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Background: Multiple commercial artificial intelligence (AI) products exist for assessing radiographs; however, comparable performance 
data for these algorithms are limited.

Purpose: To perform an independent, stand-alone validation of commercially available AI products for bone age prediction based on 
hand radiographs and lung nodule detection on chest radiographs.

Materials and Methods: This retrospective study was carried out as part of Project AIR. Nine of 17 eligible AI products were validated 
on data from seven Dutch hospitals. For bone age prediction, the root mean square error (RMSE) and Pearson correlation coefficient 
were computed. The reference standard was set by three to five expert readers. For lung nodule detection, the area under the receiver 
operating characteristic curve (AUC) was computed. The reference standard was set by a chest radiologist based on CT. Randomized 
subsets of hand (n = 95) and chest (n = 140) radiographs were read by 14 and 17 human readers, respectively, with varying experience.

Results: Two bone age prediction algorithms were tested on hand radiographs (from January 2017 to January 2022) in 326 patients 
(mean age, 10 years ± 4 [SD]; 173 female patients) and correlated strongly with the reference standard (r = 0.99; P < .001 for both). 
No difference in RMSE was observed between algorithms (0.63 years [95% CI: 0.58, 0.69] and 0.57 years [95% CI: 0.52, 0.61]) and 
readers (0.68 years [95% CI: 0.64, 0.73]). Seven lung nodule detection algorithms were validated on chest radiographs (from January 
2012 to May 2022) in 386 patients (mean age, 64 years ± 11; 223 male patients). Compared with readers (mean AUC, 0.81 [95% CI: 
0.77, 0.85]), four algorithms performed better (AUC range, 0.86–0.93; P value range, <.001 to .04).

Conclusion: Compared with human readers, four AI algorithms for detecting lung nodules on chest radiographs showed improved 
performance, whereas the remaining algorithms tested showed no evidence of a difference in performance.
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The market for artificial intelligence (AI) software in radi-
ology is rapidly expanding, with over 200 products cur-

rently available in the European Union. Multiple vendors 

now offer similar solutions. For example, there are already 
12 products to detect breast malignancy on mammographs 
and over 30 for brain region or lesion quantification (1). 
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This abundance of options can make it challenging for users 
to determine which software best suits their needs (2). While 
various factors, such as workflow integration and time efficiency, 
should be considered when making a purchasing decision, ad-
equate diagnostic performance is a crucial prerequisite for any 
AI tool to add value in clinical practice.

Transparency around the performance data of commer-
cial AI products is often unsatisfactory (3–6). A recent review 
found that no scientific evidence on performance measures 
was available for two-thirds of Conformité Européenne–
marked AI products (7) (Conformité Européenne, or CE, is 
the European Union’s mandatory conformity marking). This 
review established that even when evidence was available, 
studies were often conducted and/or funded by the vendors 
themselves, making it difficult to assess the validity of the re-
sults (7). The lack of consistency of study protocols and data 
sets makes it challenging to compare the performance of dif-
ferent AI products (8,9).

Some studies have attempted to directly compare similar AI 
products for tasks such as detecting breast cancer, classifying 
breast density, or scoring tuberculosis (10–13). However, these 
are single snapshot validations, and as AI algorithms are continu-
ously updated and improved, such studies need to be conducted 
repeatedly to ensure that the results are up-to-date and relevant. 
Frequently, validation data are shared or made public, which 
makes them nonreusable thereafter for independent validation, 
as they may have been used for, for example, retraining. An al-
ternative approach to obtaining performance data is to conduct 
in-house validation studies of AI products before making a pur-
chase (8,14,15). However, clinical centers rarely have the neces-
sary resources and personnel to evaluate and compare multiple 
products prior to purchase.

The aim of the Project AIR initiative was to fill this gap 
in information and provide an independent measure of per-
formance across different algorithms. A methodology was 
created for conducting validation studies to assess the stand-
alone performance of commercially available Conformité 

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, RMSE = root mean square error

Summary
In independent validation, nine artificial intelligence products for 
detecting lung nodules on chest radiographs or predicting bone age 
on hand radiographs showed improved or comparable performance to 
human readers.

Key Results
 ■ In this retrospective study validating commercial artificial 
intelligence products, two algorithms for predicting bone age 
tested on 326 hand radiographs showed no observable difference 
in root mean square error (0.63 and 0.57 years) compared with 
human readers (0.68 years).

 ■ Of seven algorithms for detecting lung nodules tested on 386 
chest radiographs, four performed better (area under the receiver 
operating characteristic curve [AUC] range, 0.86–0.93) than 
human readers (mean AUC, 0.81; P value range, <.001 to .04).

Européenne–marked AI-based software for radiology. The 
products are tested on representative data sets, and the results 
are compared with radiologists’ performance on the same sets. 
The data sets remain confidential, which allows the process to 
be repeated when new products and updated algorithms are 
brought to market. Test results are made publicly available on 
the globally used medical image challenge platform Grand 
Challenge (16). A summary of the Project AIR method is pro-
vided in Appendix S1 and Figure S1. It is more extensively 
described in the Project AIR general study protocol on Zenodo 
(17). The aim of this study was to determine the feasibility of 
the Project AIR methodology by performing an independent 
validation of commercially available AI products for bone age 
prediction based on hand radiographs and lung nodule detec-
tion on chest radiographs.

