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Rieke Kempfer,1 Pierre Saintigny,2,3 Alexandre Harlé,4 Davide Vacirca,5 Massimo Barberis,5 Pauline Gilson,4

Cristin Roma,6 Alexandra Saitta,1 Ewan Smith,1 Floriane Consales Barras,1 Lucia Ripol,1 Martin Fritzsche,1

Ana Claudia Marques,1 Amjad Alkodsi,1 Ray Marin,1 Nicola Normanno,6 Christoph Grimm,7 Leonhard M€ullauer,7

Philipp Harter,8 Sandro Pignata,9 Antonio Gonzalez-Martin,10,11,12 Ursula Denison,13 Keiichi Fujiwara,14 Ignace Vergote,15

Nicoletta Colombo,5 Adrian Willig,1 Eric Pujade-Lauraine,16 Pierre-Alexandre Just,17 Isabelle Ray-Coquard,18,19

and Zhenyu Xu1,21,*
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SUMMARY
Homologous recombination deficiency (HRD) is a predictive biomarker for poly(ADP-ribose) polymerase 1 in-
hibitor (PARPi) sensitivity. Routine HRD testing relies on identifying BRCA mutations, but additional HRD-
positive patients can be identified by measuring genomic instability (GI), a consequence of HRD. However,
the cost and complexity of available solutions hamper GI testing. We introduce a deep learning framework,
GIInger, that identifies GI fromHRD-induced scarring observed in low-pass whole-genome sequencing data.
GIInger seamlessly integrates into standard BRCA testing workflows and yields reproducible results concor-
dant with a referencemethod in amultisite study of 327 ovarian cancer samples. Applied to a BRCAwild-type
enriched subgroup of 195 PAOLA-1 clinical trial patients, GIInger identified HRD-positive patients who expe-
rienced significantly extended progression-free survival when treated with PARPi. GIInger is, therefore, a
cost-effective and easy-to-implement method for accurately stratifying patients with ovarian cancer for
first-line PARPi treatment.
INTRODUCTION

Dysregulation of the mechanisms that safeguard genome integ-

rity, such as the homologous recombination repair (HRR)
Cell Report
This is an open access article under the CC BY-N
pathway, is a common hallmark of cancer.1 Such dysregulation

can be exploited to induce cancer cell death,2 as illustrated by

the response of HRR-deficient (HRD) tumors to poly(ADP-ribose)

polymerase 1 inhibitors (PARPi).3 PARPis induce the formation of
s Medicine 4, 101344, December 19, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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DNA double-strand breaks (DSBs) and cause synthetic lethality

in HRD cells that are unable to repair this type of DNA damage.4

PARPi revolutionized the management of patients with BRCA-

mutated or HRD-advanced ovarian cancer, significantly

increasing life expectancy.5–7 However, the diversity of loss-of-

function events in HRR genes (including BRCA1 and

BRCA28–10) seen in PARPi responders11 renders patient stratifi-

cation based only on genotyping information challenging. HRD

detection can also rely on identifying the consequences of the

loss of HRR function, including increased frequency of loss of

heterozygosity (LOH),12 telomeric-allelic imbalance (TAI),13 and

large-scale state transitions (LSTs),14 and on the identification

of the specific mutational signatures15–17 associated with

loss of this pathway function. Methods that integrate multiple

classes of mutational and genomic scarring signatures, such as

HRDetect,18 are among themost accurate in predicting HRDsta-

tus in breast cancer. However, identification of mutational signa-

tures with these methods requires high-coverage (>303) whole-

genome sequencing (WGS) data from tumor-normal pairs, which

is costly, hard to implement in routine testing, and only validated

on fresh frozen tissue, while remaining challenging with formalin-

fixed paraffin-embedded (FFPE) tissues, limiting the current use

of WGS for cancer patient management.19

The combined number of LOH, LST, and TAI events detected

in the tumor genome reflects the level of HRD-caused genomic

instability and can be combined into the genomic instability

score (GIS).20 GIS can be used to determine the patient’s HRD

status and identify PARPi responders with high confidence

from tumor-only data.21 However, detecting LOH and TAI re-

quires deep genomic profiling data. Alternative methods that

rely on the detection of copy-number changes, including LST

events, from WGS at low (�13) sequencing depth (low-pass

WGS [lpWGS]) can also predict tumor HRD status22,23 and pro-

vide a cost-effective and easy-to-implement HRD detection

alternative. However, the sensitivity of methods that solely rely

on this type of genomic scar to identify HRD samples is limited,

and their utility in a clinical context remains untested.23

Unlocking the full potential of lpWGS in HRD detection will

require going beyond the enumeration of biomarker events by

using alternative features that result from the cell’s inability to

repair DNA damage. For example, specific genomic regions

are more frequently affected by DSBs24 and other mutational

signatures.25 We hypothesized that differences in the spatial dis-

tribution of HRD-related genomic scars could be exploited for

patient stratification by analyzing the shallow sequencing

coverage profiles derived from lpWGS data. Therefore, we

developed ‘‘GIInger,’’ a novel convolutional neural network

(CNN)-based method that leverages genomic-scar-induced dif-

ferences between coverage profiles obtained from lpWGS data

of HRD-positive and -negative samples. The model computes

a genomic instability index (GII), which is predictive of a sample’s

HRD status.

We validated GIInger using lpWGS data from fresh frozen

breast cancer samples and demonstrate that it supports HRD

prediction with accuracies similar to methods that rely on

>303 deeper sequencing data. Furthermore, in a multicenter

setting, we evaluated GIInger’s analytical performance on

formalin-fixed parafin-embeded ovarian cancer samples. We
2 Cell Reports Medicine 4, 101344, December 19, 2023
show that it yields robust and reproducible results across labo-

ratories and is highly concordant with the reference method.

Retrospective analysis of a cohort of patients with ovarian can-

cer demonstrated GIInger’s ability to stratify patients according

to their PARPi response, providing preliminary evidence for its

clinical utility. In clinical routine, tests integrate information on

BRCA status with HRD genomic scars since the enumeration

of genomic scars alone can lead, for example, to false positive

calls.8 In this study, we demonstrate how GIInger can generate

accurate results and be easily integrated into an end-to-end

workflow that, in addition to genomic scarring, also supports

BRCA status analysis.

