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SUMMARY

The somatic mutations found in a cancer genome are imprinted by different mutational processes. Each
process exhibits a characteristic mutational signature, which can be affected by the genome architecture.
However, the interplay between mutational signatures and topographical genomic features has not been
extensively explored. Here, we integrate mutations from 5,120 whole-genome-sequenced tumors from 40
cancer typeswith 516 topographical features fromENCODE to evaluate the effect of nucleosome occupancy,
histonemodifications, CTCF binding, replication timing, and transcription/replication strand asymmetries on
the cancer-specific accumulation of mutations from distinct mutagenic processes. Most mutational signa-
tures are affected by topographical features, with signatures of related etiologies being similarly affected.
Certain signatures exhibit periodic behaviors or cancer-type-specific enrichments/depletions near topo-
graphical features, revealing further information about the processes that imprinted them. Our findings,
disseminated via the COSMIC (Catalog of Somatic Mutations in Cancer) signatures database, provide a
comprehensive online resource for exploring the interactions betweenmutational signatures and topograph-
ical features across human cancer.

INTRODUCTION

Cancer genomes are peppered with somatic mutations im-

printed by the activities of different endogenous and exogenous

mutational processes.1,2 Due to their intrinsic biophysical and

biochemical properties, each mutational process engraves a

characteristic pattern of somatic mutations, known as a muta-

tional signature.3 Our previous analyses encompassing

more than 5,000 whole-genome- and 20,000 whole-exome-

sequenced human cancers have revealed the existence of at

least 78 single-base substitution (SBS), 11 doublet-base substi-

tution (DBS), and 18 insertion or deletion (ID) mutational signa-

tures.4–7 Through statistical associations and further experi-

mental characterizations, etiology has been proposed for

approximately half of the identified signatures.4,8–15 Prior studies

have also explored the interactions between somatic mutations

imprinted by different mutational processes and the topograph-

ical features of the human genome for certain cancer types

and for a small subset of topographical features. However,

previously, there has been no comprehensive evaluation that

examined the effect of genome architecture and topographical

features on the accumulation of somatic mutations from different

mutational signatures across human cancer.

Early studies have shown that late-replicating regions and

condensed chromatin regions accumulate more mutations

when compared with early-replicating regions, actively tran-

scribed regions, and open chromatin regions.16–19 Subsequent

analyses of hundreds of cancer genomes have revealed that dif-

ferential DNA repair can explain variations in mutation rates

across some cancer genomes20 as well as that chromatin fea-

tures originating from the cell of origin, which gave rise to the

tumor, can affect mutation rate and the distribution of somatic

mutations.17 Recently, Morganella et al. examined the effect of

the genomic and the epigenomic architecture on the activity of

12 SBS signatures in breast cancer.21 These analyses demon-

strated that mutations generated by different mutational pro-

cesses exhibit distinct strand asymmetries and that mutational

signatures are differently affected by replication timing and

nucleosome occupancy.21 Pan-cancer exploration of strand

asymmetries was also conducted for different mutation types

acrossmultiple cancer types,22 as well as for different mutational

signatures.23 In particular, pan-cancer analyses of more than

3,000 cancers have revealed the strand asymmetries and repli-

cation timings of the 30 SBS mutational signatures from the

Catalog of Somatic Mutations in Cancer v.2 signatures database

(COSMICv.2).23 Similarly, more than 3,000 cancer genomes
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Figure 1. Strand asymmetries and strand-coordinated mutagenesis

(A) Transcription strand asymmetries of signatures of single-base substitutions (SBSs). Rows represent the signatures, where n reflects the number of cancer

types in which each signature was found. Columns display the six substitution subtypes based on the mutated pyrimidine base: C>A, C>G, C>T, T>A, T>C, and

T>G. SBS signatures with transcription strand asymmetries on the transcribed and/or the untranscribed strands with adjusted p values%0.05 (Fisher’s exact test

corrected for multiple testing using Benjamini-Hochberg) are shown in circles with blue and green colors, respectively. The color intensity reflects the odds ratio

between the ratio of real mutations and the ratio of simulated mutations, where each ratio is calculated using the number of mutations on the transcribed strand

and the number of mutations on the untranscribed strand. Only odds ratios above 1.10 are shown. Circle sizes reflect the proportion of cancer types exhibiting a

signature with specific transcription strand asymmetry.

(B) Replication strand asymmetries of SBS signatures. Rows represent the signatures, where n reflects the number of cancer types in which each signature was

found. Columns display the six substitution subtypes based on the mutated pyrimidine base: C>A, C>G, C>T, T>A, T>C, and T>G. SBS signatures with

replicational strand asymmetries on the lagging strand or on the leading strand with adjusted p values %0.05 (Fisher’s exact test corrected for multiple testing

using Benjamini-Hochberg) are shown in circles with red and yellow colors, respectively. The color intensity reflects the odds ratio between the ratio of real

mutations and the ratio of simulated mutations, where each ratio is calculated using the number of mutations on the lagging strand and the number of mutations

on the leading strand. Only odds ratios above 1.10 are shown. Circle sizes reflect the proportion of cancer types exhibiting a signature with specific replication

strand asymmetry.

(C) Transcription strand asymmetries of signature SBS4 across cancer types. Data are presented in a format similar to the one in (A).

(D) Replication strand asymmetries of signature SBS44 across cancer types. Data are presented in a format similar to the one in (B).

(E) Transcription strand asymmetries of signatures of doublet-base substitutions (DBSs) and of small insertions or deletions (IDs). Data are presented in a format

similar to the one in (A).

(F) Replication strand asymmetries of DBS and ID mutational signatures. Data are presented in a format similar to the one in (B).

(legend continued on next page)
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were used to elucidate the effect of nucleosome occupancy for

the 30 substitution signatures fromCOSMICv.2.24More recently,

a study has also shown the interplay between the three-dimen-

sional genome organization and the activity of certain mutational

signatures.25,26

Here, we report the most comprehensive evaluation of the

effect of nucleosome occupancy, histone modifications,

CCCTC-binding factor (CTCF) binding sites, replication timing,

transcription strand asymmetry, and replication strand asymme-

try on the cancer-specific accumulation of somatic mutations

from distinct mutational signatures. Our analysis leverages the

complete set of known COSMICv.3.3 signatures (78 SBS, 11

DBS, and 18 ID), and it examines 5,120 whole-genome-

sequenced cancers while simultaneously utilizing 516 unique tis-

sue-matched topographical features from the ENCODE project

(Table S1).27 In all analyses, the observed patterns of somatic

mutations are compared to background simulation models of

mutational signatures that mimic both the trinucleotide pattern

of these signatures as well as their mutational burden within

each chromosome in each examined sample (STAR Methods).

Our results confirm many of the observations previously

reported for strand asymmetry, replication timing, and nucleo-

some periodicity for the original COSMICv.2 signatures. Further,

the richer and larger COSMICv.3.3 dataset allowed us to

elucidate novel biological findings for some of these 30 SBS

signatures, revealing previously unobserved pan-cancer and

cancer-specific dependencies. Additionally, this resource pro-

vides the first-ever map of the genome topography of ID,

doublet-base, and another 24 substitution signatures in human

cancer. Moreover, our study is the first to examine the tissue-

specific effect of CTCF binding and 11 different histone

modifications on the accumulation of somatic mutations from

different mutational signatures. As part of the results, we provide

a global view of the topography of mutational signatures across

5,120 whole-genome-sequenced tumors from 40 types of hu-

man cancer, and we include cancer-type-specific examples.

As part of the discussion, we zoom in on two distinct case

studies: (1) the topography of different types of clustered so-

matic mutations and (2) using the topography of mutational

signatures to separate mutational signatures with similar pat-

terns. Lastly, the reported results are released as part of the

COSMICv.3.3 signatures database, https://cancer.sanger.ac.

uk/signatures, providing an unprecedented online resource for

examining the topography of mutational signatures within and

across human cancer types.