Materials and Methods

Study Design
Project AIR is an ongoing cohort study in which commercial 
AI products are externally validated on retrospective data sets 
from multiple medical centers. A subset of the data used origi-
nates from previously published work (18–20). Details can be 
found in Appendix S1. The study was reviewed by the research 
ethics committee of Radboud University Medical Center, and 
the requirement for informed consent was waived because 
the study data were collected retrospectively. All clinical data 
were anonymized before being used for analysis. The Grand 
Challenge platform maintains a list of Conformité Europée-
nne–marked AI software for radiology (https://grand-challenge.
org/aiforradiology/). All vendors that had a product on this list 
between June and November 2022 addressing one or both use 
cases were invited to join Project AIR (bone age prediction, 
three vendors; lung nodule detection, 14 vendors). In total, 
nine products from eight vendors were validated between June 
2022 and January 2023. The vendors had no control of the 
data and information submitted for publication.

To ensure a fair process and to enable reiteration, the valida-
tion data were not shared with the vendors. Instead, the ven-
dors made their algorithms temporarily available locally or as an 
Amazon Machine Image (Amazon Web Services), enabling the 
execution of the algorithms in an isolated environment. A subset 
of the data, hereafter referred to as the public subset, was made 
publicly available under a CC BY license, allowing vendors to 
test the setup and retrospectively verify the processing. The pub-
lic subset was not included in the analysis.

Study Sample
A consecutive set of conventional radiographs of the left hand of 
children (age range, 0–18 years) acquired between January 2017 
and January 2022 was collected from seven medical centers 
(one academic hospital, five teaching hospitals, and one general 
hospital) in the Netherlands. Images showing extreme deforma-
tions of the hand were excluded. Images were obtained with ra-
diographic equipment from multiple manufacturers, including 
Siemens, Philips, and Canon (Table 1), using local protocols, a 
voltage of 40–50 kV, and an exposure time of 3–17 milliseconds.
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Chest radiographs, acquired between January 2012 and 
May 2022, for which matching chest CT scans were avail-
able that were obtained within 3 months of the radiograph 
were collected from seven medical centers (three academic 
hospitals, three teaching hospitals, and one general hospital) 
in the Netherlands. Images were obtained with radiographic 
equipment from multiple manufacturers, including Siemens, 
Philips, Canon, Agfa, and Hologic (Table 1), using local 
standardized protocols with automated exposure control and 
a voltage of 115–150 kV. CT was performed either with or 
without contrast material, with a section thickness of 3 mm 
or less. A convenience sample was selected at the discretion of 
the medical center based on report or registry search. Each pa-
tient was classified as either a control or nodule case. Controls 
were defined as patients with a normal-appearing chest radio-
graph as confirmed with CT. These control radiographs could 
contain signs of chronic obstructive pulmonary disease and/or  
emphysema, or minor bronchopathic changes. According to 
the Fleischner Society guidelines, nodule cases had to have 
one or more solid or part-solid nodules with a solid compo-
nent with diameter measured at CT between 5 and 30 mm, 
based on the longest axis in the axial, coronal, or sagittal plane. 
Only one radiograph pair (frontal and lateral) per patient was 
included. Bedside radiographs, non–diagnostic quality images 
(eg, motion artifacts, incompletely imaged chest), and radio-
graphs with diffuse or extensive pathology that could obscure 
nodules (eg, diffuse metastases, interstitial lung disease, large 
masses or consolidations) were not eligible for this data set. All 
radiographs and CT scans were reread by a specialized radiolo-
gist (S.S., with 8 years of experience) to ensure these eligibility 
criteria were met.

Table 2 provides a summary of the study design for both use 
cases. The study protocols for bone age prediction and lung nod-
ule detection are available on Zenodo (21,22).

Reader Methods
For the bone age reference standard, three expert readers 
(M.J.C.M.R., J.I.M.L.V., and M.V.) who were pediatric or mus-
culoskeletal radiologists (with 26, 23, and 11 years of experience, 
respectively) rated each image independently according to the 
Greulich and Pyle method (23). This method uses a bone age 
atlas according to sex to which readers compare an image to esti-
mate the bone age. Images for which the difference between two 
of the three readers was greater than 2 years (n = 15) were reread 
by two other expert readers (B.M. and C.F.v.D., with 24 and 
22 years of experience, respectively). The reference standard was 
then defined as the mean bone age of the five reads. Greulich and 
Pyle–based bone age predictions from the two algorithms and 
14 readers were compared with the reference standard.

All chest radiographs and corresponding CT scans were read 
by a specialized radiologist (S.S., with 8 years of experience) to 
determine the reference standard (0, no nodule present; 100, one 
or more nodules present), measure the most prominent nodule 
on the CT scan (in millimeters), and provide a conspicuity clas-
sification on the basis of visual inspection (well visible, moder-
ately visible, subtle, or very subtle). Lung nodule detection by 
the seven algorithms and 17 readers was compared with the ref-
erence standard.

Radiographs were read by a set of radiologists and radiology 
residents with varying experience to serve as the comparison 
for algorithm performance. Tables S2 and S3 provide the in-
dividual reader characteristics. Readers were recruited through 
the AI Network, a database of radiologists interested in AI 
established in 2019 by our center in collaboration with the 
Radiological Society of the Netherlands. Participating readers 
were requested to read a random subset of the images (95 hand 
radiographs or 140 chest radiographs) using the infrastructure 
offered by the Grand Challenge platform. This platform allows 
readers to access imaging data from anywhere and efficiently 

Table 1: Patient Characteristics and Data Inclusion for the Two Use Cases: Bone Age Prediction and Lung Nodule 
Detection

Characteristic Hand Radiographs for Bone Age Prediction Chest Radiographs for Lung Nodule Detection
No. of patients 326 386 (144 nodule cases, 242 controls)
No. of centers 7 (one academic hospital, five teaching hospitals, 

one general hospital)
7 (three academic hospitals, three teaching hospitals, 

one general hospital)
Sex
 Male 153 (47) 223 (58)
 Female 173 (53) 163 (42)
Age (y)
 Mean ± SD 10 ± 4 64 ± 11
 Range 0–18 26–89
Equipment manufacturer
 Siemens 146 (45) 65 (17)
 Philips 90 (28) 187 (48)
 Canon 88 (27) 14 (4)
 Agfa 0 81 (21)
 Hologic 0 31 (8)
 Other 2 (1) 8 (2)

Note.—Except where noted, data are numbers of patients, with percentages in parentheses.
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go through images and provide predefined scores. Readers were 
blinded to the algorithm predictions and clinical data except 
for patient age and sex. The first five scans were used for prac-
tice and were excluded from the analysis.