RESULTS

Development of a CNN model for HRD detection from
lpWGS coverage profiles
To obtain lpWGS (�13) data, we down-sampled high-coverage

(�30–403) publicly available WGS data from 100 HRD-positive

and 174 HRD-negative (as classified by HRDetect18) fresh frozen

(FF) breast cancer samples to a uniform depth of 10 million map-

ped paired-end reads (i.e., fragments). We observed that

the normalized coverage profiles of HRD-positive samples,

including those with somatic or germline loss-of-function muta-

tions in BRCA1 or BRCA2, were distinct from HRD-negative

samples (Figure S1). Consistent with the heterogeneous conse-

quences of HRD-induced GI across the genome, the frequent

and sharp shifts in coverage observed in the genome of HRD-

positive samples were heterogeneously distributed across the

coverage profiles (Figure S1).

We reasoned that a machine learning algorithm would be suit-

able to leverage differences caused by genome instability on the

coverage profiles obtained from lpWGS data to classify HRD-

positive and -negative samples. The development of algorithms

to detect clinically relevant genomic biomarkers is often limited

by the relatively small number of well-characterized clinical sam-

ples available for training. Therefore, we focused on image clas-

sification algorithms, particularly CNN, that require fewer param-

eters than other machine learning methods, thus limiting the risk

of overfitting.26 To further overcome the challenge posed by the

relatively small number of samples available for training, we im-

plemented a data augmentation strategy to increase the number

and diversity of samples in our training dataset. Augmented

training data were generated by randomly sampling chromo-

somes from samples sharing the same purity/ploidy within a

subset (173 breast cancer samples; 61 HRD positive, of which

47 were BRCA mutated) of the original data18 (Figure S2; details

in STAR Methods). The normalized coverage profiles from the

data-augmented samples (Figure S3) display the characteristic

chromosome- and HRD-status-specific coverage patterns ob-

tained for the original samples (Figure S1).

We used 3,933 samples (173 patient derived and 3,760 data

augmented) to train a CNN model using a supervised learning

framework that inputs lpWGS information to classify samples ac-

cording to their HRDetect18 HRD status. We attributed the same

HRD status to the data-augmented samples as the one for the

patient-derived samples at the origin of their assembly (refer to

STARMethods). As previously noted, genome instability caused



Figure 1. GIInger predicts HRD status using spatially organized coverage profiles from lpWGS data

(A) Study overview.

(B) Example of GIInger input. Heatmap of the smoothed normalized coverage across�3Mbp bins (columns) for all autosomes (rows) aligned with respect to their

centromere (vertical dashed line). Bins are colored (blue-white-red scale) based on their normalized coverage relative to the mean coverage of the sample (set to

1, white). Color scale is depicted on the bottom. NaN (‘‘not a number’’) refers to non-existing relative chromosome locations.

(C) GIInger architecture schematic. Input features are extracted through a series of convolution and pooling operations. The vector containing the 48 extracted

features is provided to a set of fully connected layers trained to output the GIInger score, which predicts the sample’s genomic instability (GI) status based on the

score threshold.
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by HRD is not observed homogenously across the genome. For

example, LSTs occurring at chromosome centromeres correlate

poorly with genome instability caused by HRD.14 We thus hy-

pothesized that retaining information on where changes in

coverage occur in the genome by spatially arranging data from

autosomes would facilitate the identification of genome insta-

bility patterns specific to HRD by the CNN model. We created

two-dimensional heatmaps of the normalized coverage data

where each row corresponds to one autosome, ordered from 1

to 22, and each column represents a genome bin of �3 Mbp,

aligned to its respective centromere (Figure 1B). Throughout

the article, we refer to these heatmaps as smoothed coverage

profiles. The CNN model ‘‘GIInger,’’ which inputs smoothed

coverage profiles, was trained following a 5-fold cross-validation

procedure. The CNN contains 3 convolution blocks that output a

scalar, maximizing the differences between HRD-positive and

-negative samples in the training set (Figure 1C; see STAR

Methods).

GIInger validation in FF breast cancer samples
To evaluate GIInger’s performance, we used WGS data for 101

FF breast cancer samples18 that were not used to train the algo-
rithm. We randomly down-sampled sequencing libraries, origi-

nally at �30–403 coverage, to the equivalent of �13 coverage

and used GIInger to predict the HRD status based on the corre-

sponding lpWGS smoothed coverage profiles.

Comparing score distributions between samples revealed

GIInger’s ability to distinguish breast cancer samples classified

by HRDetect18 as HRD positive or negative (Figure 2A). When

this analysis was extended to other HRD classification methods,

we found that the GIInger scores classified as either HRD-posi-

tive or -negative were distinct and corresponded well to the rela-

tive comparator methods, supporting the relevance of HRD clas-

sifications based on GIInger (Figure S4).

To quantitatively evaluate GIInger’s performance in distin-

guishing positive and negative HRD status and to compare it

with other HRD detection methods, we determined the area un-

der the curve (AUC) of the model’s receiver operating character-

istic (ROC), allowing us to assess classification performance of

the method at all thresholds (see STAR Methods). Classification

performance of HRD status in breast cancer was most similar

(AUC = 0.996) to HRDetect, used here as ground truth

(Figure 2B). GIInger’s concordance with HRDetect classification

was higher than its concordance with GIS classification
Cell Reports Medicine 4, 101344, December 19, 2023 3



Figure 2. GIInger yields comparable results

in predicting HRD status to tools that rely

on high-coverage datasets

(A) 101 breast cancer samples (x axis) and GIInger

scores (y axis), orderedbyGIInger score and colored

according to theirHRDstatusaccording toHRDetect

as positive (blue) and negative (gray) and patterned

according to their BRCA status as mutated (cross-

hatching) and wild type (no hatching).