RESULTS

Transcription strand asymmetries
Transcription strand asymmetries have been generally attributed

to transcription-coupled nucleotide excision repair (TC-NER)

since bulky adducts (e.g., ones due to tobacco carcinogens) in

actively transcribed regions of the genome will be preferentially

repaired by TC-NER.28 Additionally, TC damage may also lead

to transcription strand asymmetry due to one of the strands be-

ing preferentially damaged during transcription.22

Mutational signatures with similar etiologies generally ex-

hibited consistent patterns of transcription strand asymmetries

across cancer types. Specifically, most signatures attributed to

exogenous mutational processes showed transcription strand

bias with mutations usually enriched on the transcribed strand

(Figures 1A and 1E). This included signatures SBS4/DBS2

(both previously attributed to mutagens in tobacco smoke),

SBS16 (alcohol consumption), SBS24 (aflatoxin), SBS29 (to-

bacco chewing), SBS25/SBS31/SBS35/DBS5 (prior chemo-

therapy), and SBS32 (prior treatment with azathioprine). Never-

theless, for some exogenous signatures, strand asymmetries

could differ between cancer types. For example, while transcrip-

tional asymmetries for C>A and T>A mutations from SBS4 were

observed across most cancer types, asymmetries for C>G mu-

tations were only observed in lung adenocarcinoma and cancers

of the head and neck (Figure 1C). Interestingly, C>T mutations

attributed to SBS4 had strand asymmetry only in lung adenocar-

cinoma. In contrast, mutational signatures due to direct damage

from ultraviolet light (viz., SBS7a/b/c/d and DBS1) were the only

known exogenous mutational processes to exhibit transcription

strand asymmetry with strong enrichment of mutations on the

untranscribed strand, consistent with damage from ultraviolet

light on cytosine (Figures 1A and 1E).

Transcription strand asymmetry with consistent enrichment of

mutations on the transcribed strand was also observed for

clock-like signature SBS5 and for multiple mutational signatures

with unknown etiology, including SBS12, SBS19, and ID14

(Figures 1A and 1E). Strand bias with preferences for the untran-

scribed strand was observed for signatures ID11 and SBS33

(both with unknown etiology). Lastly, other mutational signatures

exhibited transcription strand asymmetry in only a small subset

of cancer types (Figures 1A and 1E).

Mutational signatures in genic and intergenic regions
Except for SBS16 and ID11, all other signatures were enriched in

intergenic regions across most cancer types, with the enrich-

ment ranging from 1.30-fold (e.g., SBS24) to more than 2-fold

(e.g., SBS17a/b; Figures S1A–S1C). The observed depletion of

mutations in genic regions was not due to transcription strand

asymmetries, as correcting the asymmetries, by assigning the

number of mutations on both transcribed and untranscribed

strands to their highest value, resulted in only minor alterations

of the fold change increases (Figures S1D and S1E). Overall,

these results suggest that transcription strand asymmetry, usu-

ally attributed to the activity of TC-NER, does not account for the

high enrichment of somatic mutations in intergenic regions.

(G) Strand-coordinatedmutagenesis of SBS signatures. Rows represent SBS signatures and columns reflect the lengths, in numbers of consecutivemutations, of

strand-coordinated mutagenesis groups. SBS signatures with statistically significant strand-coordinated mutagenesis (adjusted p values % 0.05, z-test cor-

rected for multiple testing using Benjamini-Hochberg) are shown as circles under the respective group length with a minimum length of 5 consecutive mutations.

The size of each circle reflects the number of consecutive mutation groups for the specified group length normalized for each signature. The color of each circle

reflects the statistical significance of the number of subsequent mutation groups for each group length with respect to simulated mutations.

See also Figure S1.
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SBS16 and ID11 showed enrichment of mutation in genic re-

gions in liver and esophageal cancers, while ID11 was also

enriched in genic regions in cancers of the head and neck.

SBS16 has been previously associated with exposure to

alcohol29–31 and has been attributed to the activity of TC dam-

age.22 Prior studies have also associated ID11 with alcohol

consumption in esophageal cancers.7 Re-examining ID11 in the

current cohort of whole-genome-sequenced liver cancers, by

comparing the mutations attributed to ID11 in 32 heavy drinkers

with the mutations attributed to ID11 in 94 light drinkers, reveals

a 2-fold enrichment in heavy drinkers (p = 1.31 3 10�3; Mann-

WhitneyU test). Thisand thepriorassociations inesophageal can-

cers7 strongly suggest a similar exogenousmutational processes,

related to alcohol consumption, accounting for the enrichment of

mutation in genic regions for both signatures SBS16 and ID11.

Replication strand asymmetries
Replication strand biaswas consistently observed inmost signa-

tures attributed to aberrant or defective endogenous mutational

processes with strand bias either on the leading or on the lagging

strand (Figures 1B and 1F). Strong replication strand asymme-

tries with enrichment of mutations on the leading strand were

observed for signatures previously attributed to the defective

activity of polymerases, including (1) SBS10a/SBS10b/DBS3

found in samples with exonuclease domain mutations in DNA

polymerase epsilon (POLE); (2) SBS9, attributed to infidelity of

polymerase eta (POLH); and (3) SBS10c due to defective poly-

merase delta (POLD1). Interestingly, SBS28 (unknown etiology)

exhibited a strong replication strand bias when found at high

levels in POLE-deficient samples.

Mutational signaturesassociatedwithdefectiveDNAmismatch

repair exhibited statistically significant replication strand bias

either predominately on the leading strand (viz., SBS6) or on the

lagging strand (viz., SBS14, SBS15, SBS20, SBS21, SBS26,

SBS44, ID1). There were some minor inconsistencies of replica-

tion strand bias across cancer types. For example, SBS44 did

not have replication strand asymmetry forC>T, T>A, andT>Cmu-

tations in esophageal squamous cell carcinoma (Figure 1D).

Somatic mutations due to signatures SBS2 and SBS13, both

attributed to the aberrant behavior of the APOBEC3 family of de-

aminases,32 were found enriched on the lagging strand in all can-

cer types.This result is consistentwith theobservation that single-

stranded DNA formed during DNA replication on the lagging

strand is a major substrate for the APOBEC3 family of deami-

nases.33,34 Lastly, several other mutational signatures, most

with unknown etiology, exhibited replication strand bias within a

small set of cancer types (Figures 1B and 1F).

Strand-coordinated mutagenesis
Prior analyses have shown that certain types of mutations on the

same reference allele were observed on the same strand more

frequently than expected by chance.21,34,35 These strand-coor-

dinated clustered mutations usually arise due to damage on sin-

gle-stranded DNA, and they are often indicative of the formation

of hypermutable loci in the genome.33,34

SBS7a, attributed to ultraviolet (UV) light, attained the highest

strand-coordinated mutagenesis with lengths of subsequent

mutations up to 40 consecutive mutations (Figure 1G). In

contrast, other mutational signatures attributed to UV light,

mainly SBS7b/c/d, either did not exhibit or exhibited much lower

strand-coordinated mutagenesis. APOBEC3-attributed SBS2

and SBS13 showed strand-coordinated mutagenesis with as

many as 21 consecutive strand-coordinated mutations. Addi-

tionally, strand-coordinated mutations were observed for

SBS17b (unknown etiology), SBS10a/b (POLE deficiency),

SBS4 (tobacco smoking), SBS26 (defective mismatch repair),

and SBS28 (unknown etiology).

The effect of DNA replication timing
Consistent with prior reports,18,36–38 the aggregated set of so-

matic mutations was shown to be enriched in late-replicating

regions for most cancer types (Figure 2A). Specifically, from

the examined 40 cancer types, SBSs were found to be more

common in regions of the genome that undergo late replication

in 39/40 cancer types and were not associated with replication

only in uveal melanoma (Figure 2A). Similarly, DBSs and IDs

were enriched in late-replicating regions in 18/18 and 30/32 can-

cer types, respectively. Note that due to their lower mutational

burdens, we could confidently evaluate DBSs and IDs only in a

subset of cancer types. In agreement with the aggregated anal-

ysis, most mutational signatures imprinted somatic mutations

with an increased normalized mutational density from early- to

late-replicating regions (Figure S2). For example, SBS3 (defec-

tive homologous recombination) was enriched in late-replicating

regions in all 14 cancer types where the signature can be confi-

dently evaluated. Other examples include signatures DBS2 and

ID1, which were also consistently enriched in all examined can-

cer types (Figure 2B).

