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Abstract

Background: We sought to determine the prevalence of germline pathogenic variants (gPVs) in unselected patients with endometrial
cancer (EC), define biallelic gPVs within tumors, and describe their associations with clinicopathologic features.

Methods: Germline assessment of at least 76 cancer predisposition genes was performed in patients with EC undergoing clinical
tumor-normal Memorial Sloan Kettering–Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) sequencing from
January 1, 2015, to June 30, 2021. In patients with gPVs, biallelic alterations in ECs were identified through analysis of loss of hetero-
zygosity and somatic PVs. Clinicopathologic variables were compared using nonparametric tests.

Results: Of 1625 patients with EC, 216 (13%) had gPVs, and 15 patients had 2 gPVs. There were 231 gPVs in 35 genes (75 [32%] high pen-
etrance; 39 [17%] moderate penetrance; and 117 [51%] low, recessive, or uncertain penetrance). Compared with those without gPVs,
patients with gPVs were younger (P¼ .002), more often White (P¼ .009), and less obese (P¼ .025) and had differences in distribution of
tumor histology (P¼ .017) and molecular subtype (P< .001). Among 231 gPVs, 74 (32%) exhibited biallelic inactivation within tumors.
For high-penetrance gPVs, 63% (47 of 75) of ECs had biallelic alterations, primarily affecting mismatch repair (MMR) and homologous
recombination related genes, including BRCA1, BRCA2, RAD51D, and PALB2. Biallelic inactivation varied across molecular subtypes
with highest rates in microsatellite instability-high (MSI-H) or copy-number (CN)–high subtypes (3 of 12 [25%] POLE, 30 of 77 [39%]
MSI-H, 27 of 60 [45%] CN-high, 9 of 57 [16%] CN-low; P< .001).

Conclusions: Of unselected patients with EC, 13% had gPVs, with 63% of gPVs in high-penetrance genes (MMR and homologous
recombination) exhibiting biallelic inactivation, potentially driving cancer development. This supports germline assessment in EC
given implications for treatment and cancer prevention.

Recent studies have highlighted the molecular heterogeneity of
endometrial cancer (EC) and associations with outcomes (1),
leading to universal assessment of mismatch repair (MMR) defi-
ciency and microsatellite instability (MSI), with implications for
treatment and inherited risk, as MMR-deficient and/or MSI-high
(MSI-H) tumors are a hallmark of Lynch syndrome (LS) (1-4).
Although most ECs are sporadic, 2%-6% develop in the setting of
LS, occurring in patients with germline pathogenic variants
(gPVs) in MMR genes (MLH1, MSH2, PMS2, MSH6, EPCAM) (5,6).

Increased risk of EC has also been suggested in individuals with
PTEN-associated autosomal dominant syndromes (eg, Cowden syn-
drome) (7-10), POLE and POLD1 mutations (11,12), and biallelic muta-
tions in MUTYH (13). Germline mutations in BRCA1 and BRCA2,
CHEK2, and other DNA repair genes have been identified in patients
with high-grade ECs (14,15), and there are increasing data to suggest
an elevated risk of high-grade ECs with BRCA1 and BRCA2 gPVs (16,17).

We previously reported on 156 patients with newly diagnosed
EC undergoing tumor-normal sequencing from April 2016 to May
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2017; 14% of patients had gPVs (6). Other studies have reported
gPVs in 10%-15% of patients with EC undergoing genetic testing
(18-20). These studies are limited by ascertainment bias and lack
of tumor-level data, which can infer the contribution of gPVs to
tumor development through assessment of biallelic inactivation
within the tumor at the gPV locus (21,22). We previously identi-
fied high levels of biallelic inactivation in EC tumors of patients
with gPVs in BRCA1 and BRCA2, with tumors harboring genomic
features of homologous recombination deficiency (23).

Outside of LS and MMRdeficient/MSI-H EC, association of
other gPVs with EC development has not been well established.
Currently, it is unclear if all identified gPVs, particularly those in
low-penetrance or recessive genes, are associated with disease.
We sought to determine the prevalence of gPVs in unselected
patients with EC, define associations with clinicopathologic fea-
tures, and assess for biallelic inactivation of gPVs in tumors.