(B) ROC curves for breast cancer HRD classification

obtainedusingGIInger (red), LST (orange),GIS (green),

LOH score (pink), and BRCA status (blue) using HRD

status reportedbyHRDetectas reference.AUCvalues

for each method are given within the insets.
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(AUC = 0.951), which is based on the enumeration of HRD

biomarker events LST, TAI, and LOH. In addition, we found lower

concordance with other methods that explore individual features

previously associated with HRD. In particular, the concordance

with the number of LST events, which can also be computed us-

ing lpWGS data,23 was lower than what was obtained with

GIInger, indicating that the latter leverages HRD-relevant fea-

tures from lpWGS data that are distinct from LST. For predicting

BRCA1/2 status in breast cancer samples, GIInger yielded the

highest AUC (AUC = 0.858) after the best-performing method

HRDetect (AUC = 0.862) (Figure S5).

These analyses show that the GIInger score is generally pre-

dictive of HRD status. In order to allow classification of individual

samples, we defined a GIInger score classification threshold. To

aid interpretability, we shifted the score so that samples with a

GIInger score higher than 0 are classified as HRD positive and

the remaining samples as HRD negative (see STAR Methods

section convolutional neural network for details on threshold

definition).

GIInger accurately detects genomic scars caused by
HRD in clinical samples
Next, we aimed to establish the value of GIInger for HRD detec-

tion in the clinical setting. To evaluate its analytical performance,

lpWGSdata from 327 FFPE ovarian cancer clinical samples were

generated in 5 independent clinical laboratories (Figure 3A;

STAR Methods). Supporting the robustness of GIInger’s

approach, we found that data for only 3.98% (13) samples did

not pass GIInger’s quality assessment, resulting in an undeter-

mined GIInger score (Figure 3B; STAR Methods). This rejection

rate is 2 times lower (two-tailed Fisher’s exact test, p < 0.05)

than what was observed for the 327 samples for which HRD sta-

tus had also been tested using the reference method (7.95%, 26

samples).

We found that the overall percent agreement (OPA) between

classifications obtained using GIInger and the reference method

was high at 92.91% (89.40–95.31, 95% confidence interval [CI]).

Negative percent agreement (NPA) was 96.64% (92.39–98.56,

95% CI), and positive percent agreement (PPA) was 89.12%

(83.05–93.19, 95%CI) (Figure 3B). In addition, and for the subset

of samples in the cohort for which the GI score, obtained using

the reference method, was known (38.4%, 125 samples), we

found that GI and GIInger scores were highly correlated (R2 =

0.85; Figure 3C; STARMethods). The high classification concor-
4 Cell Reports Medicine 4, 101344, December 19, 2023
dance of GIInger with a reference method that relies on the

enumeration of HRD genomic biomarkers (including TAI and

LOH events), which are not accessible from lpWGS data, dem-

onstrates GIInger’s ability to leverage lpWGS data for accurate

HRD detection in clinical samples. Most classification discor-

dances are attributed to samples with scores located close to

the respective classification thresholds (Figure 3C). When sam-

ples with a score close to the classification threshold, for

example, ±4% or ±5%, the score dynamic range (the difference

between the largest and smallest values a score can assume),

were not considered, the OPA increased to 99.1% and 100%,

respectively (Figures S6A and S6B). These discordant results

likely reflect a general limitation of sample stratification methods

that convert a continuous feature, i.e., the level of genome insta-

bility, into a binary classification, i.e., HRD-positive or -negative

status, to support decision-making in the clinical setting.

Whereas more extensive reproducibility analysis is still

required, no significant difference in OPA compared to the refer-

ence method was found across different clinical laboratories

(Figure S6C), indicative of the method’s robustness.

GIInger can support patient stratification in the clinical
setting
To gain initial insights regarding the value of GIInger in identifying

patients who are likely to respond to PARPis, we generated and

analyzed lpWGS data from a subcohort of ovarian cancer patient

samples from the PAOLA-1 study.7 The PAOLA-1 (ClinicalTrials.

gov: NCT02477644) was a randomized, double-blind, phase 3

trial investigating the benefit of the PARPi olaparib as first-line

maintenance treatment (bevacizumab) in patients with advanced

ovarian cancer. The PAOLA-1 study demonstrated that mainte-

nance treatment with PARPi specifically benefited the progres-

sion-free survival (PFS) of patients with HRD-positive ovarian

cancer.7

From the total PAOLA-1 cohort of 806 FFPE patient samples,

we analyzed a subset of 195 samples.We chose the sample sub-

set such that the median patient age, the ratio of olaparib/pla-

cebo, and the ratio of HRD-positive/-negative samples were

identical between the subset analyzed here and the full

PAOLA-1 cohort (Figure 4A; Table S2). Testing for the presence

of germline and somatic BRCA mutations is well established,

and BRCA-mutated patients are eligible for PARPi treat-

ment.27–29 Patients with BRCA wild-type HRD-positive tumors

have also been found to benefit from PARPi treatment. For this

http://ClinicalTrials.gov
http://ClinicalTrials.gov


Figure 3. GIInger analytical performance

analysis in clinical samples

(A) Representation of the multicenter study design.

(B) Concordance of GI status between GIInger and

the referencemethod (n = 296 samples). For details

on rejection criteria, see STAR Methods.

(C) GIInger scores (y axis) relative to the corre-

sponding reference method GI score (x axis). Each

point corresponds to a cancer patient sample (n =

125) and is labeled according to the GI status

concordance between the two methods. Dashed

lines indicate respective classification thresholds

of GIInger and the reference method. Solid line in-

dicates linear regression best fit; R2 = 0.85.
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reason, we enriched our cohort in BRCA wild-type samples from

patients with ovarian cancer who are more likely to benefit from

HRD testing (Figure 4A).

We generated lpWGS libraries from DNA extracted from pa-

tient FFPE samples. We used the Kaplan-Meier estimator to

evaluate the PFS in olaparib+bevacizumab- and placebo+beva-

cizumab-treated GI-positive and negative patients. Patients

classified by GIInger as GI positive had significantly (over two

times) longer PFS when receiving olaparib+bevacizumab rela-

tive to those receiving placebo+bevacizumab (median

33.3 months, 95% CI: 21.9–NA, versus median 15.9 months,

95% CI: 13.4–38.6; hazard ratio (HR): 0.49, 95% CI: 0.28–0.85;

p = 0.01) (Figure 4B).