Nevertheless, at least seven mutational signatures were found

predominately enriched in early-replicating regions, including

ID17, likelydue toTOP2Amutations;SBS11,due to temozolomide

therapy; SBS16and ID11,both associatedwith alcohol consump-

tion; SBS6 and SBS15, both attributed to mismatch repair defi-

ciency; and SBS84 due to the aberrant activities of activation-

induced (AID) cytidinedeaminases (Figures2CandS2).Moreover,

multiple mutational signatures were generally unaffected by repli-

cation timing, including SBS7b (UV light); SBS20, SBS21, and

SBS44 (attributed to failure of mismatch repair); SBS30 (deficient

base excision repair); and SBS39 and ID12 (unknown etiology;

Figures 2D and S2). The lack of association with replication timing

for some of these mutational signatures can be potentially attrib-

uted to the activity of DNA translesion polymerases.39,40

Interestingly, a number ofmutational signatures exhibited can-

cer-type-specific associations with replication timing (Figures 2E

and Figure S2). For example, signature ID8 was enriched with

replication timing in 5 cancer types, was depleted in 6 cancer

types, and was unaffected by replication timing in 7 cancer

types (Figure 2E). Multiple etiologies have been associated

with ID8,4,41 including mutations resulting in K743N amino acid

change in TOP2A. All samples harboring such mutations in

TOP2A exhibited an enrichment of ID8 in early-replicating re-

gions (Figure 2E). The other cancer-type-specific mechanisms

resulting in different associations with replication timing for ID8

remain unknown.

Another notable example of cancer-type-specific associations

with replication timing is the APOBEC3-associated SBS13
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Figure 2. Interplay between replication timing and mutational signatures
Replication time data are separated into deciles, with each segment containing exactly 10% of the observed replication time signal (x axes). Normalizedmutation

densities per decile (y axes) are presented for early (left) to late (right) replication domains. Real data for SBS signatures are shown as blue bars, for DBS sig-

natures as red bars, and for small ID signatures as green bars. Simulated somatic mutations are shown as dashed lines. Where applicable, the total number of

evaluated cancer types for a particular mutational signature is shown on top of each plot (e.g., 18 cancer typeswere evaluated for ID8 in E). For each signature, the

number of cancer types where the mutation density increases with replication timing is shown next to the slanted up arrow (b; e.g., 5 cancer types for ID8).

Similarly, the number of cancer types where the mutation density decreases with replication timing is shown next to the slanted down arrow (a; e.g., 6 cancer

types for ID8). Lastly, the number of cancer types where themutation density is not affected by replication timing is shown next to the right-pointing arrow (➞; e.g.,

7 cancer types for ID8).

(A) All SBSs, DBSs, and IDs across all examined cancer types with each cancer type examined separately.

(B) Exemplar signatures consistently associated with late replication timing.

(C) Exemplar signatures consistently associated with early replication timing.

(D) Exemplar signatures consistently unaffected by replication timing.

(E) ID8 as a mutational signature inconsistently affected by replication timing.

(F) The effect of replication timing on APOBEC3-associated signature SBS13 in samples with low and high APOBEC3 mutational burden.

See also Figure S2.
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(Figure S2). SBS13 showed no dependence on replication timing

in 7/17 cancer types (viz., bladder, breast, uterus, cervix, ovary,

thyroid, and acute lymphocytic leukemia; Figure 2F). This

behavior is consistent with prior reports where SBS13was attrib-

uted to uracil excision of deaminated cytosine followed by pro-

cessing by DNA translesion polymerases in breast cancer.39,40

Surprisingly, in 10/17 cancer types, SBS13 was highly enriched

in late-replicating regions. Using a previously defined approach

for separating the cancer samples into ones where SBS13 is

not a hypermutator (low APOBEC3) and ones where SBS13 is

a hypermutator (high APOBEC3) revealed that the lack of depen-

dence on replication timing is predominately characteristic for

hypermutated samples (Figure 2F). This result indicates that

DNA translesion polymerases may play a significantly larger

role in APOBEC3 hypermutators than previously anticipated.

The effect of nucleosome occupancy
Nucleosomes are the basic packing units of chromatin, with

each nucleosome consisting of �147 base pair (bp) DNA wrap-

ped around a histone octamer with 60–80 bp linker DNAbetween

consecutive nucleosomes.42,43 Previous analyses have revealed

dependencies between mutational signatures operative in

breast cancer and nucleosome occupancy21 as well as a pan-

cancer periodicity of mutation rates within nucleosomes due to

multiple substitution signatures.24 However, beyond breast can-

cer, there has been no cancer-specific examination of the effect

of nucleosome occupancy on different mutational signatures.

Aggregated somatic mutations and mutations attributed to

most mutational signatures were depleted near nucleosomes

compared to simulated data that mimic the mutational land-

scapes of the examined cancer genomes (Figure 3A). Remark-

ably, the majority of SBS, DBS, and ID mutational signatures

were similarly affected by nucleosome occupancy across most

cancer types (Figure S3). Some signatures were consistently en-

riched in the vicinity of nucleosomes. For example, clock-like

signature SBS1 exhibited a pattern closely mimicking simulated

data and showing a higher number of mutations at nucleosomes

in 36/36 cancer types, including cancers of the lung, head and

neck, liver, and esophagus (Figure 3B). In contrast, some signa-

turesweremarkedly different from the simulateddata (FigureS3),

including signature DBS2, which was consistently depleted

across 13/13 cancer types (Figure 3C). Moreover, some signa-

tures were depleted in nucleosomes and, strikingly, appeared

at linker DNA (Figure S3). For example, clock-like signature ID1

was depleted when compared to simulated data, and it exhibited

depletion in nucleosomes in 24/24 of the examined cancer types

(Figure 3D). The mutations engraved by most flat mutational sig-

natures (e.g., SBS5, SBS8, SBS40) were generally unaffected by

nucleosomes (Figure S3).

Different types of periodicities of mutation rates around the

nucleosome structure were observed for signatures associated

with tobacco smoking (SBS4 and ID3), UV light (SBS7a/b/c/d),

POLE deficiency (SBS10a), aristolochic acid (SBS22), and reac-

tive oxygen species (SBS18, SBS36, and SBS38; Figures 3E and

S3). Interestingly, signatures SBS17a/b also showed similar pe-

riodic dependencies (Figure 3E), providing further circumstantial

evidence for the hypothesis that SBS17a/b may also be due to

reactive oxygen species damage of the deoxyribonucleoside

triphosphate pools.23,44–48 With the exception of signatures

SBS22 and ID3, all other periodic signatures exhibited enrich-

ment of mutations at nucleosomes (Figures 3E and 3G). Further,

for most signatures, periodicity of mutation rates was observed

in each cancer type where the signature was operative (Fig-

ure S3). Nevertheless, signature SBS4 showed strong periodicity

in cancers of the lung and head and neck but not in cancers of

the liver or esophagus (Figure 3F). Similarly, signature ID3 ex-

hibited periodic behavior only in cancers of the lung but not in

any other cancer type (Figure 3G).

The effect of CTCF binding
CTCF is a multi-purpose, sequence-specific DNA-binding pro-

tein with an essential role in transcriptional regulation, somatic

recombination, and chromatin architecture.49 The human

genome harbors many CTCF binding sites with prior studies re-

porting that mutations due to UV light are enriched in CTCF bind-

ing sites.50

Somatic mutations exhibited clear patterns of both enrich-

ment and/or periodicity for multiple mutational signatures and

CTCF binding sites (Figure 4). While some signatures were

consistently depleted at CTCF biding sites across the majority

of cancer types when compared to simulated data (SBS1,

SBS9, SBS10a/b, SBS15, SBS37, SBS84, and SBS85), others

were commonly enriched (SBS3, SBS5, SBS7a/b/d, SBS12,

SBS17a/b, SBS18, SBS22, and SBS40; DBS1; ID5, ID6, ID8,

and ID9; Figure 4A).

Aggregated SBSs exhibited an inconsistent behavior across

cancer types with enrichment in some cancers (e.g., liver can-

cers) and depletions in others (e.g., lymphomas). In contrast,

IDs were enriched at CTCF binding sites in themajority of cancer

types (Figure 4A). Remarkably, the effect of CTCF occupancy

tended to be also consistent for many signatures with similar

etiologies. Strong periodicities of mutation rates around CTCF

binding sites were observed for UV-associated signature

SBS7a but not for UV-associated signatures DBS1 and

SBS7b/c/d (Figure 4B).

Mutations due to SBS9, associated with defective POLH-

driven replication errors, and signatures SBS10a/b, found in

samples with mutations in POLE and/or POLD1, were strikingly

depleted at CTCF binding sites. Signature SBS15, associated

with microsatellite instability, was strongly depleted at CTCF

binding sites (Figure 4A).

