
models can be calculated using Equation 1, where TP, TN, FP, and
FN refer to true-positive, true-negative, false-positive, and false-
negative, respectively.92

Accuracy ¼ TPþ TNð Þ
TPþ TNþ FPþ FNð Þ

: ð1Þ

In many cases the exact methodology for how the accuracy value
was calculated was not reported. In some cases, the accuracy value
was a mean taken over several trials performed with the machine
learning model.93

The AUC value balances the accuracy of the true-positive and
false-positive values. A model that got 100% of the tests wrong
would have an AUC value of 0, and inversely, if 100% of the tests
were right it would have an AUC value of 1. The AUC value is quite
literally the area under a curve on a graph whose x-axis is the false-
positive value on a scale of 0 to 1 and whose y-axis is the true-
positive value on a scale of 0 to 1.69,89,94,95 If the AUC achieves a
value of 1, this means it was 100% accurate in its tasks.39 AUC
values are often used to quantify accuracy, but, as can be observed
in the scatterplot, there is little variability in the individual values
among studies. Thus, the AUC value is a poor metric with which to
quantify accuracy because it does very little to distinguish among
developed algorithms.96 A better accuracy metric for comparison is
the κ value.

The κ value is a complex statistical measurement that considers
several factors including the number of classification groups, the
number of images classified, the number of raters and the expected

Risk Level General
- GP 1 - -
- GP 2 - - Binary 1

GS 6
(GP3+ GP3) Binary 2

GS 7
(GP3+GP4) Multi-Class 1

GS 7
(GP4+GP3) Multi-Class 2

GS 8 
(GP4+GP4)

GS 8
(GP3+GP5)

GS 8
(GP5+GP3)

GS 9
(GP4+GP5)

GS 9
(GP5+GP4)

GS 10
(GP5+GP5)

Gleason Scores Gleason Grades
Gleason Classification Table

Non-Suspicious

GG 4

GP 3

GP 4

Low

Favorable

Unfavorable

High

High

GG 1

GG 2

GG 3

High

High

High

High

Gleason Patterns

GP 5

Suspicious

Key:

GG 5

Figure 3. Overview of risk levels associated with common whole slide image labels. Color key maps these labels against 4 classes of algorithms
found in the literature (see Methods section for definition of these classes). Abbreviations: GG, Gleason Grade Group; GP, Gleason pattern; GS,
Gleason score.
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values of those ratings.36 The κ value is defined by Equation 2,
where Po refers to the observed agreement among the raters (ie,
the pathologists) and Pe is the hypothetical probability of chance
agreement. K is the κ value.

K ¼ Po & Peð Þ
1& Peð Þ : ð2Þ

If the raters have perfect agreement, the κ value is 1, and if there
is nothing more than random agreement among raters, the κ value
is 0.92 In some situations, a weighted κ value was used, which
ensures that highly erroneous classifications are penalized heavily.97

The κ value helps balance observer variability and is commonly used
in this domain of machine learning.98 To simplify, the κ value helps
to quantify the concordance between a defined ground truth and
the machine learning algorithms’ classification.30,99 It is also used to
compare pathologists’ scores with each other to quantify differences
in individual ratings.58

RESULTS

The quantitative results of this literature review are
summarized in Figure 4, which depicts the accuracy values
across the 4 categories of classification methods. From left to
right (binary to multiclassification) in the scatterplot a
general trend can be seen downwards for accuracy values,
and a trend for increased variability. This shows that as
algorithms move beyond binary classification it is more
difficult to achieve high accuracy values.80 It is also
important to note that the algorithms that performed a
binary classification task were in much better agreement
with experts. These results suggest that binary classification
of prostate tissue from H&E WSIs is in many cases accurate
and reliable.
The increased variability seen in the multiclassification

tasks can be explained by the increasing difficulty of the task
and by the type of statistical measurement used to quantify
accuracy. Most studies that performed binary classification
were able to report a nearly perfect AUC value, which
suggests the AUC value is not ideal for comparison among
algorithms. There is much less variation among AUC values
in comparison with κ values, which were more commonly
used to quantify accuracy among studies that performed
multiclassification tasks. The κ values incorporate more
information into the statistical measure, which allows for better
comparison of performance among algorithms. Overall, the
graph shows the increasing difficulty of multiclassification

tasks and presents a general overview of the current state of
the literature with regard to prostate cancer detection.
The qualitative results of this literature review were

extracted and compiled by an in-depth review. The clinical
implementation of this technology remains minimal in nature
and has been hindered by observer variability.