In contrast, there was no significant difference in PFS be-

tween treatment arms for patients with negative GI status (ola-

parib group median PFS 16.8 months, 95% CI: 14.0–22.0,

versus placebo group median PFS 14.6 months, 95% CI:

9.7–19.3; HR: 0.82, 95% CI: 0.52–1.31; p = 0.41) (Figure 4C).

In addition, when the 8 samples that did not meet GIInger’s

quality assessment are added to the set of samples classified

by GIInger as negative, we see no significant difference in

PFS between treatment arms in this group (non-positive,

Figure S7A).

PFS analysis of the samePAOLA-1 sample subset stratified by

the reference method returned highly similar results: longer PFS

in the olaparib group than in the placebo group (olaparib group

median PFS 29.8 months, 95% CI: 21.0–NA, versus placebo

group median PFS 15.4 months, 95% CI: 13.0–38.6; HR: 0.58,

95% CI: 0.35–0.98, p = 0.04) for samples with positive GI +

BRCA status (Figure S7B) and no detectable difference (olaparib

group median PFS 17.6 months, 95% CI: 14.0–22.1, versus pla-

cebo group median PFS 15.1 months, 95% CI: 10.3–19.3; HR:

0.70, 95%CI: 0.42–1.19, p = 0.18) for samples with negative sta-

tus (Figure S7C). In the analysis of the full PAOLA-1 cohort, HRD-

positive BRCA-mutated patients displayed a significantly higher

response to treatment.7 The difference in hazard ratio (HR) ob-

tained in this study and the one reported for the full cohort7 is

likely a consequence of the smaller fraction, relative to the full

cohort, of samples from BRCA-mutated patients in the cohort

subset analyzed here (Figure 4A).

Together, the PFS results suggest that GIInger-based classifi-

cation was non-inferior to the reference method for stratifying

195 PAOLA-1 patients with ovarian cancer with regards to
PARPi treatment response while relying solely on lpWGS, which

is more practical to implement and less costly.

GIInger can be easily integrated in end-to-end HRD
detection workflows
Integrating the identification of the genome instability scars

caused by HRR deficiency with detection of pathogenic muta-

tions in BRCA is important for the comprehensive identification

of patients most likely to benefit from PARPi treatment.30 Deter-

mination of BRCA status requires variant calling and thus high

sequencing depth at a multitude of positions, commonly

achieved by targeted sequencing. The data used by GIInger

cannot be used to support variant calling at these genes. How-

ever, because lpWGS data can be obtained by sequencing of

the pre-enriched libraries used to determine BRCA status,

GIInger can be easily integrated into existing workflows (Fig-

ure 5A). This feature provides further benefits relative to alterna-

tive GIS-based methods (Figure 5B; Table S3). If sequenced at

sufficiently high depth, >303 for clonal high tumor content sam-

ples or even higher (�5003) for most somatic applications, WGS

data can simultaneously support the detection of genome insta-

bility and BRCA status.18 However, the costs of generating such

high-coverage sequencing data outweigh the benefits of a single

data generation workflow and limit the clinical implementation of

WGS-based solutions. Recently, analysis of whole-exome

sequencing (WES) data on a small cohort of patients was shown

to allow simultaneous determination of GIS and BRCA status.

However, in addition to the high cost of generating WES data,

the accuracies demonstrated for such approaches relative to

the reference method so far are low, further limiting their use in

the clinical setting.31

Alternatively, data to determine GIS can be obtained by SNP

genotyping methods, including SNP arrays32 or SNP cap-

ture.20 SNP capture workflows can be integrated with targeted

sequencing methodologies, such as comprehensive genomic

profiling (CGP) solutions or small panels that are commonly

used to establish BRCA status. Relative to WGS/WES, these

targeted approaches reduce data generation costs but elevate

implementation complexity due to the need to ensure

balanced sequencing depth between SNP positions and

BRCA genes (Figure 5B). In contrast, GII can be obtained

from low-coverage sequencing data of the pre-enrichment li-

braries used to determine BRCA status, removing the need
Cell Reports Medicine 4, 101344, December 19, 2023 5



Figure 4. GIInger clinical relevance analysis

(A) Properties of samples included in the full PAOLA-1 cohort and the subset included in the present study. PFS curves stratified by treatment arms (orange:

olaparib plus bevacizumab; gray: placebo plus bevacizumab) in the PAOLA-1 subcohort (n = 195) according to (B) GI-positive status assigned by GIInger (HR:

0.49, 95%CI: 0.28–0.85; p = 0.01) and (C) GI-negative status assigned by GIInger (HR: 0.82, 95%CI: 0.52–1.31; p = 0.41); y axis: probability of patients being free

from disease progression and death; x axis: months since randomization; dashed lines indicate median survival times; and tables of absolute number of in-

dividuals at risk are given below each plot.
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for an additional capture experiment or establishing settings

that support differentially enrichment of exonic and SNP re-

gions and thereby reducing implementation complexity and

data generation costs. Specifically, and due to the high

coverage of sequencing required to support LOH determina-

tion, we estimate that 2 times more fragments are needed

(STAR Methods) when GIS is used. Genotyping using SNP ar-

rays, an alternative approach to determine LOH and GIS, is

lengthy, requires specific detection equipment, introduces

several biases that decrease repeatability, and is at least

50% more costly than lpWGS-based methods.33

We assessed the impact on result accuracy of GIInger score

using an end-to-end workflow that combines genome instability

detection and a capture panel used to determine BRCA status

(Figure 5A) for a subset of 124 samples in the PAOLA-1 cohort.

We compared the results obtained for the same samples using

either an lpWGS-only (standalone) or an lpWGS and targeted

capture (combined) workflow. Targeted capture was performed

using a probe panel that covers a set of clinically relevant genes,

including BRCA1 and BRCA2, to enrich these regions and

generate data to support variant calling (STAR Methods). We

found a high correlation (R2 = 0.99) between the GIInger scores

obtained using the standalone and combined workflows (Fig-

ure 5C). As expected, OPA between classifications obtained us-

ing the standalone or the combinedworkflowwas high at 97.58%

(95% CI: 95.31–99.55). Among the 124 samples, only 3 (2.4%)

samples, all with aGIInger score near the classification threshold,

were differently classified (discordant) across the twoworkflows.