Only one of the clock-like signatures, SBS1, exhibited a

depletion of mutations at CTCF binding sites (Figure 4A), while

simulated data indicated that SBS1 should be enriched at

these sites (Figure 4B). Signature SBS3, attributed to defective

homologous recombination, was highly elevated in CTCF bind-

ing sites for breast, ovarian, stomach, and esophageal cancers.

Signatures SBS17a/b exhibited a striking enrichment at CTCF

binding sites in all cancer types with a sufficient number of

mutations from each signature (Figure 4A). SBS17a showed

enrichment in stomach and esophageal cancers, while

SBS17b showed enrichment for stomach, esophageal, breast,

pancreatic cancers, and non-Hodgkin’s lymphomas. In

contrast, simulated data indicate that CTCF binding should

have no effect on the accumulation of mutations from signa-

tures SBS17a/b (Figure 4B).
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The effect of histone modifications
Each nucleosome consists of four pairs of core histones: H2A,

H2B, H3, andH4. Post-translational modifications of histone tails

play a key role in regulating DNA replication, gene transcription,

and DNA damage response.51 To evaluate the effect of histone

modifications on the accumulation of mutations from different

mutational signatures, we mapped the depletion or the enrich-

ment of mutations compared to simulated data in the context

of the tissue-specific positions of 11 histone modifications: (1)

H2AFZ, a replication-independent member of the histone H2A

family that renders chromatin accessible at enhancers and pro-

moters, regulating transcriptional activation and repression52; (2)

H3K4me1, a histone mark often associated with enhancer activ-

ity53; (3) H3K4me2, a histone post-translational modification

Figure 3. Relationship between mutational signatures and nucleosome occupancy

In all cases, solid lines correspond to real somatic mutations, with blue solid lines reflecting SBSs, red solid lines reflecting DBSs, and green solid lines reflecting

small IDs. Simulated somatic mutations are shown as dashed lines. Solid lines and dashed lines display the average nucleosome signal (y axes) along a 2 kb

window (x axes) centered at the mutation start site for real and simulated mutations, respectively. The mutation site is annotated in the middle of each plot and

denoted as 0. The 2 kb window encompasses 1,000 base pairs 50 adjacent to each mutation as well as 1,000 base pairs 30 adjacent to each mutation. Where

applicable, the total number of similar and considered cancer types using an X/Y format, with X being the number of cancer types where a signature has similar

nucleosome behavior (Pearson correlationR 0.5 and adjusted p value% 0.05, z-test corrected formultiple testing using Benjamini-Hochberg) and Y representing

the total number of examined cancer types for that signature. For example, signature ID3 in (G) annotated with 6/9 reflects a total of 9 examined cancer types with

similar nucleosome behavior observed in 6 cancer types.

(A) All SBSs, DBSs, and IDs across all examined cancer types with each cancer type examined separately.

(B–D) The nucleosome occupancy of signatures SBS1 (B), DBS2 (C), and ID1 (D) are shown across all cancer types as well as within cancers of the lung, head and

neck, liver, and esophagus.

(E) Signatures with consistent periodicities of mutation rates around the nucleosome.

(F and G) Tobacco-associated SBS4 (F) and ID3 (G) exhibiting periodicities of mutation rates only in certain cancer types.

See also Figure S3.
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enriched in cis-regulatory regions, including both enhancers and

promoters54; (4) H3K4me3, a post-translational modification en-

riched in active promoters near transcription start sites55; (5)

H3K9ac, associated with active gene promoters and active tran-

scription56; (6) H3K9me3, a silencer and a typical mark of consti-

tutive heterochromatin57; (7) H3K27ac, a histone modification

generally contained at nucleosomes flanking enhancers55; (8)

H3K27me3, which is repressive and associated with silent

genes58; (9) H3K36me3, associated with transcribed regions

and playing a role in regulating DNA damage repair59; (10)

H3K79me2, detected in the transcribed regions of active

genes60; and (11) H4K20me1, found in gene promoters and

associated with gene transcriptional elongation and transcrip-

tion activation.61

Aggregated substitutions, dinucleotides, and IDs exhibited

dissimilar behavior for different histone modifications across

cancer types (Figure S4). Aggregated substitutions were pre-

dominately depleted around H2AFZ, H3K4me2, H3K4me3, and

H3K27ac in approximately half of the examined cancer types

(Figure S4A). Aggregated doublets and IDs did not have any

clear pan-cancer preference but showed cancer-type-specific

enrichments and depletions (Figures S4B and S4C). In contrast,

the majority of mutational signatures had generally similar

behavior in the vicinity of different histone modifications,

revealing that histone modifications have similar effects on

mutagenesis across cancer types (Figure S4). Most SBS muta-

tional signatures were either unaffected or were depleted

near histone marks (Figure S4A). Notable exceptions were

APOBEC3-associated signatures SBS2 and SBS13, AID-asso-

ciated signatures SBS84 and SBS85, and POLH-attributed

SBS9, which were generally enriched near most histone modifi-

cations (Figure S4A). Doublet signatures DBS1, DBS2, DBS3,

DBS4, and DBS5 were also predominately depleted near most

histone marks (Figure S4B). In contrast, signatures DBS7,

DBS9, and DBS11 were highly enriched near most histone

marks. Most ID mutational signatures were either unaffected or

very highly enriched near histone marks (Figure S4C), with the

only exceptions being depletions of (1) ID1 and ID6 near H2AZ,

(2) ID3 in the vicinity of H3K4me3, (3) ID5 near H3K27me3, and

(4) ID14 in the vicinity of H3K36me3. While enrichments and de-

pletions of somatic mutations in the vicinity of histone marks

were commonly observed for different mutational signatures

(Figures S4A–S4C), there was no specific pattern of mutations

within 1,000 bp for any of the examined histone modifications.

Exemplars of typically observed patterns of enrichments, deple-

tions, or no changes around different histone modifications are

provided for signatures SBS7a and ID1 across several histone

modifications (Figure S5D).

Next, we examine two mutational signatures that exhibited

inconsistent enrichments and depletions near specific histone

marks. Clock-like signature SBS1 was consistently depleted

across cancer types for multiple histone marks, including

H3K9me3 (Figure 5A). Nevertheless, SBS1 exhibited enrichment

of mutations near H3K9me3 in two cancer types of the central

nervous system, depletion of mutations near H3K9me3 in three

hematological malignancies, and no effect in all other solid tumor

types (Figure 5A). Similarly, signature ID1 exhibited dissimilar

behavior near H3K27ac with enrichments in medulloblastoma

and lymphoma, depletions in stomach and prostate cancer,

and no change in most other cancer types (Figure 5B).

DISCUSSION

Our analysis provides a comprehensive resource that maps the

effects of topographical genomic features on the accumulation

of somatic mutations from distinct mutational signatures. The re-

ported results confirmed many of the prior observations for

strand asymmetry, replication timing, and nucleosome period-

icity for some of the original 30 COSMICv.2 SBS signa-

tures.21,23,24 The examined larger dataset provided us with a

greater resolution to identify previously unobserved pan-cancer

and cancer-specific dependencies for some of these 30 signa-

tures as well as to reveal the effect of genome architecture on

the accumulation of another 46 mutational signatures across hu-

man cancer. Importantly, this report also provides the first-ever

examination of the tissue-specific effect of CTCF binding and

11 different histone modifications on the accumulation of so-

matic mutations from different mutational signatures. In addition

to the comprehensive global view in the results section, in this

discussion, we zoom in on two specific case studies to further

illustrate the power of using this resource for examining the

topography of mutational signatures.

First, analysis of SBS28 in POLE-deficient samples (POLE�)
and POLE proficient samples (POLE+) revealed a distinct

behavior (Figure 6). While the trinucleotide patterns of SBS28

in POLE+ and POLE� samples were similar (cosine similarity:

0.96), SBS28 in POLE� samples accounted for 97.7%mutations

of all SBS28 mutations, and it exhibited a clear enrichment in

late-replicating regions as well as depletions at nucleosomes

and at CTCF binding sites (Figures 6B–6D and 6F). Moreover,

Figure 4. Relationship between mutational signatures and CTCF binding sites
(A) Enrichments and depletions of somatic mutations within CTCF binding sites. Heatmaps display only mutational signatures and cancer types that have at least

one statistically significant enrichment or depletion of somatic mutations attributed to signatures of either SBSs, DBSs, or small IDs. Red colors correspond to

enrichments of real somatic mutations when compared to simulated data. Blue colors correspond to depletions of real somatic mutations when compared to

simulated data. The intensities of red and blue colors reflect the degree of enrichments or depletions based on the fold change.White colors correspond to lack of

data for performing statistical comparisons (e.g., signature not being detected in a cancer type). Statistically significant enrichments and depletions are annotated

with an asterisk (*; adjusted p value % 0.05, z-test combined with Fisher’s method and corrected for multiple testing using Benjamini-Hochberg).