For bone age prediction, human readers (n = 14) provided 
an age expressed in years and months, which for analysis was 
transformed to years in decimal. Algorithms provided a decimal 
prediction in years.

For lung nodule detection, algorithms and human readers 
(n = 17) provided a probability score between 0 and 100 for 
each patient of the likelihood that the patient was a nodule case. 
When an AI algorithm identified multiple findings, the nodule 
with the highest score was used. For algorithms that provided a 
score between 0 and 1, scores were scaled to range from 0 to 100. 
Algorithms that processed both frontal and lateral images had 
access to both, as did the human readers.

Statistical Analysis
For bone age prediction, the root mean square error (RMSE) 
(accuracy) and mean error (bias) were computed. Bland-Altman 
plots were constructed to provide a visual assessment of agree-
ment between the algorithms and readers. The Pearson correla-
tion coefficient (r) was calculated to determine the correlation 
between the ground truth and the algorithm and reader predic-
tions. Statistical analysis was performed by one author (K.G.v.L.) 
using Python version 3.7.6 (Python Software Foundation) and 
Python libraries SciPy 1.7.3 and sklearn 0.23.2. Subanalyses 
were performed according to sex and age group.

For lung nodule detection, the area under the receiver operat-
ing characteristic curve (AUC) was computed. The AUC for the 
mean of reader performance was computed using the diagonal 
average. Multireader multicase analysis using iMRMC software 
(version 4.0.3, 2019; U.S. Food and Drug Administration) based 
on U-statistics was performed to determine the equivalence of 

the performance of individual algorithms to that of the human 
readers (24,25). A two-tailed P value of .05 was considered to 
indicate a statistically significant difference. When CIs could not 
be computed using U-statistics because of a negative estimate of 
variance, the nonparametric maximum likelihood estimate, also 
included in iMRMC, was used instead.

It was optional for vendors to provide a probability threshold 
between 0 and 100 above which the image was classified as con-
taining a nodule. The threshold was used to compute sensitivity 
and specificity as secondary end points and was set at 50 for all 
readers. The 95% CIs for sensitivity and specificity were com-
puted through bootstrapping.

Subanalyses were performed for different conspicuity levels 
and nodule size. All control patients were included in addition 
to the nodule cases in each class.

Results

Study Sample
For bone age prediction, a total of 1050 hand radiographs were 
collected. Only one radiograph per child was included. Fifty ra-
diographs per center were randomly sampled to form a set of 350 
images. Right hand radiographs (n = 4) and radiographs show-
ing extreme deformations of the hand (n = 2) were excluded. A 
set of 18 random radiographs, stratified over the centers, were set 
aside as the public subset. The final set used for validation had a 
total of 326 radiographs (mean patient age, 10 years ± 4 [SD]; 
173 girls) (Fig 1).

For lung nodule detection, a total of 561 chest radiographs 
were collected. After ensuring that the eligibility criteria were 
met, 404 chest radiographs remained (Fig 1). A set of 18 ran-
dom radiographs, stratified over the centers, were set aside as 
the public subset. The final set used for validation consisted of 
radiographs from 386 patients (mean age, 64 years ± 11; 223 

Table 2: Summary of Study Design for the Two Use Cases: Bone Age Prediction and Lung Nodule Detection

Characteristic
Hand Radiographs for Bone  
Age Prediction Chest Radiographs for Lung Nodule Detection

No. of invited vendors 3 14
No. of participating vendors 2 7
Input Left hand radiograph PA and lateral (available for 383 patients) chest 

radiographs
Outcome Greulich and Pyle bone age,  

continuous scale
Probability of any nodule present, score 0–100  

for each patient
Reference standard Bone age based on mean of three expert  

reads, with two additional expert  
reads when the deviation was >2 y

Nodule presence (0 or 100) based on expert 
read of CT scan acquired within 3 mo of the 
radiograph

No. of readers 14 (8 radiologists, 6 residents) 17 (13 radiologists, 4 residents)
Mean ± SD experience  

of readers (y)
9.3 ± 9.6 11.5 ± 8.5

No. of radiographs read  
per reader

95 140

Metrics Root mean square error, mean error AUC, sensitivity (optional), specificity (optional)
Statistics Pearson correlation coefficient Multireader multicase analysis

Note.—AUC = area under the receiver operating characteristic curve, PA = posteroanterior.
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male patients), of whom 144 had at least one nodule according 
to the reference standard and were therefore considered nodule 
cases, and 242 were considered controls. Lateral radiographs 
were available for 383 patients. Table 1 shows the demographic 
characteristics of the study sample.

In total, nine commercially available AI products were vali-
dated. For the bone age prediction task, two of the three (67%) 
invited vendors participated. For the lung nodule detection task, 
seven of the 14 (50%) invited vendors participated. Table 3 
shows the invited and participating vendors with their respective 

Figure 1: Flow diagrams of the data collection process for bone age prediction (hand radiographs) and lung nodule detection (chest radiographs).