In addition, we also compared the BRCA status obtained using

the combined workflow or target capture alone. We found a high

OPA between the BRCA status obtained using the capture-only

or combined workflow (99.19% [95% CI: 99.19–99.19]). In addi-

tion, the reported variant fraction for BRCA pathogenic variants,

or variants of unknown significance (VUSs; Figure S8), found

using data generated by the two workflows was also highly corre-

lated (coefficient of determination,R2=1.0) between experiments.

These results illustrate the ease and robustness of GIInger

integration with targeted capture solutions for the determination

of BRCA status, providing a cost-effective and easier-to-imple-

ment alternative to other workflows.
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PARPi is an approved treatment for patients with cancer with

HRD-positive tumors. Evidence that some HRD-negative pa-

tients also derive benefit, albeit to a lesser extent, from PARPi6

and that epistatic interactions34 between HR-related genes, tis-

sue of origin,35,36 and cancer subtype37 can impact PARPi

response warrant further research on biomarkers for PARPi

sensitivity. However, whereas all determinants of PARPi

response may not yet be known, consensus expert guidelines

currently recommend HRD testing to identify patients who are

likely to benefit from PARPi treatment. Most diagnostic labora-

tories have established standardized tests, often using targeted

sequencing, to identify BRCA-mutated tumors. However, the di-

versity of genetic and epigenetic events underlying HRD3 limit

the sensitivity of these approaches. Detection of GI increases

the effectiveness of HRD testing and improves patient stratifica-

tion. The most used approach to detect GI, GIS, relies on

enumerating HRD biomarker events, such as LOH, TAI, and

LST. However, the detection of some of these genomic scars,

including LOH or TAI, requires deep genomic profiling to support

variant calling. Whereas the value of HRD testing to identify

which patients with ovarian cancer are most likely to benefit

from PARPi is well recognized, the challenges of implementing

available methods currently limit HRD testing in clinical set-

tings.38 Therefore, we aimed to develop a cost-effective sample

stratification method, named GIInger, that exploits the conse-

quences of HRD on genome stability.

To ensure this method can be deployed in a clinical setting,

GIInger leverages the impact on genomic lesions from lpWGS

(�13 coverage) coverage profiles. In addition to the reduction

in data-generation costs afforded by the decrease in sequencing

depth, lpWGS is also the easiest-to-implement genome profiling

method, thus facilitating robust data collection. In addition,

lpWGS can be obtained for pre-capture libraries used for tar-

geted BRCA sequencing, which further simplifies its integration

with established methods.

We used publicly available data to benchmark GIInger against

well-established methods of HRD detection. In data from FF

breast cancer samples, we found that GIInger results are most



Figure 5. GIInger is a flexible and robust patient stratification method

(A) Workflow schematics illustrating flexible use of GIInger in combined workflowwith existing targeted sequencing approaches. Pre-capture library aliquots can

be sequenced at �13 depth and inform sample HRD status together with data on BRCA status.

(B) Qualitative workflow cost and complexity comparison of different methodologies for determining HRD-related biomarkers genome instability and BRCA

status. CGP, comprehensive genomic profiling. Inferences are based on relative differences detailed in Table S3.

(C) Concordance of GIInger scores between lpWGS-only (y axis) and combined (i.e., targeted sequencing with HRDv1 panel + lpWGS) workflow (x axis). Each

point corresponds to a PAOLA-1 cancer patient sample (n = 124) and is labeled according to theGI status concordance between the twoworkflows. Dashed lines

represent GIInger classification threshold, and solid line indicates linear regression best fit; R2 = 0.99; overall concordance: 97.58% (95.31%, 99.55%).
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similar to those of HRDetect, which enumerates large-scale

events and genomic signatures characteristic of HRD. Concor-

dance was also high with GIS, which integrates the number of

HRD biomarker events and is the most commonly used method

for GI status determination in the clinical setting.20 Both these

methods rely on the analysis of deep genome profiling data.

The similar classification performance obtained by GIInger using

datasets with lower sequencing depth indicates that this

approach is a cost-effective alternative for HRD detection. Of

the three biomarker genomic events commonly used in HRD

testing,3 the number of LSTs can be quantified from lpWGS

data and has been shown to allow sample classification accord-

ing to their HRD status.23 The higher analytical performance of

GIInger relative to LST we obtained in the present analysis indi-

cates that the deep learning framework that supports GIInger

goes beyond prior knowledge and expert design and supports

the identification of features that distinguish HRD-positive and

-negative samples using low-coverage data.
To gain initial insights into the value of the deep learning

approach in the clinical setting, we set up a multicenter study

to assess GIInger’s analytical performance in a cohort of 327

FFPE ovarian cancer samples. Despite having been trained us-

ing data from FF breast cancer patient samples, GIInger results

were highly concordant with those of a reference method in

FFPE ovarian cancer samples, suggesting that the features

used by GIInger are not specific to one cancer type. The similarly

high overall concordance obtained between independent cen-

ters supports the method’s robustness. As a testimony to the

test’s ease of implementation, we observe an increase in the

number of patients for which HRD status could be established

relative to the alternative method. In addition, when the present

results are compared to the results of recently developed alter-

native HRD detection solutions validated using a subset of the

original PAOLA-1, we found that GIInger displays a higher accu-

racy, a lower rejection rate than the alternative tests, or both39–44

(Table S4).
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GIInger shares with other methods that rely on detecting the

genomic impact of HRD the limitation that these genome insta-

bility scars accumulate over time, which can result in false neg-

atives calls due to insufficient time since the loss of HRR function

or false positives due to the evolution of PARPi resistance in HRD

tumors. Like for other methods, integrating the GIInger score

with the results of variant-calling analysis in HRR genes should

limit, to some extent, the impact of this constraint. We demon-

strate how GIInger can be integrated in an end-to-end workflow

that also allows determination of BRCA status from targeted

capture with negligible impact on result accuracy. GIInger can

be obtained from the analysis of various types of WGS data.

This means that it is, in principle, possible to integrate GIInger

data generation with any targeted capture method routinely

used in the clinics to identify variants in HRR genes, including

BRCA1 and BRCA2, and establish BRCA status. This ease of

integration with targeted sequencing workflows already routinely

used adds a further advantage to the decrease in implementa-

tion and data generation costs afforded by the sufficiency of us-

ing lpWGS data to establish genome instability using GIInger.