(B) The top three panels reflect average CTCF occupancy signal for all SBSs, DBS, and IDs across all examined cancer types. Bottom panels reflect all somatic

mutations attributed for several exemplar mutational signatures across all cancer types. In all cases, solid lines correspond to real somatic mutations, with blue

solid lines reflecting SBSs, red solid lines reflecting DBSs, and green solid lines reflecting IDs. Solid lines and dashed lines display the average CTCF binding

signal (y axes) along a 2 kbwindow (x axes) centered at themutation start site for real and simulatedmutations, respectively. Themutation start site is annotated in

the middle of each plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 50 adjacent to eachmutation as well as 1,000 base pairs 30 adjacent to
each mutation.
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SBS28 in POLE� samples showed a strong replication strand

bias on the leading strand and exhibited a strand-coordinated

mutagenesis with as many as 11 consecutively mutated substi-

tutions (Figures 6E and 6G). In contrast, SBS28 in POLE+ sam-

ples were enriched in early replication regions, lacked depletion

of mutations at nucleosomes or CTCF binding sites, had weak

replication strand bias on the lagging strand, and did not exhibit

much of a strand-coordinated mutagenesis (Figure 6). Based on

these topographical differences, we have now split SBS28 into

two distinct signatures: (1) SBS28a due to POLE deficiency

found in ultra-hypermutate colorectal and uterine cancers and

(2) SBS28b with unknown etiology found in lung and stomach

cancers.

Second, our analyses revealed striking differences in topo-

graphical features of clustered and non-clustered somatic mu-

tations in 288 whole-genome-sequenced B cell malignancies.4

In particular, the topographical behaviors of SBSs were exam-

ined after separating them into non-clustered mutations, diffuse

hypermutation of substitutions termed omikli,62 and longer clus-

ters of strand-coordinated substitutions termed kataegis.34,35,63

In contrast to most cancer types, where omikli and kataegis are

predominately generated by APOBEC3 deaminases,64 in B cell

malignancies, these clustered events are almost exclusively im-

printed by the activity of AID.64 Further, the overall pattern of

non-clustered mutations was very different than the ones of

omikli or kataegis. A representative example is provided using

a single malignant B cell lymphoma (Figure 7A) where non-clus-

tered and clustered mutations have very different trinucleotide

patterns (Figures 7B–7D). Non-clustered mutations exhibited

different topographical features when compared to omikli or ka-

taegis. Specifically, while non-clustered mutations had some

minor periodicity in regard to nucleosome occupancy, such

periodicity was not observed for any type of clustered events

(Figure 7E). Similarly, non-clustered mutations were slightly

depleted around CTCF binding sites, while omikli and kataegis

were very highly depleted (Figures 7F and 7H). Further, non-

clustered and omikli events were clearly enriched in late replica-

tion regions, while kataegis was highly enriched in early replica-

tion regions (Figure 7G). Distinct patterns of enrichments were

also observed for both omikli and kataegis mutations in the vi-

cinity of promoter and enhancer sites delineated by histone

marks of H3K4me3, H3K9ac, H3K27ac, H3K36me3, and

H4K20me1(Figure 7H). Only very minor differences were

observed for transcription or replication strand asymmetries

between clustered and non-clustered somatic mutations

across the 288 whole-genome-sequenced B cell malignancies

(Figure S5).

In summary, in this resource, we have performed a compre-

hensive topography analysis of mutational signatures encom-

passing 82,890,857 somatic mutations in 5,120 whole-

genome-sequenced tumors integrated with 516 tissue-matched

topographical features from the ENCODEproject. Our evaluation

encompassed examining the effects of nucleosome occupancy,

histone modifications, CTCF binding sites, replication timing,

transcription strand asymmetry, and replication strand asymme-

try on the accumulation of somatic mutations from more than

70 distinct mutational signatures. The results from these ana-

lyses have been provided as an online resource as a part of

COSMIC signatures database, https://cancer.sanger.ac.uk/

signatures/, where researchers can explore each mutational

signature as well as each topographical feature in a cancer-spe-

cific manner.

Limitations of the study
As in the majority of previous examinations, the performed

topography analyses relied on previously generated ENCODE

experimental datasets for the presence or absence of each topo-

graphical feature. Thus, these topographical features were map-

ped in samples unrelated to the examined cancers and do not

provide a perfect representation of the genome topography

throughout the lineage of a cancer cell. Future studies will be

required to evaluate whether genome topography changes dur-

ing cancer evolution and whether these changes have any effect

on the accumulation of mutations from different mutational

processes.
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Figure 5. Exemplar relationships between mutational signatures and histone modifications
The effect of histone modifications is shown for signatures SBS1 (A) and ID1 (B). For each signature, an evaluation was made for each of the 11 histone marks

across all cancer types with sufficient numbers of somatic mutations with results presented as circles. Each circle is separated in red, blue, and gray segments

proportional to the cancer types in which the signature has a specific behavior. A red segment in a circle reflects the signature being enriched in the vicinity of a

histone modification (adjusted p value % 0.05, z-test combined with Fisher’s method and corrected for multiple testing using Benjamini-Hochberg and at least

5% enrichment). A blue segment in a circle reflects the signature being depleted in the vicinity of a histonemodification (adjusted p value% 0.05, z-test combined

with Fisher’s method and corrected for multiple testing using Benjamini-Hochberg and at least 5% depletion). A gray segment in a circle corresponds to neither

depletion nor enrichment of the signature in the vicinity of a histone modification. The figure zooms in on the effect of H3K9me3 on SBS1 (A) and of H3K27ac on

ID1 (B). Red colors correspond to enrichments of real somatic mutations when compared to simulated data. Blue colors correspond to depletions of real somatic

mutations when compared to simulated data. The intensities of red and blue colors reflect the degree of enrichments or depletions based on the fold change. We

further zoom in on the patterns of mutations around H3K9me3 and H3K27ac. Solid lines correspond to real somatic mutations, with blue solid lines reflecting

SBSs and green solid lines reflecting IDs. Solid lines and dashed lines display the average histonemark signal (y axes) along a 2 kbwindow (x axes) centered at the

mutation start site for real and simulatedmutations, respectively. Themutation start site is annotated in themiddle of each plot and denoted as 0. The 2 kbwindow

encompasses 1,000 base pairs 50 adjacent to each mutation as well as 1,000 base pairs 30 adjacent to each mutation.

See also Figure S4.
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Figure 6. Topography of signature SBS28 in POLE-deficient (POLE�) and POLE-proficient (POLE+) samples

(A) Mutational patterns of signature SBS28 in POLE� and POLE+ samples displayed using the conventional 96 mutational classification schema for SBSs.

(B) Nucleosome occupancy of SBS28 in POLE� and POLE+ samples. Blue solid lines and gray dashed lines display the average nucleosome signal (y axes) along

a 2 kb window (x axes) centered at the mutation start site for real and simulated mutations, respectively. The mutation start site is annotated in the middle of

each plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 50 adjacent to each mutation as well as 1,000 base pairs 30 adjacent to each

mutation.

(C) CTCF occupancy of SBS28 in POLE� and POLE+ samples. Blue solid lines and gray dashed lines display the average CTCF binding signal (y axes) along a

2 kb window (x axes) centered at the mutation start site for real and simulated mutations, respectively. The mutation start site is annotated in the middle of

each plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 50 adjacent to each mutation as well as 1,000 base pairs 30 adjacent to each

mutation.

(D) Replication timing of SBS28mutations in POLE� and POLE+ samples. Replication time data are separated into deciles, with each segment containing exactly

10% of the observed replication time signal (x axes). Normalized mutation densities per decile (y axes) are presented for early (left) to late (right) replication

domains. Normalizedmutation densities of real somaticmutations and simulated somaticmutations from early- to late-replicating regions are shown as blue bars

and dashed lines, respectively.