Methods
Patient selection
Patients with histologically confirmed EC (excluding uterine sar-
comas) consented to clinical tumor-normal sequencing using
Memorial Sloan Kettering Cancer Center (MSK)-Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)
from January 1, 2015, to June 30, 2021, targeting 341-505 cancer-
related genes were included (24,25). Beginning in 2015, our insti-
tution standardized care to offer MSK-IMPACT sequencing to all
patients with EC; thus, the cohort was unselected. Germline anal-
ysis included 76-90 genes (26). Molecular pathologists reviewed
results to define pathogenic or likely pathogenic variants (27).
gPVs were classified as high (relative risk [RR]> 4), moderate
(2�RR� 4), low (RR< 2), or uncertain penetrance, or recessive (28-
30). Variants of uncertain significance were not reported. This
study was approved by the institutional review board of MSK.

Clinicopathologic data
Clinical information, including age at diagnosis, body mass index
(BMI), disease stage, self-reported race (Asian, Black, White, and
Unknown), and Ashkenazi Jewish ancestry, were abstracted from
the medical record. Pathology reports were reviewed for histol-
ogy, grade, MMR immunohistochemistry, and MLH1 promoter
hypermethylation status. Further reviews of medical and family
history were performed by genetic counselors for select cases.

Molecular data and biallelic gPV inactivation
MSI status based on MSIsensor score, tumor mutational burden,
tumor purity, and variant allele frequencies were obtained from
MSK-IMPACT, as previously described (31,32). Tumors with a
MSIsensor score of at least 10 were considered MSI-H, less than
10 and at least 3 MSI-indeterminate, and less than 3 microsatel-
lite stable (33).

ECs were classified into 4 molecular subtypes (31,32,34).
Tumors 1) harboring hotspot POLE exonuclease domain muta-
tions (35) were designated POLE; 2) showing lack of immunohisto-
chemical expression of MLH1, MSH2, MSH6, and/or PMS2 and/or
having an MSIsensor score of at least 10 (33,36) were defined as
MSI-H; 3) harboring TP53 pathogenic variant or homozygous dele-
tions were defined as copy number high (CN-H); and 4) lacking
defining features of other subtypes were defined as CN-low (CN-
L). Tumors with purity less than 10% and/or variant allele fre-
quencies less than 5% were excluded.

Loss of heterozygosity (LOH) in tumors at the gPV locus was
assessed using the Fraction and Allele-Specific Copy Number

Estimates from Tumor Sequencing (FACETS) algorithm (37).
Biallelic inactivation was defined as a loss of the wild-type allele
in the tumor at the locus of a pathogenic variant, presence of a
second somatic pathogenic alteration, or in the case of MLH1
gPVs, promoter hypermethylation. Patients with more than 1 gPV
and discordant LOH status were considered biallelic if present in
the high penetrance gPV (n¼ 3).

Statistical analyses
Clinicopathologic variables were reported using summary statis-
tics and stratified by gPV status. Associations between continu-
ous clinicopathologic variables and gPV and biallelic inactivation
at the patient level were performed using Wilcoxon rank sum
and Kruskal-Wallis tests. Fisher exact test was used for categori-
cal variables. We assessed LOH at the variant level (n¼ 231) and
conducted comparisons at the patient level (n¼ 213). A 2-sided P
value less than .05 was considered statistically significant. All
statistical analyses were performed using R version 4.1.2 (https://
cran.r-project.org/).

Results
Patient characteristics
Of 1945 patients with presumed EC consented to MSK-IMPACT
sequencing, we excluded 291 (15%) who declined consent for
germline results, 23 with nonendometrial primary cancer on
review, and 6 with missing data, resulting in 1625 patients for
this analysis (Figure 1).

Median age at EC diagnosis was 63 (range ¼ 24-96) years, and
170 patients (10%) were diagnosed at age younger than 50 years
(Table 1). Of the patients, 1193 (80%) identified as White; 202
(18%) reported Ashkenazi Jewish ancestry. Median BMI was 29.6
(range ¼ 15.3-67.6) kg/m2, and 1229 patients (76%) had a BMI of at
least 25 kg/m2. Stage I and II disease comprised 68% of cases,
with tumors exhibiting endometrioid (grade 1 and 2 [G1 and 2])
(52%), endometrioid (G3) (9.8%), serous (14%), carcinosarcoma
(11%), and clear cell (2.9%) histologies.

Compared with patients without gPV, those with gPV were
younger (median age ¼ 61 vs 63 years; P¼ .002), less likely to be
overweight or obese (70% vs 77%; P¼ .025), more likely to identify
as White (87% vs 79%; P¼ .009), and of Ashkenazi Jewish ancestry
(29% vs 17%; P< .001) with no differences in stage at diagnosis
(Table 1).