Providing initial support of GIInger’s value in the clinical

setting, we found in a cohort of 195 samples that responses to

PARPi treatment of patients differed depending on the GI status

as classified by GIInger. PFS of patients classified by GIInger as

HRD positive and receiving PARPi olaparib (+bevacizumab) was

extended relative to their placebo (+bevacizumab) counterparts.

This contrasts with patients classified by GIInger as HRD nega-

tive who presented similar PFS as the placebo control group.

These preliminary results support the use of GIInger for patient

stratification. It is important to note that in this study, GIInger

has been tested on retrospective data and found to be effective

in determining whether a patient will benefit from PARPi. Future

randomized trials on larger cohorts are required to fully establish

its clinical utility.

In summary, GIInger is a deep learning method that allows ac-

curate stratification of HRD samples, including FFPE, based on

lpWGS data. The accuracy of this method is comparable to

that obtained using well-established methods that typically

require genomic data that are either more expensive or harder

to obtain, making this a promising solution for standardized

HRD testing in the clinical setting.

Limitations of the study
Similar to other methods that rely on the evaluation of genomic

scarring caused by HRD, GIInger alone does not provide real-

time information regarding HR function in patients. For example,

patients where reversal mutations lead to PARPi resistance

would result in false positive calls for clinical response if genome

scarring alone was used to predict response to treatment. This

limitation can be accounted for by integrating information on

HRR gene status, particularly BRCA1 and BRCA2, or by using

methods that measure HRR function.

In addition, and like other methods that use genomic scarring

caused by loss of HRR function to stratify patients, analysis of

samples with low tumor content may lead to false negatives

due to the reduced signal coming from tumor cells. Approaches

that allow flagging of results from samples with likely low tumor

content minimize the impact of this limitation.
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Further work is now required to assess the value of GIInger in

other cancer types, such as prostate cancer,45 where PARPi has

already been shown to be valuable as the first line of treatment

for HRD-positive patients.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Maxwell� CSC DNA FFPE Kit Promega Cat#AS1350

Maxwell� 16 FFPE Plus LEV DNA

Purification Kit

Promega Cat#AS1135

GeneReadTM DNA FFPE Kit Qiagen Cat#180134

AllPrep DNA/RNA FFPE Kit Qiagen Cat#80234

QubitTM dsDNA HS Quantification Assay Kit Thermo Fisher Scientific Cat#Q32851

SOPHiA DDMTM Dx Homologous

Recombination Deficiency Solution

SOPHiA GENETICS Cat#BS0121ILLCSMY08-32

Myriad myChoice� CDx HRD

Companion Diagnostics test

Myriad Genetics N/A

Deposited data

Breast cancer WGS FF sample data and

associated patient information

European Genome-phenome Archive (EGA) EGA: EGAS00001001178

HRD scores for breast and ovarian

cancer samples

Davies et al.18 N/A

PAOLA-1 ovarian cancer clinical trial data

with available treatment responses

Ray-Coquard et al.7 N/A

Software and algorithms

biopython 1.78 Python https://biopython.org/

cython 0.29.2 Python http://cython.org/

h5py 2.10.0 Python http://www.h5py.org

keras 2.4.3 Python https://github.com/keras-team/keras

lifelines Python https://github.com/CamDavidsonPilon/lifelines

matplotlib-base 3.3.4 Python https://matplotlib.org/

more-itertools 8.0.5 Python https://github.com/more-itertools/more-itertools

numpy 1.18.5 Python https://www.numpy.org

pandas 1.2.0 Python https://pandas.pydata.org/

pillow 8.1.0 Python https://python-pillow.org

pybedtools 0.8.1 Python https://github.com/daler/pybedtools

pylatex 1.4.1 Python https://github.com/JelteF/PyLaTeX

pysam 0.15.3 Python https://github.com/pysam-developers/pysam

pytest 6.1.1 Python https://docs.pytest.org/en/latest/

python 3.7.6 Python https://www.python.org/

scikit-learn 0.24.0 Python http://scikit-learn.org

scipy 1.4.1 Python https://www.scipy.org

seaborn 0.11.1 Python https://seaborn.pydata.org

statsmodels 0.12.1 Python https://www.statsmodels.org/stable/index.html

tensorboard 2.4.1 Python https://github.com/tensorflow/tensorboard

tensorflow 2.3.0 Python https://www.tensorflow.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Zhenyu Xu (zxu@

sophiagenetics.com).
Cell Reports Medicine 4, 101344, December 19, 2023 e1
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d WGS data from FF breast cancer samples and associated patient information data were downloaded from the European

Genome-phenome Archive (EGA), and the accession number is listed in the key resources table. They are available upon

request if access is granted. To request access, contact EGA and apply for access via the ICGC Data Access webpage.

d The data generated for FFPE ovarian cancer clinical samples reported in this study cannot be deposited in a public repository

because they were used under license for the current study and therefore are not publicly available. To request access, contact

the authors of the PAOLA-1 study7 and/or the relevant contacts (for details, see list of authors and affiliations) of the following

institutions: Vienna General Hospital, Center Léon Bérard, European Institute of Oncology, Istituto Nazionale Tumori Pascale,

and Institut de Cancérologie de Lorraine.

d GIInger is available as part of the SOPHiA GENETICS SOPHiA DDM platform.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All information regarding humanmaterial was managed using anonymous numerical codes, and all samples were handled in compli-

ance with the Helsinki Declaration. All patients involved in the study gave their informed consent, and the study was approved by:

d The institutional ethics board of the Institut de Cancérologie de Lorraine.

d The Medical University Vienna (2295/2020 positive vote),

d The European Institute Review Board (UID 2386),

d The Ethical Committee of the Pascale Institute,

d The Comité de Protection des Personnes (EudraCT number: 2014-004027-52; reference: GINECO-OV125b/ENGOT Ov25).