(E) Replication strand asymmetry of SBS28 mutations in POLE� and POLE+ samples. Bar plots display the number of mutations accumulated on the

lagging strand and on the leading strand for six substitution subtypes based on the mutated pyrimidine base C>A, C>G, C>T, T>A, T>C, and T>G in red

and yellow colors, respectively. Simulated mutations on lagging and leading strands are displayed in shaded bar plots. Statistically significant strand

asymmetries are shown with stars: adjusted p values: *p % 0.05; **p % 0.01; ***p % 0.001 (Fisher’s exact test corrected for multiple testing using

Benjamini-Hochberg).

(F) Enrichments and depletions of SBS28 somatic mutations in POLE� and POLE+ samples within CTCF binding sites, histone modifications, and

nucleosome occupied regions. Red colors correspond to enrichments of real somatic mutations when compared to simulated data. Blue colors correspond

to depletions of real somatic mutations when compared to simulated data. The intensities of red and blue colors reflect the degree of enrichments or

depletions based on the fold change. White colors correspond to lack of data for performing statistical comparisons. Statistically significant enrichments

and depletions are annotated with an asterisk (*; adjusted p value % 0.05, z-test combined with Fisher’s method and corrected for multiple testing using

Benjamini-Hochberg).

(G) Strand-coordinated mutagenesis of SBS28mutations in POLE� and POLE+ samples. Rows represent SBS28 signature in POLE� and POLE+ samples across

all cancer types and columns reflect the lengths, in numbers of consecutivemutations, of strand-coordinatedmutagenesis groups. Statistically significant strand-

coordinated mutagenesis (adjusted p value % 0.05, z-test corrected for multiple testing using Benjamini-Hochberg) are shown as circles under the respective

group lengthwith a length starting from 2 to 11 consecutivemutations. The size of each circle reflects the number of consecutivemutation groups for the specified

group length normalized for each SBS28 signature in POLE� and POLE+ samples. The color of each circle reflects the statistical significance of the number of

subsequent mutation groups for each group length with respect to the simulated mutations using �log10 (q value).
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Figure 7. Topography of non-clustered, omikli, and kataegis substitutions across 288 whole-genome-sequenced B cell malignancies

(A) A rainfall plot of an example B cell malignancy sample, MALY-DE_SP116612, depicting the intra-mutational distance (IMD) distributions of substitutions

across genomic coordinates. Each dot represents the minimum distance between two adjacent mutations. Dots are colored based on their corresponding

classifications. Specifically, non-clustered mutations are shown in gray, DBSs in red, multi-base substitutions (MBSs) in black, omikli events in green, kataegis

events in orange, and all other clustered events in blue. The red line depicts the sample-dependent IMD threshold for each sample. Specific clustered mutations

may be above this threshold due to corrections for regional mutation density.

(B–D) The trinucleotide mutational spectra for the different catalogs of non-clustered, omikli, and kataegis mutations for the exemplar sample (DBSs and MBSs

are not shown).

(E) Nucleosome occupancy of non-clustered, omikli, and kataegis mutations of B cell malignancies. Blue solid lines and gray dashed lines display the average

nucleosome signal (y axes) along a 2 kbwindow (x axes) centered at themutation start site for real and simulatedmutations, respectively. Themutation start site is

annotated in themiddle of each plot and denoted as 0. The 2 kbwindow encompasses 1,000 base pairs 50 adjacent to eachmutation aswell as 1,000 base pairs 30

adjacent to each mutation.

(F) CTCF occupancy of non-clustered, omikli, and kataegis mutations of B cell malignancies. Blue solid lines and gray dashed lines display the average CTCF

signal (y axes) along a 2 kbwindow (x axes) centered at themutation start site for real and simulatedmutations, respectively. Themutation start site is annotated in

the middle of each plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 50 adjacent to eachmutation as well as 1,000 base pairs 30 adjacent to
each mutation.

(legend continued on next page)
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

PCAWG project (core WGS dataset)

Somatic Mutations and Mutational

Catalogs from PCAWG Project

Alexandrov et al.4 https://www.synapse.org/

#!Synapse:syn11804058

https://www.synapse.org/

#!Synapse:syn11804040

PCAWG project (additional WGS dataset)

VCF like sample files and SBS signatures

in samples

Alexandrov et al.4 https://www.synapse.org/

#!Synapse:syn11801872

https://www.synapse.org/

#!Synapse:syn11801496

MUTOGRAPHS project Moody et al.7 https://doi.org/10.6084/

m9.figshare.22744733

Deposited data

Topography of Mutational Signatures

in Human Cancer

This paper COSMIC Signatures v3.3 https://cancer.

sanger.ac.uk/signatures

Software and algorithms

SigProfilerMatrixGenerator (v1.1.31) Bergstrom et al.65 https://github.com/AlexandrovLab/

SigProfilerMatrixGenerator

SigProfilerSimulator (v1.1.2) Bergstrom et al.66 https://github.com/AlexandrovLab/

SigProfilerSimulator

SigProfilerExtractor (v1.1.0) Islam et al.5 https://github.com/AlexandrovLab/

SigProfilerExtractor

SigProfilerClusters (v1.0.11) Bergstrom et al.63 https://github.com/AlexandrovLab/

SigProfilerClusters

SigProfilerTopography (v1.0.70) This paper https://github.com/AlexandrovLab/

SigProfilerTopography

Cancer-type specific and across all

cancer-types combined topography

analysis

This paper https://github.com/AlexandrovLab/

SigProfilerTopographyCombined

bigWigToWig tool (v446 April 2023) Kent et al.67 http://hgdownload.cse.ucsc.edu/admin/exe/

liftOver tool (v446 April 2023) Kent et al.67 http://hgdownload.cse.ucsc.edu/admin/exe/

Python (v3.7.0) Python Software Foundation https://www.python.org/

Python package: pandas (v1.1.5) McKinney68 https://pandas.pydata.org

Python package: NumPy (v1.20.1) Harris et al.69 https://numpy.org

Python package: matplotlib (v3.4.2) Hunter70 https://matplotlib.org

Python package: SciPy (v1.6.3) Virtanen et al.71 https://scipy.org

Python package: statsmodels (v0.12.2) Seabold and Perktold72 https://www.statsmodels.org

Other

Transcription factors (TF) binding sites datasets

(TF ChIP-seq assays)

ENCODE Project htts://www.encodeproject.org/

Exact file name(s) for each utilized

dataset is available as part of Table S1

Histone modifications sites datasets

(Histone ChIP-seq assays)

ENCODE Project https://www.encodeproject.org/

Exact file name(s) for each utilized

dataset is available as part of Table S1

Nucleosome occupancy datasets

(MNase-seq assays)

ENCODE Project https://www.encodeproject.org/

Exact file name(s) for each utilized

dataset is available as part of Table S1

Replication timing datasets

(Repli-seq assays)

ENCODE Project https://www.encodeproject.org/

Exact file name(s) for each utilized

dataset is available as part of Table S1
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Ludmil B. Alexandrov

(L2alexandrov@health.ucsd.edu).

Materials availability
This study did not generate new unique reagents beyond the analyzed data and the developed source code (see below).

Data and code availability
d All topographical data and figures regarding topography of mutational signatures in human cancer generated in this study have

been deposited at COSMIC, Catalog of Somatic Mutations in Cancer (https://cancer.sanger.ac.uk/signatures/), through

COSMIC Signatures v3.3, released on May 27th, 2022 and are currently publicly available.

d All original Python code has been deposited on GitHub and is publicly available as of the date of publication. Links to GitHub

repositories are listed in the key resources table.

d This paper analyses existing publicly available datasets. Accession numbers for the datasets are listed in the key resources

table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Simulating synthetic cancer datasets
Synthetic cancer datasets were simulated using SigProfilerSimulator.66 Briefly, the tool randomly generated single base substitutions

(SBSs), doublet base substitutions (DBSs), and small insertions and deletions (IDs) while maintaining the patterns of the original so-

matic mutations in each sample at a preselected resolution. Simulations were performed 100 times for each examined cancer

genome while maintaining the mutational burden on each chromosome in each sample. All simulations were performed using

SBS-96, DBS-78, and ID-83 mutational classification schemas.65 Briefly, SBS-6 represents single base substitutions in 6 mutational

classes (C>A, C>G, C>T, T>A, T>C, T>G) considering the pyrimidine base of the Watson-Crick base-pair for each somatic mutation.