Germline landscape and biallelic inactivation
Among 1625 patients with EC, 216 (13%) had gPVs of whom 15
had 2 gPVs. There were 231 gPVs in 35 genes: 75 (32%) high pene-
trance, 39 (17%) moderate penetrance, 43 (19%) low penetrance,
40 (17%) recessive, and 34 (15%) of uncertain penetrance
(Supplementary Tables 1 and 2, available online).

Most gPVs (136 of 231, 59%) were associated with monoallelic
loss; however, 74 (32%) exhibited biallelic inactivation of gPVs in
tumors, and 21 (9%) were unclassifiable. We found statistically
significant differences in biallelic inactivation by penetrance
(P< .001); 63% (47 of 75) of high-penetrance gPVs exhibited bial-
lelic inactivation within tumors, primarily in MMR and homolo-
gous recombination–related genes, compared with 28% (11 of 39)
of moderate-penetrance gPVs (Figure 2, Table 2). Among 44
patients with MSI-H tumors and gPVs in non-MMR genes, only 6
(14%) had biallelic inactivation in the tumor (Figure 3).

Patients with biallelic vs monoallelic loss in EC tumors were
younger at diagnosis (median age ¼ 58 vs 62 years, respectively;
P¼ .002) and more likely to be diagnosed with stage III or IV than
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stage I or II disease (48% vs 32%, respectively; P¼ .003; Figure 2
and Table 2) with no differences in obesity rates, race, and
Ashkenazi Jewish ancestry. When examining only those with gPV
in high- or moderate-penetrance genes, results were similar
(Supplementary Table 3, available online).

Histologic vs molecular subtypes
Histology differed between ECs occurring in patients with gPVs
compared with those without gPVs (P¼ .017); gPVs were present
in 12.4% (99 of 800) of G1 and G2 endometrioid, 19.1% (29 of 152)
of G3 endometrioid, 8.7% (19 of 218) of serous, 23.9% (11 of 46) of
clear cell, 11.3% (19 of 168) of carcinosarcoma, 15.2% (5 of 33) of
de- or undifferentiated, and 14.5% (19 of 131) of mixed or high-
grade carcinoma not otherwise specified (NOS) tumors (Table 1).
Histology also varied in tumors with and without biallelic inacti-
vation (P¼ .020; Table 2) with biallelic inactivation observed in
19.2% (19 of 99) G1 and G2 endometrioid, 44.8% (13 of 29) G3
endometrioid, 26.3% (5 of 19) serous, 57.9% (11 of 19) carcinosar-
coma, 27.3% (3 of 11) clear cell, 60.0% (3 of 5) de- or undifferenti-
ated, and 26.3% (5 of 19) of mixed or high-grade carcinoma NOS
tumors (Table 2; Supplementary Figure 1, available online).

When stratified by molecular subtype, 546 (34%) ECs were
classified as CN-L, 542 (33%) as CN-H, 413 (25%) as MSI-H, and
106 (6.5%) as POLE; 18 (1.1%) were unclassifiable. Distribution of
molecular subtype varied for ECs from those with and without
gPVs (P< .001) (Table 1); gPVs were present in 11.3% (12 of 106) of
POLE, 18.6% (77 of 413) of MSI-H, 11.1% (60 of 542) CH-H, and
10.4% (57 of 546) CN-L tumors. Patients with biallelic vs monoal-
lelic gPVs also had distinct distributions of molecular subtypes
(P< .001). Biallelic inactivation was observed in 25% (3 of 12) of
POLE, 39% (30 of 77) of MSI-H, 45% (27 of 60) of CN-H, and 16% (9
of 57) of CN-L tumors (Figure 3 and Table 2). Within the MSI-H
subgroup, patients with gPVs and biallelic loss were younger at
diagnosis (median age ¼ 55 vs 62 years; P< .001) and less likely to

have MLH1 promoter hypermethylation within tumors (13% vs
65%; P< .001) compared with patients with monoallelic loss. A
similar age trend was observed in patients with CN-H tumors
(median age ¼ 63 vs 68 years; P¼ .054) (Supplementary Tables 4
and 5, available online).