In the original FF breast cancer sample set,18 4 out of 560 samples were derived frommale patients, reflecting the sex-related inci-

dence rate in the general population. The subset used in the present study included a single male sample (PD18730) which was used

in the test dataset. While both GIInger and HRDetect reported the same GI status for this sample, the absence of male samples in the

training dataset possibly limits GIInger’s explanatory power for this sample group. Due to its sex-specific incidence, ovarian cancer

FFPE samples were exclusively derived from female patients.

METHOD DETAILS

DNA extraction
The sample tumor content was obtained by estimating the percentage of tumor cells on hematoxylin and eosin-stained slides.

Methods for extracting DNA from FFPE tissue sections used according to the manufacturer’s instruction in the multicenter study

include: Maxwell CSC DNA FFPE Kit (Promega; Cat#AS1350), GeneRead DNA FFPE Kit (Qiagen; Cat#180134), AllPrep DNA/RNA

FFPE Kit (Qiagen; Cat#80234), and Maxwell 16 FFPE Plus LEV DNA Purification Kit (Promega; Cat#AS1135).

DNA was quantified using the Qubit dsDNA HS Quantification Assay Kit (Thermo Fisher Scientific; Cat|Q32851).

DNAquality was assessed by analyzing the fragment size distribution of the sample using the Fragment Analyzer (Agilent). TheDNA

quality number (DQN) for each sample was determined as the fraction of DNA fragments larger than 300 bp using the DQN function of

the Fragment Analyzer software, with the DQN fragment length threshold set to 300 bp.

At least 50 ng DNA extracted from representative FFPE tumor tissue blocks (except one sample where 44 ng were reported) were

used for library preparation. The clinical samples’ properties are listed in Table S1.

Library preparation and sequencing
Whole-genome and targeted libraries were prepared using SOPHiAGENETICS library preparation kit LPIII. First, 50 or 100 ng of FFPE

DNA input was fragmented, end-repaired, and A-tailed, followed by ligation to Illumina-compatible adapters. Ligation products were

purified using AMPure beads (Beckman Coulter) and amplified by PCR for 8 or 10 cycles. Amplified libraries were cleaned up using

AMPure beads. The obtained libraries were used either at this step as WGS libraries or further enriched for targeted sequencing as

follows: Libraries were pooled and mixed with human Cot-1 DNA (Life Technologies) and xGen Universal Blockers-TS Mix oligos (In-

tegrated DNA Technologies) and lyophilized. Pellets were resuspended in a hybridization mixture, denatured for 10 min at 95�C, and
incubated for 16 h at 65�C in the presence of biotinylated probes (xGEN Lockdown IDT). The probe panel spanned 157 kb and covers

a set of clinically relevant genes, including genes implicated in HRR-related genes. Probe-hybridized library fragments were captured

with Dynabeads M270 Streptavidin (Invitrogen) and subsequently washed. The captured libraries were amplified by PCR for 15 cy-

cles and cleaned up using AMPure beads (Beckman Coulter).
e2 Cell Reports Medicine 4, 101344, December 19, 2023
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Whole-genome sequencing libraries were sequenced to approximately 10M fragments per sample. When whole-genome and tar-

geted libraries were sequenced for the same sample, libraries were loaded to a flow cell in a 67–33% ratio and sequenced to approx-

imately 16 M fragments per sample corresponding to median�1–2x whole-genome coverage and�5500x coverage in the targeted

regions using Illumina instruments (NovaSeq 6000, NextSeq 550, or NextSeq 550 Dx) with 150 bp paired-end reads. Results for the

analysis of the target-enriched libraries are not included in the present study. With the exception of the 124 samples for which whole-

genome sequencing and targeted capture were also generated separately and for the purpose of comparison of the results between

combined and standalone data, the results presented in this study were obtained using the SOPHiA DDM Dx Homologous Recom-

bination Deficiency Solution (SOPHiA GENETICS; Cat#BS0121ILLCSMY08-32).

Clinical sample sequencing data processing and interpretation
Read alignment to the reference human genome (hg19), read filtering, and variant calling was performed using the SOPHiA GE-

NETICS analysis workflow. Briefly, after read mapping adaptors were trimmed, mis-priming events were removed and read softclip-

ped regions were realigned. Read fragments shorter than 21 bp were excluded. The resulting alignment was used for variant calling

using the SOPHiA GENETICS pipeline and to prepare coverage profiles.

Processing of publicly available WGS data for training GIInger
BAM files for WGS data for FF breast and ovarian cancer with BRCA-deficiency status were downloaded from the Wellcome Trust

Sanger Institute and the International Cancer Genome Consortium ICGC available at the European Genome-phenome Archive EGA

(https://www.ebi.ac.uk/ega/studies/EGAS00001001178). This cohort was divided into training (173 breast cancer samples) and test

sets (101 breast cancer samples). We obtained HRD scores for these samples from the HRDetect publication.18

Coverage profile preparation
The human reference genome (hg19) was divided into contiguous non-overlapping intervals of 100 kb (hereafter referred to as

‘‘bins’’). Bins containing blocklisted regions, including regions known to introduce bias in coverage, were excluded. These regions

included: i) centromere and telomere positions as obtained from UCSC for hg19, ii) genome assembly gaps in the reference genome

(N’s), iii) regions with extreme GC content and high mappability, and iv) sex chromosomes. In the case of NGS data generated in a

workflow combining both lpWGS and targeted sequencing (an optional step in SOPHiA DDMDxHRD solution), bins overlapping with

enriched regions or regions highly homologous to enriched regions were also discarded. The raw coverage count for each bin was

obtained by counting the number of mapped pair-end reads (fragments) to the respective bin. Fragments mapping across two bins

were assigned to the bin with the largest overlap. Only unambiguously mapped fragments were considered in the coverage

calculation.

For TCGA datasets and to mimic lpWGS, datasets were down-sampled to 10 million pair-end reads (�1x coverage). The proba-

bility of observing k mapped fragments within a given genomic bin according to the multinomial distribution was considered:

PðK = kÞ= n!

k!ðn � kÞ!p
kð1 � pÞn� k

where n denotes the number of fragments after down-sampling and p is the prior probability that a fragment drawn will fall within the

considered bin of the coverage profile defined as p =Cbin/Ctot, whereCbin andCtot is the observed coverage for the bin considered

and the sum of the raw coverage across all bins, respectively.