SBS-96 is a further expansion of SBS-6 mutational classification by adding the immediate 50 and-30 adjacent bases for each somatic

mutation within the representation of every mutation. DBS-78 catalogs doublet-base substitutions in 78 mutational channels using

the maximum pyrimidine context of the Watson-Crick base-pairs,65 whereas ID-83 classifies small insertions and deletions into 83

mutational channels by considering the size of the ID event and the repeat size surrounding the insertion or deletion event.65

Assigning signature probabilities to somatic mutations
The performed topography analyses are based on the assignment of signature probabilities to each individual somatic mutation. For

this purpose, SigProfilerExtractor was utilized for de novo extraction of mutational signatures and decomposition of de novo

extracted signatures to the set of reference COSMIC mutational signatures.4,5 After Poisson resampling and normalization of the

original mutational matrix for each replicate, SigProfilerExtractor performs nonnegative matrix factorization for multiple iterations

to identify an optimal solution. Briefly, SigProfilerExtractor identifies the optional decomposition rank k by performing decomposi-

tions with different ranks and applying consensus clustering to identify a stable solution that best explains the underlying data.4,5

After extracting de novo mutational signatures, each de novo signature is matched to a COSMIC mutational signature and the

COSMIC signatures are assigned using a penalized nonnegative least square approach.4,5 Moreover, SigProfilerExtractor automat-

ically assigns a probability for each operative signature to generate every individual mutation within all examined samples.4,5

Matching cancer types with ENCODE datasets
Experimental data were downloaded from ENCODE for each evaluated topographical feature (Table S1). When multiple ENCODE

datasets were used for the same topographical feature in a cancer type, analyses were performed for all ENCODE datasets and

the results were averaged across the examined datasets. Any ENCODE genomic coordinates reported using GRCh38 annotations

were first remapped to GRCh37 annotations using liftOver with exclusion of any ambiguously mapping regions.67 ENCODE files in

bigWig file format were converted into wig files using bigWigToWig file format conversion software.67

We analyzed a total of 82,890,857 somatic mutations (79,269,539 single base substitutions, 429,179 doublet-base substitutions,

and 3,192,139 small insertions and deletions) from 40 cancer types derived using 5,120 whole-genome sequenced samples from

PCAWG, PCAWG other, and MUTOGRAPHS projects.4,7 Cancer types were matched to the closest available ENCODE datasets

(Table S1). Topography analyses were performed both across all cancer types as well as within each individual cancer-type. The

global pan-cancer analyses are shown in the manuscript while all individual cancer-type analyses are available through the

COSMIC database: https://cancer.sanger.ac.uk/signatures/
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Annotating somatic mutations based on cellular transcription
Somaticmutationswere called with respect to + strand of the reference genome and annotated in regard to the pyrimidine base of the

mutated base pair.65 Specifically, SigProfilerMatrixGenerator65 was used for examining transcriptional strand asymmetry for single

base substitutions, doublet base substitutions, and small insertions and deletions. The tool evaluates whether a mutation occurs on

the transcribed or the non-transcribed strand of well-annotated protein coding genes of the human reference genome. Mutations

found in the transcribed regions of the human genome are further subclassified as transcribed or un-transcribed. Any mutations

in bidirectionally transcribed regions were ignored in the current analysis. Additionally, mutation found outside the transcribed re-

gions of the human genome are subclassified as non-transcribed. In all cases, mutations were oriented based on the reference strand

and their pyrimidine context.

Annotating somatic mutations based on cellular replication
For each cancer type of interest, genomic regions were annotated either as being on the leading or being on the lagging strand using

our previously developed approach.21 Briefly, analyses were performed for tissue-matched wavelet-smoothed replication timing

signal data incorporated with valleys (replication termination zones) and peaks (replication initiation zones) data. Valleys and peaks

were sorted with respect to their genomic coordinate in ascending order. Each consecutive stretches of DNA of at least 10 kilobases

long with positive slope corresponded to leading strand regions on the positive strand, whereas negative slope provided lagging

strand regions on the positive strand. We discarded the latest 25 kilobases of the replication termination zones to be stringent in

our annotations. Having annotated genome regions as leading regions (+slope) and lagging regions (– slope) on the positive strand,

we automatically acquired leading regions (- slope) and lagging regions (+slope) on the negative strand. Mutations were counted as

being on leading strand or lagging strand based on their occupancy in a leading or lagging region. Similar to the annotation for

transcription, in all cases, mutations were first oriented based on the reference strand and their pyrimidine context.

Detecting strand asymmetries across cancer types
For eachmutational signature and for all cancer types having this mutational signature, we retrieved the number of mutations on each

strand/region in six mutational channels (C>A, C>G, C>T, T>A, T>C, and T>G). p values were calculated for the odds ratio between

the ratio of real mutations and the ratio of simulated mutations. Specifically, for transcription strand asymmetry odds ratios were

calculated between the ratios of real mutations and the ratios of simulatedmutations, where each ratio is calculated using the number

of mutations on the transcribed strand and the number of mutations on the untranscribed strand. Similarly, for replication strand

asymmetry odds ratios were calculated between the ratios of real mutations and the ratios of simulated mutations, where each ratio

is calculated using the number ofmutations on the lagging strand and the number of mutations on the leading strand. Lastly, for genic

and intergenic regions, odds ratios were calculated between the ratios of real mutations and the ratios of simulated mutations, where

each ratio is calculated using the number of mutations in the genic regions and the number of mutations in the intergenic regions.

p values were computed using Fisher’s exact test and corrected for multiple testing using Benjamini-Hochberg method. Only strand

asymmetries with corrected p value %0.05 and odds ratios above 1.10 were considered and reported as part of the presented

results.

Detecting strand-coordinated mutagenesis of mutational signatures
Analyses of strand-coordinated mutagenesis searched for consecutive single base substitutions on the same DNA strand with inter-

mutational distance less than 10,000 base-pairs within the same sample as previously done for breast cancer in.21 To find the

consecutive mutations, all the single base substitutions in a sample were first assigned to the SBS signature with the highest prob-

ability, and only the mutations with the probability greater than or equal to a pre-set cut-off value of at least 0.50 were retained (i.e., at

least 50% chance for a signature to have generated that mutation). Somatic mutations were sorted in an ascending order in regard to

chromosomal positions and consecutive groups of substitutions with the same mutational context, on the same DNA strand, and

attributed to the same substitution signature were identified. Where applicable, consecutive groups of substitutions were combined

with the appropriate adjustments of their group lengths. Any consecutive groups of substitutions with length of 1 were discarded. All

results coming across different samples were pooled. For each SBS signature and strand-coordinated mutagenesis group length,

the observed number of groups for real mutations and the expected number of groups coming from 100 simulated datasets were

compared with the simulated datasets serving as null hypotheses. p values were computed using z-tests evaluating whether the

mean values of the expected number of groups for each simulated dataset were equal to the mean values of the observed number

of groups for each observed dataset. The computed p values were corrected for multiple testing using Benjamini-Hochberg method.

SBS signatures and strand-coordinated mutagenesis group lengths with corrected p value%0.05 were considered and reported as

part of the presented results.

Analyses of replication timing
As previously done in breast cancer, wavelet-smoothed signal data were used in the replication timing analysis.21 Briefly, cancer

types were matched with ENCODE data from the most suitable tissue or cell line and the corresponding Repli-seq dataset was uti-

lized in the analysis (Table S1). Given the Repli-Seq signal data for a tissue of interest, a higher replication time signal reflects an earlier

replication timing. The replication time signals were each sorted in a descending order and, subsequently, the sorted replication time
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signals were divided into deciles. Each decile contains approximately 10% of each replication time signal. Somatic mutations of in-

terest were distributed within the corresponding deciles based on their overlap with the replication domains in the examined deciles.

To correct for genomic size, mutation densities were calculated by dividing the numbers of somatic mutations within each decile by

the number of attributable bases of adenine, thymine, guanine, and cytosine (excluding any ambiguous genomic annotations in the

reference genome). To compare replication timing of different mutational signatures with each other, mutation densities were further

normalized with respect to the highest mutation density observed for each respective signature. Lastly, as with other analyses, the

reported replication timing analyses included only signatures with at least 1,000 somatic mutations unambiguously attributed to an

individual mutational signature.