Table 3: Characteristics of Eligible Artificial Intelligence Products for Bone Age Prediction and Lung Nodule Detection

Task and Vendor Product Name
Response to  
Invitation

Radiograph  
Input Version

Probability 
Threshold*

Bone age prediction  
on hand radiographs

 Visiana BoneXpert Participated Left hand v3.1.4 NA
 VUNO Med-BoneAge Participated Left hand v1.1 NA
 ImageBiopsy Lab PANDA Declined NA NA NA
Lung nodule detection  

on chest radiographs
 Annalise.ai Annalise Enterprise CXR Participated PA and lateral v3.1 Not available
 Infervision InferRead DR Chest Participated PA v1.0.0.1 47
 Lunit INSIGHT CXR Participated PA v3.1.4.4 15
 Milvue Milvue Suite–SmartUrgences Participated PA v1.24 25
 Oxipit ChestEye Participated PA v2.6 Not available
 Siemens Healthineers AI-Rad Companion Chest X-ray Participated PA v9 50
 VUNO Med-Chest X-ray Participated PA v1.1.× 1
 Gleamer ChestView No response NA NA NA
 JLK JLD-02K Declined NA NA NA
 Quibim Chest X-Ray Classifier Declined NA NA NA
 Qure.ai Technologies qXR Declined NA NA NA
 Rayscape Rayscape CXR Declined NA NA NA
 Riverain Technologies ClearRead Xray Detect No response NA NA NA
 Samsung Electronics Auto Lung Nodule Detection No response NA NA NA

Note.—NA = not applicable, PA = posteroanterior.
* For the lung nodule detection task, it was optional for vendors to provide a probability threshold between 0 and 100 above which the 
image was classified as containing a nodule.
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products and versions. Herein the individual products are re-
ferred to by their vendor’s name. All algorithms were able to pro-
vide a prediction for each patient.

Bone Age Prediction: Algorithm and Reader Performance
Pearson correlation coefficients (r) between the reference stan-
dard and Visiana and VUNO were 0.987 (P < .001) and 0.989 
(P < .001), respectively. The mean r value for the correlation be-
tween the human readers and the reference standard was 0.985 
(95% CI: 0.98, 0.99).

RMSE (in years) was similar for Visiana (0.63 [95% CI: 0.58, 
0.69]), VUNO (0.57 [95% CI: 0.52, 0.61]), and the human 
readers (mean, 0.68 [95% CI: 0.64, 0.73]). RMSE was largest 
for the chronologic age group of 7–10 years, at 0.74 years (95% 
CI: 0.64, 0.82) for Visiana and 0.67 years (95% CI: 0.60, 0.75) 
for VUNO. No evidence of a difference in RMSE (in years) be-
tween boys and girls was found for the algorithms (Visiana: 0.60 
[95% CI: 0.53, 0.67] in girls and 0.67 [95% CI: 0.58, 0.76] in 
boys; VUNO: 0.57 [95% CI: 0.51, 0.63] in girls and 0.56 [95% 
CI: 0.49, 0.63] in boys) or the human readers (0.69 [95% CI: 
0.63, 0.74] in girls and 0.67 [95% CI: 0.62, 0.73] in boys), as 
demonstrated in Table 4.

The average mean error (bias, in years) of the algorithms and 
human readers, as shown in Figure 2, was close to zero and clini-
cally insignificant (Visiana, 0.07 [95% CI: 0.00, 0.14]; VUNO, 
0.01 [95% CI: −0.05, 0.07]; human readers, −0.11 [95% CI: 
−0.19, −0.04]). Both algorithms predicted a more advanced age 
for boys (mean error [in years]: Visiana, 0.22 [95% CI: 0.12, 
0.32]; VUNO, 0.16 [95% CI: 0.08, 0.25]) and a delayed age 
for girls (Visiana, −0.06 [95% CI: −0.15, 0.03]; VUNO, −0.13 

[95% CI: −0.21, −0.04]). The same was observed for the hu-
man readers’ predictions for girls (mean error [in years], −0.19  
[95% CI: −0.26, −0.12]) but not for boys (−0.03 [95%  
CI: −0.13, 0.07]).

The positive mean error (advanced age prediction, in years) 
was largest for the chronologic age group of 3–6 years for both 
Visiana (0.26 [95% CI: 0.12, 0.41]) and VUNO (0.25 [95% CI: 
0.13, 0.38]). The negative mean error (delayed age prediction, in 
years) was largest for the chronologic age group of 15–18 years 
for both Visiana (−0.15 [95% CI: −0.30, 0.01]) and VUNO 
(−0.24 [95% CI: −0.35, −0.14]), but not for the readers (−0.02 
[95% CI: −0.09, 0.05]). Figure 3 provides several example im-
ages from the public subset, with reference values and predicted 
values from readers and algorithms.

Lung Nodule Detection: Algorithm and Reader  
Performance
The algorithms and human readers showed a wide performance 
spread regarding the AUC, as shown in Figure 4. The mean AUC 
for the readers (n = 17) was 0.81 (95% CI: 0.77, 0.85) (Table 5). 
Compared with human readers, multireader multicase analy-
sis demonstrated superior performance for Annalise.ai (AUC, 
0.90 [95% CI: 0.87, 0.94]; P < .001), Lunit (AUC, 0.93 [95% 
CI: 0.91, 0.96]; P < .001), Milvue (AUC, 0.86 [95% CI: 0.82, 
0.90]; P = .04), and Oxipit (AUC, 0.88 [95% CI: 0.85, 0.92]; 
P = .005). No evidence of a difference was found between the  
human readers and the algorithms from Infervision (AUC,  
0.79 [95% CI: 0.74, 0.84]; P = .33), Siemens Healthineers 
(AUC, 0.80 [95% CI: 0.75, 0.85]; P = .60), and VUNO  
(AUC, 0.84 [95% CI: 0.80, 0.88]; P = .26).