DISCUSSION

Observer variability is a challenge that must be taken
seriously in the development of machine learning algo-
rithms.34,100 The fact that Gleason grading is somewhat
subjective based on the grader means that it can be difficult
to assign a “correct” grade to every image for a machine
learning model.101 In a case study, an expert team of 4
pathologists, including a genitourinary specialist, labeled a
set of 331 slides with Gleason gradings. Afterwards, 29
pathologists were tasked to assign individual Gleason
grades to the same slides. Upon comparison, an average
Gleason grading accuracy value of 0.61 was found between
the expert team and individual pathologists, with individual
accuracies ranging between 0.31 and 0.74.102 Another study
found the agreement among 24 pathologists in the context
of Gleason grading to be a κ value of 0.67.98

Given the discrepancy among grades assigned by
pathologists, it is difficult to define a minimum “pathologist
accuracy” threshold a machine learning algorithm needs to
pass. Comparing a machine learning output directly against
one specific pathologist is a poor performance indicator
because of different experience levels and specializations.
There is a significant amount of variation among patholo-
gists when it comes to Gleason grading of WSIs.103 This
variation makes it difficult to train an algorithm, because the
annotations of a single pathologist do not establish an
absolute truth in terms of Gleason grading. The existing
variance in label quality suggests that a variety of
annotations from different pathologists should be taken to
create a better ground truth in terms of Gleason grading.
Instead of just assigning a single value, the AI should
instead also report a confidence score that could resemble
the likely discrepancy among an expert group, potentially
encoded as grade variance. As it stands, training an
algorithm that classifies Gleason grades with 100% accuracy
is impossible because “accuracy” here is the interpretive
consensus of a group of pathologists. Instead of an expert

Figure 4. Scatterplot of area under the curve
(AUC) values, accuracy values, and κ values
for the studies examined. As machine learning
algorithms progress from binary classification
to multiclassification efforts, a greater variabil-
ity can be observed in the results reported.
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panel consensus, recording the distribution of Gleason
grades assigned by individual pathologists would yield a
better label set. In this situation an AI would be trained to
predict an expected distribution of expert opinions, rather
than that of a single expert. We think that such a model
would be far better at supporting pathologists, as it would
de facto represent a crowd response.
In the absence of such a model, it may be best to view the

clinical implementation of machine learning algorithms as a
way to focus pathologists on the most relevant tissue areas,
to help reduce variability among pathologists, and to
provide a second opinion at little cost, which would enhance
care and treatment options for patients104,105 and serve as a
safety check against any misdiagnosis.106–109

As expected, multiclassification tasks are very difficult for
current AI models. As mentioned previously and highlighted
in Figure 4, there is a noticeable downward trend in accuracy
from the binary classification to the multiclassification tasks.
Unsurprisingly, the increasing number of categories deteri-
orates precision and accuracy because each additional
category represents an increasingly smaller slice of all the
possible outcomes. The lower accuracy of multiclassification
tasks is also related to the subjectivity inherent in the
Gleason grading system—Gleason Grade Groups are not
based on mathematical measurements like tumor length,
quantity, or circumference. Although these could be taken
into consideration by a pathologist, there is no set
mathematical scale by which Gleason Grade Groups are
classified. They are roughly based on the morphologic
features present, but again, this is subjective to the
pathologist or experts examining the H&E stain. Even
among experts there is considerable variation in classifica-
tion of WSIs.103

As Gleason grading is a difficult subjective measure, other
features taken into consideration by pathologists may
present attractive alternative objectives for AI to learn. Such
features include the quantification of tumors, perineural
invasion, or intraductal and cribriform pattern. Perineural
invasion describes the invasion of cancer in the immediate
periphery of nerves. Nerves can serve as a route for
metastatic spread, and thus an invasion can predict
irreversible metastasis. Some algorithms were trained to
recognize this element in addition to other factors with
marked success.110 Intraductal carcinoma, a proliferation of
cancer in prostate ducts, can also be a training objective.
Some algorithms take this morphologic feature into
consideration when grading a WSI.107 Cribriform pattern
on a tumor is associated with carcinoma and can serve as an
indicator for areas of the prostate biopsy that need
additional attention. There are several developed algorithms
that can detect the presence of cribriform pattern.77,78