Mutational signature and cancer type specific replication timing analysis
To compare the replication timing between real and simulated somatic mutations, cancer-type specific normalized mutation den-

sities were calculated for real mutations, xreal = ½x1real; x2real;.; x10real�
T
, and for each of the 100 simulated synthetic cancer datasets,

Xsim i = ½x1sim i; x
2
sim i;.; x10sim i�

T
, where sim i = 1;2;.;100. Normalized mutation density vectors generated based on each simu-

lated dataset were combined and the matrix Xsims = ½Xsim 1;Xsim 2;.;Xsim 100�T was generated. Mean simulated vector, xsims, stan-

dard deviation vector, sXsims, and their 95% confidence intervals were calculated using SciPy. As a result, normalized mutation

densities of real mutations across replication timing deciles, xreal; were compared to the averaged normalized mutation densities

of simulated mutations across replication timing deciles, xsims. Results were further averaged across all cancer types in order to

generate the summary plots presented in the manuscript.

To classify whether the mutation density was increasing, flat, or decreasing in regards to replication timing, we fitted a linear

regression model to the values of the normalized mutation densities, xreal. A mutational signature was considered to be

increasing from early to late replicating regions if the slope m was statistically significant from a flat line and the values of

xreal were monotonically increasing. A mutational signature was considered to be decreasing from early to late replicating re-

gions if the slope m was statistically significant from a flat line and the values of xreal were monotonically decreasing. Lastly,

a mutational signature was considered to be generally unaffected by replication timing if the slope m was not statistically sig-

nificant from a flat line.

Occupancy analysis of topographical features
Genomic occupancy analysis evaluated the relationship between mutational signatures and the genomic locations of different topo-

graphical features, including: (i) nucleosomes; (ii) transcription factors; and (iii) histone modifications. Specifically, occupancy

analysis of topographical features focused on mutations within a specific genomic window, and it evaluated the average experi-

mental signal of a particular topographical feature. In all cases, this window was centered on a somatic mutation, and the window

began 1,000 base-pair (bp) 50 of a mutation and ended 1,000 bp 30 of a mutation; for example, this resulted in a region 2,001 bp

for each examined somatic single base substitution. For a given topographical feature, the analysis evaluated the experimental signal

for a set of cancer-matched datasets from ENCODE by averaging the signal across the regions of interest. For example, to evaluate

the connection between SBS2 and CTCF binding in breast adenocarcinoma, our analysis utilized 4 datasets of chromatin immuno-

precipitation followed by sequencing (ChIP–seq) from breast tissues in ENCODE (Table S1); for each mutation unequivocally attrib-

uted to SBS2 in the examined breast cancers, the CTCF signals within 2,001 bp around the mutation were averaged across the 4

examined datasets. As in other analysis, the reported occupancy results included only signatures with at least 1,000 unequivocally

attributed somatic mutations to that specific mutational signature within each examined cancer type.

Next, we averaged both the real and simulated mutations in two rounds where the first round of accumulation and averaging was

across all mutations for each cancer-type matched ENCODE dataset and the second round of accumulation and averaging was

across all cancer-type matched ENCODE datasets. For real mutations, in the first round, for each cancer-type matched ENCODE

dataset, we accumulated the average signal vectors coming from all real somatic mutations. This resulted in a cancer-type specific

vector Kreal = ½k0real; k1real;.; k2000real �
T
, where Kreal is the average signal of the topographical feature of interest in a 2,001 bp window

using all real mutations. In the second round, we accumulated the average signal vectors Kreal that were attained in the first round

coming from each cancer-type matching ENCODE dataset and derived their average for the total number of considered ENCODE

datasets. This results in a global vector Mreal = ½m0
real;m

1
real;.;m2000

real �
T
, where Mreal represents the average signal of the topograph-

ical feature in a 2,001 bp window using all cancer-type matching ENCODE datasets. The same procedure was repeated for each of

the 100 simulated synthetic cancer datasets resulting in an average Ksims for a signature and topographical featurewithin each cancer

type aswell as an averageMsims for a signature and topographical feature across all cancer types. For each signature and topograph-

ical feature, comparisons between Kreal and Ksims were performed within each cancer type while a global comparison was performed

between Mreal and Msims. Linear correlations were performed to evaluate whether the occupancy signal within ±500 base-pair

windows around a somatic mutation for a cancer type, Kreal, is correlated with the average signal across all cancer types Mreal.

Any statistically significant Pearson’s correlations, based on Benjamini-Hochberg corrected and z-test computed p value %0.05,

were reported as part of the presented results.
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Abundance analysis of mutational signatures and topographical features
In addition to performing occupancy analysis, our abundance analysis evaluated the enrichment, depletion, or no relationship be-

tween mutational signatures and topography features of interest. Specifically, we investigated the relationships between mutational

signatures and the following topographical features: (i) nucleosomes; (ii) transcription factors; and (iii) histonemodifications. For each

mutational signature and topography feature, we examined whether there is an enrichment, depletion, or no statistically significant

relation between the mutational signature and the topography feature of interest by comparing the real somatic mutations with the

sets of simulated somaticmutations. Specifically, the average signal vector of real mutations for each cancer-typematched ENCODE

dataset, Kreal, was obtained as described in the occupancy analysis. An average value, sreal; was derived for ±50 bpwindow centered

at the somatic mutations for each cancer-typematched ENCODE dataset. Similar analysis was performed for the 100 simulated can-

cer datasets, which allowed deriving a Ksim average vector and ssim average value.

To evaluate whether this average signal value of real mutations, sreal, was expected by chance given the average signal values

coming from 100 simulations, ssim i for i = 1;2;.;100, we assessed the statistical significance of each fold change and associated

it with a p value. Average signal value for real mutations was determined as observed value, sreal, and average signal values coming

from 100 simulations were determined as expected values, ½ssim 1; ssim 2;.; ssim 100�T. Z-test was applied to test whether the

observed value was the mean of expected values under null hypothesis and a p value together with a test statistic were obtained.

The computed p values were corrected for multiple testing using Benjamini-Hochberg method and only p values%0.05 were consid-

ered and reported as part of the presented results. In case of multiple ENCODE datasets availability for a certain cancer type and

topography feature of interest, the calculated p values coming from each cancer-type matched ENCODE dataset were pooled

and combined using Fisher’s method. In this cases, p values were corrected for multiple testing using Benjamini-Hochberg method

after combining. Likewise, calculated fold changes acquired from each ENCODE dataset were averaged and average fold change

was obtained.

Classifying cancers into ones with low and ones with high APOBEC3 mutations
Each cancer samplewith operative APOBEC3-associated signatures SBS2 or SBS13was classified as either having low,mid, or high

APOBEC3 presence. Specifically, we utilized a previously developed scheme for calculating APOBEC3 presence,73 where a ratio

was derived as the natural logarithm of the total number of mutations attributed to the APOBEC3-associated signatures SBS2 or

SBS13 divided by the natural logarithm of the total number of mutations excluding ones due to APOBEC3-associated signatures

SBS2 or SBS13. Thus, for each sample the ratio was calculated in the following manner:

ratio =
logeðnumber of mutations attributed to SBS2 or SBS13Þ

logeðtotal number of mutations NOT attributed to SBS2 and SBS13Þ
Cancers with ratiosR0.90 were classified as samples with high APOBEC3 presence and cancers with ratios%0.75were classified

as samples with low APOBEC3 presence. All samples with ratios between 0.75 and 0.90 were classified as mid APOBEC3 presence

and were not considered in our subsequent replication timing re-analysis. Specifically, we repeated the replication timing for all can-

cer types by separately examining samples with low APOBEC3 presence and separately examining samples with high APOBEC3

presence. As done in the prior analysis in this manuscript, all results were averaged within and across the examined cancer types.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis were performed in Python using NumPy, SciPy, statsmodels, and other standard statistical modules. Statistical

significance was analyzed by Fisher’s exact test and z-test. Where applicable, p values were combined with Fisher’s method. All

p values were corrected for multiple testing using Benjamini and Hochberg method. All adjusted p values of * %0.05; ** %0.01;

*** %0.001 were considered significant. Statistical parameters and details of the analyses can be found in the figure legends and

‘‘method details’’.

ADDITIONAL RESOURCES

All topographical data and figures regarding topography of mutational signatures in human cancer generated in this study were

deposited at COSMIC, Catalog of Somatic Mutations in Cancer (https://cancer.sanger.ac.uk/signatures/), through COSMICv3.3,

May 27th, 2022.
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