MMR genes
A total of 39 patients had LS, representing 18% of patients with
gPVs and 2.4% of all patients with EC in the cohort. The majority
of LS was MSH6- (49%) and MSH2-associated (28%). Median age at
EC diagnosis was 53 (range ¼ 31-70) years. PMS2-associated ECs
had an older age at diagnosis (median ¼ 60.5 years; range ¼ 51-70
years; P< .01). None of the patients harbored a 3’ deletion in
EPCAM. Although most tumors were endometrioid histology
(67%), we also observed clear cell, mixed or high-grade carcinoma
NOS, and carcinosarcoma histologies but no serous carcinomas
(Supplementary Table 6, available online). All except 6 patients
with LS had MSI-H tumors. Among these, 2 ECs were classified as
POLE with biallelic loss at the gPV and 1 as CN-L with no biallelic
loss at the MSH6 gPV, suggesting a sporadic EC, and 3 could not
be classified (Supplementary Table 7, available online).

Homologous recombination genes
In homologous recombination genes, gPVs in BRCA1 (n¼ 10) and
BRCA2 (n¼ 11) were most common, followed by PALB2 (n¼ 3) and
RAD51D (n¼ 2); no gPV in RAD51C was observed. None of the ECs
in patients with BRCA1 gPVs were of serous histology but
included G3 endometrioid (n¼ 5), carcinosarcoma (n¼ 3), and
mixed or high-grade carcinoma NOS (n¼ 2) histologies. All 10 ECs
in patients with BRCA1 gPVs and both evaluable patients with
RAD51D gPVs had biallelic inactivation. A subset of ECs with
evaluable gPVs in BRCA2 (6 of 10, 60%) and PALB2 (2 of 3, 67%)
had biallelic inactivation. Most ECs with gPVs affecting homolo-
gous recombination genes were CN-H (16 of 26, 62%) or CN-L (5 of

Figure 1. Patient selection. The figure depicts selection of final cohort of 1625 patients with endometrial cancer (EC) who underwent clinical tumor-
normal sequencing with germline assessment of at least 76 genes who were analyzed in this study.
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26, 19%). Of note, in 2 patients with BRCA2 gPVs and monoallelic
loss, the EC was MSI-H, suggesting cancer developed independ-
ently of the BRCA2 gPV. All patients with gPVs in PALB2 or
RAD51D had CN-H or CN-L EC (Figure 3; Supplementary Table 8,
available online). Notably, gPVs in other DNA repair genes,
including CHEK2 (7 of 27), ATM (3 of 9), BARD1 (0 of 3), and BRIP1
(0 of 2), exhibited variable rates of biallelic inactivation in tumors,
and interestingly, the more penetrant CHEK2 variants had higher
levels of biallelic inactivation compared with the I157T variant
(Supplementary Table 1, available online).

Given novel associations of RAD51D and PALB2 gPVs with EC,
family histories in patients whose tumors exhibited biallelic loss
were explored further (Figure 4). In patient case 1, because of a
family history of ovarian cancer, the proband underwent risk-
reducing bilateral salpingo-oophorectomy (RRSO) without hyster-
ectomy at age 51 years. Her sister was later diagnosed with triple-
negative breast cancer at age 49 years, and genetic testing identi-
fied a RAD51D gPV, which the proband also carried. The proband
was subsequently diagnosed with stage IIIC serous EC at age 69
years. In patient case 2, the proband had a family history of stom-
ach cancer and was diagnosed with stage IVA EC at age 56 years.

In patient case 3, the proband presented with abnormal ute-
rine bleeding at age 49 years and was diagnosed with G1 endome-
trioid adenocarcinoma on endometrial curettage. She underwent
total laparoscopic hysterectomy, RRSO, and sentinel lymph node
biopsy and was diagnosed with stage II, G1 endometroid EC.
MSK-IMPACT sequencing revealed a PALB2 gPV. The proband’s
sister, who had a history of hormone receptor–positive breast
cancer at age 50 years, underwent cascade testing and was found
to share the same PALB2 gPV. The sister subsequently underwent
risk-reducing total laparoscopic hysterectomy and RRSO at age
58 years and was found to have complex atypical hyperplasia
bordering on well-differentiated endometrioid EC. In patient case
4, the proband was diagnosed with stage IA EC at age 62 years,
with no family history of gynecologic cancers.