The presence of cribriform pattern, perineural invasion,
intraductal carcinoma, or other details such as tumor length
and density can factor into an expert’s diagnosis and
treatment plan. Future AI algorithms would be well advised
to consider these features, as their prediction could aid
pathologists greatly in their efficiency and decision making.
For those who worry about replacing pathologists by AI

algorithms, comfort can be found in recent examples of
parallel AI applications failing to adapt to the level of
variation that exists in the real world. IBM attempted to
develop an AI doctor called Watson back in 2011, but after
investing billions into the project, it was scrapped entirely by
2014.111 Although AI may one day be capable of replacing
doctors or pathologists, that day has not yet arrived. On that

day—if AI ever achieves general human-level intelligence—
pathology will be just one among countless professions
threatened by AI. Until that day, refusing to use AI as a tool
for augmenting a pathologist may be compared with
stubbornly refusing email in favor of paper mail. Although
arguments can be made, efficiency will likely favor willing
pathologists that thoroughly vet and carefully choose
suitable AI to amplify their output. Based on current trends,
AI will and most likely be limited to serve as an assistant for
pathologists in the foreseeable future.

CONCLUSIONS

Clinical Implementation

In conclusion, machine learning algorithms will not
replace human pathologists in the near future, but instead
may offer a useful tool to help decrease the work burden
and increase the accuracy of practicing patholo-
gists.69,80,84,112–114 One of the most well-known tools being
implemented to date is Paige Prostate (Paige AI).115,116

Currently the Paige Prostate software is able to detect and
label carcinoma as well as provide a Gleason score and
other quantifiable measurements of the tumors. Paige
Prostate has also demonstrated its ability to decrease time
spent by pathologists examining slides and increase overall
accuracy of assigned Gleason grades.99 One important
consideration is that for time to be saved by the pathologist,
there must be a level of trust in the algorithm. If there is little
trust, then no time will be saved, because the pathologist
may be spending time double-checking the algorithm.
Others found comparable results regarding accuracy

improvement when machine learning methods were
used.34,58 One specific tool, developed by researchers at
the University of Wisconsin, was also implemented to
improve the accuracy of 3 pathologists (κ ¼ 0.56–0.70 to κ ¼
0.88–0.93).58 Another tool called Galen Prostate (Ibex-AI)
has been in use in Israel as a quality control for
pathologists.110 Two other prostate screening tools recog-
nized in the literature and cleared for clinical implementa-
tion by a governing regulatory body are Deep-Dx117

(DeepBio) and Inify94 (Inify Laboratories).
The expanding field of AI-integrated pathology presents

promising possibilities.118 This innovative technology may
decrease workloads and increase accuracy for practicing
pathologists.116 One hurdle to clinical implementation,
which may be better viewed as an opportunity, is the
widespread adoption of whole slide scanners. Effective
implementation of this technology in clinical practice
necessitates the adoption of whole slide scanners. High-
quality digital slides that can be uploaded and evaluated
easily by pathologists are necessary for machine learning
algorithms as well.21,119 Looking beyond the United States
and Europe, the ability to upload slides and view them
digitally from afar can help improve access to health care in
the developing world where pathologists are scarce.22,120

Limitations of This Study

This study is limited to the results given in the initial
Google search, or which were derived from a forward and
backward search. We also limited our literature to studies
published between 2018 and late 2022. Furthermore, some
aspects of the sorting process were inherently subjective to
the research assistant whose responsibility it was to review
the literature and categorize it. Some generalizations were
also made to present the 4 categories of classification.
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26. Otálora S, Marini N, Müller H, Atzori M. Combining weakly and strongly
supervised learning improves strong supervision in Gleason pattern classification.
BMC Med. 2021;21(1):77. doi:10.1186/s12880-021-00609-0

27. Linkon AHM, Labib MM, Hasan T, Hossain M. Deep learning in prostate
cancer diagnosis and Gleason grading in histopathology images: an extensive
study. Inform Med. 2021;24:100582. doi:10.1016/j.imu.2021.100582

28. Homeyer A, Geißler C, Schwen LO, et al. Recommendations on test
datasets for evaluating AI solutions in pathology [published online April 22,
2022]. arXiv. doi:10.48550/arXiv.2204.14226
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