Table 4: Bone Age Prediction Performance on Hand Radiographs by Two Commercial Artificial Intelligence Algorithms 
and Human Readers

Sample

Visiana BoneXpert VUNO Med-BoneAge
Mean Prediction of Human Readers 

(n = 14)

RMSE Mean Error RMSE Mean Error RMSE Mean Error
Total (n = 326) 0.63 

(0.58, 0.69)
0.07 

(0.00, 0.14)
0.57 

(0.52, 0.61)
0.01 

(−0.05, 0.07)
0.68 

(0.64, 0.73)
−0.11 

(−0.19, −0.04)
Sex
 Girls (n = 173) 0.60 

(0.53, 0.67)
−0.06 

(−0.15, 0.03)
0.57 

(0.51, 0.63)
−0.13 

(−0.21, −0.04)
0.69 

(0.63, 0.74)
−0.19 

(−0.26, −0.12)
 Boys (n = 153) 0.67 

(0.58, 0.76)
0.22 

(0.12, 0.32)
0.56 

(0.49, 0.63)
0.16 

(0.08, 0.25)
0.67 

(0.62, 0.73)
−0.03 

(−0.13, 0.07)
Chronologic age (y)
 0–2 (n = 5) 0.21 

(0.06, 0.34)
0.06 

(−0.08, 0.25)
0.35 

(0.18, 0.46)
0.09 

(−0.22, 0.34)
0.27 

(0.18, 0.37)
−0.12 

(−0.25, 0.00)
 3–6 (n = 53) 0.61 

(0.42, 0.80)
0.26 

(0.12, 0.41)
0.53 

(0.39, 0.68)
0.25 

(0.13, 0.38)
0.59 

(0.51, 0.68)
0.03 

(−0.10, 0.15)
 7–10 (n = 114) 0.74 

(0.64, 0.82)
0.13 

(−0.00, 0.26)
0.67 

(0.60, 0.75)
0.06 

(−0.06, 0.19)
0.71 

(0.65, 0.78)
−0.19 

(−0.29, −0.10)
 11–14 (n = 102) 0.56 

(0.48, 0.65)
0.02 

(−0.09, 0.13)
0.52 

(0.45, 0.59)
−0.05 

(−0.15, 0.05)
0.73 

(0.66, 0.81)
−0.13 

(−0.24, −0.02)
 15–18 (n = 52) 0.58 

(0.47, 0.68)
−0.15 

(−0.30, 0.01)
0.44 

(0.35, 0.54)
−0.24 

(−0.35, −0.14)
0.55 

(0.48, 0.62)
−0.02 

(−0.09, 0.05)

Note.—Data are means (in years), with 95% CIs in parentheses. RMSE = root mean square error.
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Figure 2: Bland-Altman plots showing bone age prediction by artificial intelligence algorithms and human readers minus the refer-
ence bone age as a function of the reference bone age for girls and boys. (A) Plot shows the results for Visiana BoneXpert v3.1.4. The 
average mean error (bias) of Visiana was less than 1 month (0.07 years [95% CI: 0.00, 0.14]) and was considered clinically insignifi-
cant. Visiana predicted a more advanced age for boys (mean error, 0.22 years [95% CI: 0.12, 0.32]) and a slightly delayed age for 
girls (mean error, −0.06 years [95% CI: −0.15, 0.03]). (B) Plot shows the results for VUNO Med-BoneAge v1.1. The average mean 
error (bias) of VUNO was less than 1 month (0.01 years [95% CI: −0.05, 0.07]) and was considered clinically insignificant. VUNO 
predicted a more advanced age for boys (mean error, 0.16 years [95% CI: 0.08, 0.25]) and a delayed age for girls (mean error, 
−0.13 years [95% CI: −0.21, −0.04]). (C) Plot shows the results for 14 human readers who each read 95 random radiographs from 
the set. The average mean error (bias) of the readers was −1.3 months (−0.11 years [95% CI: −0.19, −0.04]). The readers predicted 
a more delayed age for girls (mean error, −0.19 years [95% CI: −0.26, −0.12]). For boys, the bias was close to zero (mean error, 
−0.03 years [95% CI: −0.13, 0.07]).
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The readers showed a mean sensitivity of 71% (102 of 144 
patients; 95% CI: 66%, 75%) and a mean specificity of 80% 
(194 of 242 patients; 95% CI: 73%, 85%) (Table 5). Sensitivity 
and specificity were optional metrics for the vendors. Infervision, 
Milvue, Siemens Healthineers, and VUNO showed a higher 
specificity (83% [95% CI: 79%, 88%], 99% [95% CI: 97%, 
100%], 87% [95% CI: 83%, 91%], and 88% [95% CI: 83%, 
92%], respectively) than sensitivity (64% [95% CI: 56%, 72%], 
50% [95% CI: 42%, 58%], 66% [95% CI: 58%, 74%], and 
75% [95% CI: 68%, 82%]), and Lunit showed the opposite 

(sensitivity, 89% [95% CI: 84%, 94%]; specificity, 80% [95% 
CI: 75%, 85%]). The full results for the lung nodule detection 
task are presented in Table 5.