Discussion
In our cohort of patients with EC, 13% harbored gPVs across 35
genes. Through integration of somatic and germline data, we
found that although only 32% of ECs exhibited biallelic loss, bial-
lelic inactivation was more common among high-penetrance

Table 1. Clinicopathologic information by germline findings

Characteristic All patients, No. (%) Germline negative,
No. (%)

Germline pathogenic variant,
No. (%)

P

(N¼1625) (n¼1409) (n¼216)

Age at diagnosis
Median (range), y 63 (24-96) 63 (24-96) 61 (31-86) .002
Bivariate .19

Younger than 50 y 170 (10) 142 (10) 28 (13)
50 y and older 1455 (90) 1267 (90) 188 (87)

Self-identified race .009
Asian 125 (8.4) 110 (8.5) 15 (7.4)
Black 178 (12) 166 (13) 12 (5.9)
White 1193 (80) 1018 (79) 175 (87)
Unknown 129 115 14

AJ ancestry <.001
Yes 202 (18) 162 (17) 40 (29)
No 914 (82) 818 (83) 96 (71)
Unknown 509 429 80

BMI
Median (range), kg/m2 29.6 (15.3-67.6) 29.8 (15.3-67.6) 28.9 (17.2-60.1) .053
Overweight or obese .025

BMI <25 kg/m2 379 (24) 315 (23) 64 (30)
BMI �25 kg/m2 1229 (76) 1078 (77) 151 (70)
Unknown 17 16 1

FIGO stage .26
I and II 1036 (68) 903 (69) 133 (65)
III and IV 481 (32) 409 (31) 72 (35)
Unknown 108 97 11

Histology .017
Endometrioid G1 and G2 800 (52) 701 (52) 99 (49)
Endometrioid G3 152 (9.8) 123 (9.1) 29 (14)
Serous 218 (14) 199 (15) 19 (9.5)
Carcinosarcoma 168 (11) 149 (11) 19 (9.5)
Clear cell 46 (2.9) 35 (2.6) 11 (5.5)
De- or undifferentiated 33 (2.1) 28 (2.1) 5 (2.5)
Mixed or high-grade carci-

noma NOS
131 (8.5) 112 (8.3) 19 (9.5)

Unknown 77 62 15
Molecular subtype <.001

POLE 106 (6.5) 94 (6.7) 12 (5.6)
MSI-H 413 (25) 336 (24) 77 (36)
CN-H 542 (33) 482 (34) 60 (28)
CN-L 546 (34) 489 (35) 57 (26)
Unclassifiable 18 (1.1) 8 (0.6) 10 (4.6)

AJ¼Ashkenazi Jewish; BMI¼body mass index; CN-H¼ copy number high; CN-L¼ copy number low; FIGO¼ International Federation of Gynecology and Obstetrics;
MSI-H¼microsatellite instability high; NOS¼not otherwise specified; POLE¼polymerase epsilon.
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genes (63%), including BRCA1, BRCA2, RAD51D, and PALB2.
Additionally, molecular and traditional histologic subtypes varied
among patients with gPVs and tumors exhibiting biallelic inacti-
vation, with enrichment of gPVs and biallelic inactivation in MSI-
H and CN-H tumors compared with CN-L and POLE tumors.
Given implications for treatment and cancer risk reduction, these
findings support germline assessment in EC.

Our findings are consistent with rates of gPVs reported in
recent studies evaluating multigene panel genetic testing in
patients with EC (9%-15%) (15,18-20). Most gPVs were observed in
MMR genes associated with LS, ranging from 1.8% to 5.8% in unse-
lected populations (15,19,38) and 8.2% to 9.4% in those referred
from genetics clinics (20) or genetic testing laboratories (18). Our
LS rate of 2.4% is consistent with previous findings in unselected
cohorts, suggesting minimal ascertainment bias reflective of the
general population. These studies have also highlighted gPVs in
EC outside of MMR genes, in particular BRCA1 and BRCA2 and
other homologous recombination genes, and associations with
serous EC; however, these studies lack integrated tumor data,
which are critical to determine if the gPV is a driver of disease.

Additionally, our observed gPV rate in EC is similar to those
reported in colorectal (15.4%), prostate (16%), and breast (17.4%)
cancers and slightly lower than rates in pancreatic (19.6%) and
ovarian (25.5%) cancers from prior pan-cancer studies (29,39).
There are universal recommendations for germline assessment
in ovarian and pancreatic cancers, and criteria are broadening in
breast and prostate cancer, mostly driven by treatment implica-
tions (40). In colon cancer, the field is moving toward universal
germline assessment, despite less certainty around clinical man-
agement of non-MMR genes in this setting and more limited
treatment implications compared with EC (41).