All lung nodule detection algorithms as well as the reader 
mean showed a performance decline with decreasing nodule 
conspicuity class. Nodule size showed limited correlation with 
AUC for most algorithms and the reader mean. Figure 5 provides 
several example images from the public subset, with reference 
scores and scores from readers and algorithms. The algorithm 
scores shown in Figure 5 are raw, uncalibrated scores and cannot 

Figure 3: Example left hand radiographs from the public test set illustrate similarities and discrepancies in bone age predictions by artificial intelligence (AI) algorithms and 
the reference standard. Bone age predictions by human readers are provided for comparison. (A) Radiograph in a girl (chronologic age, 5 years) shows a large mean differ-
ence between the predictions of the AI products and the reference standard. (B) Radiograph in a boy (chronologic age, 17 years) shows a large mean difference between 
the predictions of AI products and the reference standard. (C) Radiograph in a boy (chronologic age, 12 years) shows a small mean difference between the predictions of 
the AI products and the reference standard. (D) Radiograph in a girl (chronologic age, 3 years) shows a small mean difference between the predictions of the AI products 
and the reference standard. The images shown in this figure were part of a public subset and not part of the set on which metrics are reported, which remains confidential for 
reevaluation in the future.
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be directly compared to each other; they are provided for indica-
tive purposes only.

Individual reader characteristics and performance can be 
found in Table S2 (bone age prediction) and Table S3 (lung nod-
ule detection). Results of subanalyses according to radiograph 
acquisition device manufacturer are available in Table S4 (bone 
age prediction) and Table S5 (lung nodule detection). The main 
results are shared as leaderboards online on the Grand Challenge 
platform (bone age prediction, https://pairboneage22.grand- 
challenge.org/; lung nodule detection, https://pairlungnodulexr22. 
grand-challenge.org/ ), which can be updated with the results of 
new or updated products.

Discussion
Performance data and fair comparison of commercially available 
artificial intelligence (AI) products for radiology are often lack-
ing (4,6,7,9). The Project AIR validation process makes it pos-
sible to compare the performance of multiple AI products in a 
head-to-head manner and put the performance of AI products 
in the context of radiologist performance. The design allows for 
reiteration of the evaluation as new products or new versions of 
products are released. The aim of this study was to validate the 

stand-alone performance of commercially available AI software 
for bone age prediction and lung nodule detection on multi-
center data sets from the Netherlands. For bone age prediction 
based on left hand radiographs, two of three eligible vendors par-
ticipated, and the predictions showed excellent correlation with 
the reference standard (Visiana, r = 0.987 [P < .001]; VUNO,  
r = 0.989 [P < .001]). For lung nodule detection on chest radio-
graphs, seven of 14 eligible vendors participated. The areas under 
the receiver operating characteristic curve (AUCs) varied sub-
stantially for both the algorithms (range, 0.79–0.93) and human 
readers (range, 0.69–0.91). Four of the AI products for lung 
nodule detection performed better (AUC range, 0.86–0.93) 
than readers (mean AUC, 0.81 [95% CI: 0.77, 0.85]; P value 
range, <.001 to .04).

Our results for the bone age prediction algorithms are simi-
lar to those presented in the latest studies from Visiana and 
VUNO. A study on the same product version by Visiana showed 
an RMSE of 0.61 years in a single manually rated set and 0.45 
years in an independent test of 200 radiographs with six readers 
determining the ground truth (26). A 2017 study from VUNO 
showed an RMSE of 0.60 years and r of 0.992 for an indepen-
dent test set of 200 images (27). These values are in the same 
range as our study, which showed RMSE values of 0.63 (95% 
CI: 0.58, 0.69) and 0.57 (95% CI: 0.52, 0.61) for Visiana and 
VUNO, respectively.

Regarding lung nodule detection products, there were no 
comparable studies available for Milvue and Infervision. A 
study by Seah et al (28) evaluated the performance of Annalise.
ai (v1.2.0). Subanalyses showed an AUC of 0.95 for multiple 
masses or nodules and 0.88 for solitary lung nodules, compa-
rable to the AUC of 0.90 (95% CI: 0.87, 0.94) in our study. 
A previous study (29) on Lunit (v3.1.2) showed a lower AUC 
for nodule detection (0.86) than was found in our study (0.93 
[95% CI: 0.91, 0.96]). However, a similar gap is seen between 
the two studies for the mean reader AUC (0.75 vs 0.81), which 
may indicate a difference in the data distribution. The Oxipit 
product is intended to autonomously report on normal chest 
radiographs in cases where it is highly certain of the results. In 
the last study by the vendor (30), sensitivity was 99.8% at a 
specificity level of 28%. As other abnormalities were included 
as well, results are not directly comparable, but the receiver 
operating characteristic curve from our study confirms that 
this algorithm is optimized for high sensitivity. Previous results 
from Siemens Healthineers on its product vary. A study from 
2021 (on an unspecified version) that tested the algorithm on 
100 images, of which 50 contained a nodule, demonstrated a 
sensitivity and specificity of 64% and 92%, respectively (31), 
similar to the findings of our study (sensitivity, 66% [95% CI: 
58%, 74%]; specificity, 87% [95% CI: 83%, 91%]). However, 
another study (on version VA23A) reported 83% for both sen-
sitivity and specificity for the detection of lung lesions (masses 
and nodules) (32). The difference may be explained by the in-
cluded sample (consecutive vs convenience), the inclusion of 
masses, the different threshold applied, and the different ver-
sion of the product used. A study by Park et al (33) on VUNO 
reported a higher AUC (0.97) than our study (0.84 [95% CI: 
0.80, 0.88]). In the study by Park et al, masses were included, 