Strengths of our study include use of a large, unselected
cohort and integrated somatic and germline sequencing data,
allowing us to comprehensively assess the contribution of gPVs
to disease development. Although the overall rate of gPVs was
more than 10%, the proportion exhibiting biallelic inactivation in
tumors was lower, suggesting some gPVs are incidental.
However, when examining high-penetrance genes with strong
associations with phenotype, mostly in MMR or homologous
recombination genes and enriched within the MSI-H and CN-H
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Figure 2. Germline pathogenic variants and loss of heterozygosity by gene penetrance. The figure depicts the 231 germline pathogenic variants in at
least 76 genes, monoallelic vs biallelic, grouped by gene penetrance (high, moderate, low, recessive, and uncertain). Higher levels of biallelic loss were
observed in high- and moderate-penetrance genes compared with low-, recessive-, and uncertain-penetrance genes.
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tumors, levels of biallelic inactivation were higher, confirming
the importance of gPVs in disease development and potential
implications for targeted therapies. Additionally, even incidental
findings may have implications for cancer risk reduction and cas-
cade testing of at-risk family members given established associa-
tions of these genes with other cancers (40-42).

Among patients with LS, almost all had either an MSI-H tumor
or biallelic inactivation in tumors (POLE subtype); however, we
did observe 1 sporadic, CN-L EC in a patient with MSH6-associ-
ated LS. Although all patients with MLH1- or MSH2-associated LS
had MSI-H tumors, there was more heterogeneity in molecular
subgroup among MSH6- and PMS2-associated LS, reflecting phe-
notypic variability among LS patients (43) or limitations of MSI
assessment in EC (44), which we have previously described (45).

Our work supports the use of molecular classification (eg, CN-
H) in addition to traditional histological subtypes (eg, serous) in

predicting presence of gPVs. We verified previously described
observations of 100% biallelic inactivation in germline BRCA1-
associated ECs and high rates of biallelic inactivation in germline
BRCA2-associated ECs (23). Consistent with previous work, no
gPVs in BRCA1 were observed in patients with serous carcinomas,
and BRCA1-associated ECs in high-grade histologies were better
encompassed using CN-H molecular subgroups. The BRCA2-asso-
ciated ECs exhibited lower rates of biallelic inactivation and more
heterogeneity of molecular subgroups, with 2 MSI-H ECs that
appear unrelated. This is consistent with epidemiological data
showing differential risks of EC between BRCA1 and BRCA2 heter-
ozygotes (16,17).

We identified novel associations between gPVs in RAD51D and
PALB2 with EC and high rates of biallelic inactivation in tumors.
This has implications for treatment, as these ECs may exhibit a
homologous recombination–deficient phenotype and potentially

Table 2. Clinicopathologic information of endometrial cancer patients with germline pathogenic variants (gPVs) by biallelic inactivation
in tumorsa

Characteristic Monoallelic inactivation,
No. (%)

Biallelic inactivation,
No. (%)

Unclassifiable,
No. (%)

P (3 group) P (2 group,
mono vs
biallelic)(n¼126) (n¼70) (n¼20)

Age at diagnosis
Median (range), y 62 (34-86) 58 (40-80) 60 (31-69) .002 .002
Bivariate .061 .027
<50 y 11 (8.7) 14 (20) 3 (15)
�50 y 115 (91) 56 (80) 17 (85)

Self-identified race .11 .28
Asian 5 (4.3) 6 (9.2) 4 (20)
Black 6 (5.1) 5 (7.7) 1 (5.0)
White 106 (91) 54 (83) 15 (75)
Unknown 9 5 0

Ashkenazi Jewish ancestry >.99 >.99
Yes 21 (30) 14 (30) 5 (26)
No 50 (70) 32 (70) 14 (74)
Unknown 55 24 1

BMI
Median (range), kg/m2 30.0 (17.2-60.1) 28.2 (18.1-51.9) 24.8 (18.0-50.9) .017 .18
Overweight or obese .10 .62

BMI <25 kg/m2 33 (26) 21 (30) 10 (50)
BMI �25 kg/m2 93 (74) 48 (70) 10 (50)
Unknown 0 1 0

FIGO stage .003 .028
I and II 81 (68) 34 (52) 18 (90)
III and IV 38 (32) 32 (48) 2 (10)
Unknown 7 4 0