Figure 4: Receiver operating characteristic (ROC) curves for lung nodule de-
tection by seven commercial artificial intelligence products and 17 readers in a data 
set of 386 chest radiographs from seven centers. The vendor name, area under the 
receiver operating characteristic curve (AUC), and 95% CI are listed. Compared 
with human readers, multireader multicase analysis demonstrated a superior per-
formance for Annalise.ai, Lunit, Milvue, and Oxipit. No evidence of a difference 
in performance was found between the human readers and the algorithms from 
Infervision, Siemens Healthineers, and VUNO. Product names: Annalise.ai, Annalise 
Enterprise CXR v3.1; Infervision, InferRead DR Chest v1.0.0.1; Lunit, INSIGHT CXR 
v3.1.4.4; Milvue, Milvue Suite–SmartUrgences v1.24; Oxipit, ChestEye v2.6; Sie-
mens Healthineers, AI-Rad Companion Chest X-ray v9; VUNO, Med-Chest X-ray 
v1.1.×. Each reader read a random subset of 140 images (or image pairs where 
lateral image was also available) of the total set. Receiver operating characteristic 
curves were generated using iMRMC. The receiver operating characteristic curve 
for the mean of reader performance was computed using the diagonal average.
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Table 5: Lung Nodule Detection Performance on Chest Radiographs by Seven Commercial AI Algorithms and Human 
Readers

Measure and Sample Annalise.ai Infervision Lunit Milvue Oxipit
Siemens 
Healthineers VUNO

Mean Score of 
Human Readers 
(n = 17)

AUC*
 Total (n = 386) 0.90 

(0.87, 
0.94)

0.79 
(0.74,  
0.84)

0.93 
(0.91, 
0.96)

0.86 
(0.82,  
0.90)

0.88 
(0.85,  
0.92)

0.80 
(0.75,  
0.85)

0.84 
(0.80,  
0.88)

0.81 
(0.77,  
0.85)

  P value of  
  difference†

<.001 
(0.04, 
0.13)

.33 
(−0.09, 
0.03)

<.001 
(0.08, 
0.16)

.04 
(0.00,  
0.10)

.005 
(0.02,  
0.11)

.60 
(−0.07,  
0.04)

.26 
(−0.02, 
0.08)

 Nodule  
 conspicuity‡

  Well visible  
  (n = 42)

0.99 
(0.98, 
1.00)

0.88 
(0.81,  
0.95)

0.99 
(0.97, 
1.00)

0.97 
(0.94,  
0.99)

0.97 
(0.95,  
1.00)

0.94 
(0.90,  
0.98)

0.97 
(0.95,  
1.00)

0.92 
(0.88,  
0.96)

  Moderately  
  visible (n = 43)

0.97 
(0.95, 
0.99)

0.88 
(0.82,  
0.94)

0.97 
(0.95, 
1.00)

0.94 
(0.91,  
0.98)

0.94 
(0.90,  
0.98)

0.81 
(0.72,  
0.90)

0.91 
(0.85,  
0.97)

0.86 
(0.80,  
0.92)

  Subtle  
  (n = 34)

0.85 
(0.77, 
0.93)

0.75 
(0.65,  
0.85)

0.94 
(0.90, 
0.97)

0.84 
(0.76,  
0.92)

0.87 
(0.81,  
0.92)

0.78 
(0.70,  
0.87)

0.76 
(0.67,  
0.85)

0.74 
(0.70,  
0.79)§

  Very subtle  
  (n = 25)

0.70 
(0.59, 
0.82)

0.51 
(0.38,  
0.65)

0.76 
(0.66, 
0.85)

0.58 
(0.46,  
0.71)

0.64 
(0.53,  
0.74)

0.57 
(0.42,  
0.72)

0.62 
(0.51,  
0.72)

0.65 
(0.56,  
0.73)

 Nodule  
 diameter (mm)‡

  25–30  
  (n = 14)

0.90 
(0.79, 
1.00)

0.77 
(0.63,  
0.91)

0.97 
(0.93, 
1.00)

0.83 
(0.70,  
0.96)

0.95 
(0.90,  
0.99)

0.81 
(0.69,  
0.93)

0.87 
(0.73,  
1.00)

0.79 
(0.69,  
0.90)

  20–24  
  (n = 27)

0.93 
(0.88, 
0.97)

0.73 
(0.60,  
0.86)

0.96 
(0.91, 
1.00)

0.85 
(0.75,  
0.95)

0.90 
(0.84,  
0.96)

0.73 
(0.59,  
0.87)

0.84 
(0.74,  
0.93)

0.81 
(0.76,  
0.85)

  15–19  
  (n = 51)

0.90 
(0.84, 
0.96)

0.79 
(0.72,  
0.87)

0.92 
(0.87, 
0.96)

0.88 
(0.83,  
0.94)

0.86 
(0.80,  
0.91)

0.79 
(0.72,  
0.87)

0.85 
(0.78,  
0.91)

0.80 
(0.74,  
0.87)

  10–14  
  (n = 41)

0.89 
(0.82, 
0.96)

0.82 
(0.73,  
0.91)

0.92 
(0.87, 
0.97)

0.90 
(0.83,  
0.97)

0.88 
(0.82,  
0.95)

0.83 
(0.73,  
0.92)

0.86 
(0.79,  
0.94)

0.83 
(0.77,  
0.89)

  5–9  
  (n = 11)

0.87 
(0.70, 
1.00)

0.78 
(0.57,  
1.00)

0.93 
(0.86, 
0.99)

0.73 
(0.51,  
0.95)

0.83 
(0.70,  
0.96)

0.89 
(0.77,  
1.00)

0.72 
(0.54,  
0.90)