Histology .020 .025
Endometrioid G1 and G2 66 (54) 19 (32) 14 (70)
Endometrioid G3 16 (13) 13 (22) 0
Serous 12 (9.8) 5 (8.5) 2 (10)
Carcinosarcoma 8 (6.6) 11 (19) 0
Clear cell 6 (4.9) 3 (5.1) 2 (10)
De- or undifferentiated 2 (1.6) 3 (5.1) 0
Mixed or high-grade carcinoma NOS 12 (9.8) 5 (8.5) 2 (10)
Unknown 4 11 0

Molecular subtype <.001 .002
POLE 9 (7.1) 3 (4.3) 0 (0)
MSI-H 40 (32) 30 (43) 7 (35)
CN-H 32 (25) 27 (39) 1 (5.0)
CN-L 45 (36) 9 (13) 3 (15)
Unclassifiable 0 (0) 1 (1.4) 9 (45)

Penetrance <.001 <.001
High 15 (12) 45 (64) 13 (65)
Mod 25 (20) 10 (14) 1 (5.0)
Low 32 (25) 5 (7.1) 3 (15)
Recessive 28 (22) 7 (10) 1 (5.0)
Uncertain 26 (21) 3 (4.3) 2 (10)

a Table depicts data by patient. We observed 231 gPVs in 216 patients, with 15 patients having 2 gPVs. If gPVs were discordant, patients were classified as
biallelic if the biallelic gPV was high penetrance and thought to be the driver of EC development (n¼ 3). BMI ¼ body mass index; CN-L¼ copy number low; CN-
H¼ copy number high; FIGO¼ International Federation of Gynecology and Obstetrics; MSI-H¼microsatellite instability high; NOS¼not otherwise specified;
POLE¼polymerase epsilon.
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respond to targeted therapies, including PARP inhibitors. This
may also have implications for cancer prevention, as gPVs in
RAD51D and PALB2 are associated with increased risk of ovarian
cancer, and RRSO is recommended or considered in unaffected
carriers. The role of concurrent hysterectomy to prevent EC in
these situations is a topic that merits further study, particularly
given recommendations to consider this in BRCA mutation car-
riers (40). Other DNA repair genes such as ATM and CHEK2 were
more heterogenous in terms of biallelic inactivation, suggesting
tumor-specific drivers of disease. This may affect efficacy of
treatments including PARP inhibitors (46) and trials of novel
therapies and decreased radiation (NCT05010031), which are
being explored in this population. Future studies integrating
somatic and germline data with mutational and tumor homolo-
gous recombination–deficient signatures will be critical in deter-
mining which patients benefit the most from therapies.

Limitations of our study include potential ascertainment bias
given our large Ashkenazi Jewish population and bias toward
more aggressive, high-grade tumors, which may influence our
gPV rate. Reassuringly, our rates are similar to recent publica-
tions, suggesting this bias is minimized (15,19). Our cohort was
predominantly White, although 20% of patients identified as
non-White. Efforts to expand genetic testing in non-White
patients with EC and evaluate differences in germline findings
are underway, particularly given disparities in outcomes between
Black and White patients with EC (47,48). Although we found an

association between gPVs in RAD51D and PALB2 and EC, our sam-
ple size is small, and these findings must be verified in larger
studies. Future studies should evaluate the effects of these germ-
line findings on outcomes within specific molecular subtypes,
particularly as preliminary studies show variations in survival
potentially favoring germline-driven EC (49).

In conclusion, we observed a gPV rate of 13% in unselected
patients with EC, supporting universal germline assessment.
Although some gPVs were incidental, biallelic inactivation was
observed in many tumors, particularly with high-penetrance
MMR and homologous recombination gPV in MSI-H and CN-H
tumors. We identified associations with novel homologous
recombination genes, RAD51D and PALB2, in addition to BRCA1
and BRCA2 but did not find consistent biallelic inactivation in
other DNA repair genes (CHEK2 and ATM). Our findings may have
implications for cancer risk reduction and targeted therapies and
demonstrate the necessity of integrated tumor-normal evalua-
tion to assess for true germline drivers of EC.
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Figure 3. Germline pathogenic variants and loss of heterozygosity by molecular subtype. The figure depicts 231 germline pathogenic variants in at least
76 genes, monoallelic vs biallelic, grouped by molecular subtype. Higher levels of biallelic loss were observed in MSI-H and CN-H tumors compared with
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