0.86 
(0.73,  
0.98)

Sensitivity (%) NA 64 
(56, 72)

89 
(84, 94)

50 
(42, 58)

NA 66 
(58, 74)

75 
(68, 82)

71 
(66, 75)

Specificity (%) NA 83 
(79, 88)

80 
(75, 85)

99 
(97, 100)

NA 87 
(83, 91)

88 
(83, 92)

80 
(73, 85)

Note.—Values in parentheses are 95% CIs. The 95% CIs for sensitivity and specificity were computed through bootstrapping. AI products 
are as follows: Annalise.ai, Annalise Enterprise CXR v3.1; Infervision, InferRead DR Chest v1.0.0.1; Lunit, INSIGHT CXR v3.1.4.4; 
Milvue, Milvue Suite–SmartUrgences v1.24; Oxipit, ChestEye v2.6; Siemens Healthineers, AI-Rad Companion Chest X-ray v9; VUNO, 
Med-Chest X-ray v1.1.×. AI = artificial intelligence, AUC = area under the receiver operating characteristic curve, NA = not available.
* All AUC-related metrics were computed using iMRMC software based on U-statistics.
† P value is for the difference in AUC between the AI algorithm and the human readers. Values in parentheses are the 95% CIs of the 
difference in AUC between the AI algorithm and the human readers.
‡ In these subanalyses, all control patients (n = 242) were included in addition to the nodule cases in each class.
§ CI could not be computed using U-statistics because of a negative estimate of variance. The nonparametric maximum likelihood estimate, 
also included in iMRMC, was used instead.
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and the test set came from the same distribution as the training 
set, which may have favored the performance.

The literature analysis demonstrates the difficulty of com-
paring product performance through individual scientific stud-
ies. The use of unrevealed benchmark data sets, as in Project 
AIR, enables more uniform, objective, and repeatable evalua-
tion of commercial products. Nevertheless, our study has sev-
eral limitations. First, it should be noted that several vendors 
of eligible products chose not to participate (yet) in our study. 
The practice of directly comparing AI products and publicly 
disclosing the results, including the product names, is still rela-
tively uncommon in the field of AI in radiology. The potential 
impact on a vendor’s market traction may have contributed to 
the reluctance to participate.

Second, the Project AIR methodology assesses the stand-
alone performance of AI products, while most commercial 
products today are intended to be used as decision support 
tools in clinical practice. We also acknowledge that there are 
important factors other than stand-alone performance that 

should be considered when making purchasing decisions, 
such as additional functionalities, the user interface, integra-
tion into the workflow, and service and support. Conducting 
comparable prospective validation in a decision support set-
ting on a repeated basis would be technically challenging, as 
well as resource intensive, as it would require integration of 
all the products in a diverse set of working environments and 
much more dedicated time from radiologists, which is cur-
rently scarce. Therefore, the authors feel this study presents 
the best available evidence.

Third, the data and reading circumstances differed from 
those in clinical practice. Images were read on the Grand Chal-
lenge platform instead of a picture archiving and communica-
tion system. We asked the readers to optimize their reading 
environment by using a suitable monitor and minimizing am-
bient light; however, there was no control over this. No clinical 
information was provided, the task was clearly defined, and the 
data distribution differed from that in clinical practice to differ-
ent extents. Reader performance should therefore be regarded 

Figure 5:  Example chest radiographs (posteroanterior projection) from the public test set illustrate algorithm and reader similarities to and discrepancies from the refer-
ence standard. A specialized radiologist determined the reference standard score (0, no nodule present; 100, one or more nodules present), and algorithms and human 
readers provided a probability score between 0 and 100 for each patient of the likelihood that the patient was a nodule case. (A) Radiograph in a man (age, 72 years) 
with a nodule present (reference standard score, 100) shows a true-positive result based on the average algorithm scores. (B) Radiograph in a man (age, 68 years) without 
a nodule present (reference standard score, 0) shows a true-negative result based on the average algorithm scores. (C) Radiograph in a woman (age, 64 years) without a 
nodule present (reference standard score, 0) shows a false-positive result based on the average algorithm scores. (D) Radiograph in a man (age, 37 years) with a nodule 
present (reference standard score, 100) shows a false-negative result based on the average algorithm scores. Corresponding lateral images and CT scans (when available) 
for these patients are presented in Figure S2. The images shown in this figure were part of a public subset and not part of the set on which metrics are reported, which remains 
confidential for reevaluation in the future. Algorithm scores provided for the images are raw, uncalibrated scores and cannot be directly compared to each other; they are 
provided for indicative purposes only.
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only in the context of the study and cannot be generalized to 
performance in clinical practice.

In conclusion, we have shown the feasibility of the Project 
AIR methodology for external validation of commercial artificial 
intelligence (AI) products in medical imaging. For lung nodule 
detection on chest radiographs, four AI algorithms showed bet-
ter performance than human readers, and three AI algorithms 
showed no evidence of a difference in performance compared 
with human readers. For bone age prediction, no difference was 
observed in the performance of the two algorithms tested and 
human readers. The Project AIR protocol, by allowing repetition 
and extension to new use cases in the future, can address the 
dynamic nature of AI products and increase the transparency 
of the AI market. It is conceivable that in the future, radiology 
departments will require vendors to participate in transparent 
and comparative evaluations as a prerequisite for purchasing AI 
products. Similarly, health care insurers might base reimburse-
ment decisions on performance comparisons. For the vendors 
of AI products, the data may be useful as postmarket clinical 
follow-up data to demonstrate regulatory compliance. These fac-
tors may ultimately encourage more vendors to participate in 
such evaluations.
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