Coverage across 100kb bins was normalized by dividing the raw coverage count for the bin by the sample’s mean coverage. We

fitted a lowess regression function to the raw coverage versusGCcontent of the bins and obtained corrected normalized coverage by

dividing the normalized coverage by the result of the lowess fit.

To generate the inputmatrix of the CNN, we further smoothed the 100kb corrected normalized coverage, per chromosome arm, by

considering the median corrected normalized coverage across non-overlapping smoothing windows (in 50 to 30 direction). The
smoothing window width (between 2.5 and 3.5Mbp) used for each chromosome arm was chosen to minimize the size of the last

incomplete smoothing bin. The normalized coverage information in this last incomplete smoothing bin was not included in the

CNN input matrix.

We arranged the smoothed normalized coverage bins into a 2D array with a width of 87 and a height of 22 bins. The width of the

array corresponds to the sum of the maximum number of smoothed bins seen in chromosome p- and q-arms. The height corre-

sponds to the number of autosomes. Smoothed normalized coverage bins for the 22 autosomes were aligned with respect to their

centromeric bins. For each chromosome, we attributed undefined values (e.g., ‘‘Not A Number’’ float values) to the bins (undefined

bins) that would extend the chromosome size beyond the end of the chromosome’s telomere position. We calculated the mean and

the standard deviation across all defined smoothed normalized coverage bins. Next, we used backward and forward filling to assign

values to undefined bins in each chromosome’s p- and q-arm, respectively. Finally, we applied a Z score transformation to the entire

spatially arranged smoothed normalized coverage matrix using the mean and standard deviation calculated using defined bins.
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Data augmentation
173 breast cancer samples were considered in the training set (35% HRD-positive, 27% BRCA1/2 mutated) to generate the data

augmented (DA) dataset. To generate one DA sample, 22 autosomes were randomly sampled from N original tumor samples with

the same HRD status (Figure S2A). N is a number between 2 and 22 drawn from an exponential distribution with an associated prob-

ability density function:

f

�
x;

1

b

�
=
1

b
e� x

b

where b = 3 denotes the mean and setting it to 3 expands the tail of the probability density function to higher range which ultimately

allows us to include more samples in the mix: P
�
x > 14; 1

b
= 1

3

�
= 0:01.

We accounted for the impact of sample-specific differences in purity and ploidy by normalizing the purity/ploidy ratio (m) of all sam-

ples (N) used to generate one data augmented sample. Among N, a sample with minimalm was determined, and the other samples

were in silico diluted (decreased the sample purity) until their purity/ploidy ratio was equal to m (Figures S2B and S2C). Purity and

ploidy information for each sample was provided in the HRDetect manuscript.18

DA samples (Figure S2D) were obtained by combining chromosomes from samples with normalized purity/ploidy ratio, ensuring

the amplitude of coverage differences observed for a given ploidy was constant across chromosomes. This approach introduced

biases in the purity/ploidy ratios of DA samples that tended to be lower than what was observed in the original samples (Figure S2E).

To account for this bias, we applied a Metropolis-Hastings and Gibbs sampling method and ensured that the purity/ploidy distribu-

tion of the 3,760 retained DA training samples matched that of the original samples (Figure S2F). The rejection sampling algorithm

stopped when no new samples could be drawn after 100,000 iterations. This approach ensured that after data augmentation, the

properties of the training data reflected those of the real data.

Convolutional neuronal network
173 patient-derived and 3,760 data augmented samples were used in training the CNNmodel (GII) to predict a sample’s HRD status.

The input to GII were smoothed coverage profiles. A 2-dimensional heatmap of the smoothed normalized coverage depth was ob-

tained for the sample (see Figure 1A). Each row in the heatmap corresponds to one autosome, ordered from 1 to 22, and each column

is a genome bin of 3Mbp (ordered from 50 to 30). Chromosomes were aligned with respect to their respective centromeres.

The GIInger architecture included 3 convolution blocks (convolution, batch normalization, and max-pooling) whose output was

aggregated by an average pooling layer. The 48 features extracted by these convolution steps were flattened into a 1D feature vector

and passed to a fully connected layer with a single output node (whose output is a scalar) that was passed through a corresponding

sigmoid activation function. Please note that throughout this study, we are referring to the CNN output’s pre-sigmoid score, which

has the same predictive power as the post-sigmoid score but allows easier sample discrimination, as its dynamic range is not

restricted to [0, 1].

Five CNNmodels with the described architecture and initiated using a different random seed were trained following a 5-fold cross-

validation procedure. Each model was trained using a different set of data used for training (80%) and validation (20%).

Each model was trained for a maximum of 1000 epochs with a batch size of 64 on eight Intel Xeon(R) Platinum 8168 CPU @

2.70GHz CPUs. During training, categorical cross-entropy loss between the target and predicted outputs was minimized using

Adam optimizer.46 Class weights, defined according to Equations 1 and 2, were used in the loss function to account for the difference

in the number of HRD positive and negative samples available for training.

Wneg =
1

2
3
Nneg+Npos

Nneg

(Equation 1)
Wpos =
1

2
3
Nneg+Npos

Npos

(Equation 2)

Wneg is the weight associated to HRD negative samples.

Wpos is the weight associated to HRD positive samples.

Nneg is the number of HRD negative samples available.

Npos is the number of HRD positive samples available.

The learning rate of the Adam optimizer was first set to 0.005 and reduced by a factor of 5 (minimal accepted value = 0.00001) if the

decrease of loss function value was <0.0005 for 10 epochs. In addition, early stopping was triggered if the decrease in loss function

value was <0.0001 over 100 epochs. Using this approach, on average, early stopping for the 5 models was triggered after 244

epochs.
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When used for testing, GIInger considers each input using the 5 trained models. The GIInger output is the average of outputs of the

5 trained models used as the predicted output. Demonstrating the absence of overfitting to the training data of the GIInger CNN

model, the binary cross-entropy functions obtained using the training and the validation datasets for the models are comparable

(Figure S9).

To establish the GIInger classification cut-off threshold, we considered 138 clinical ovarian cancer FFPE samples with an estab-

lished HRD status. The analysis results for these clinical samples that were processed as described here are not included in the pre-

sent manuscript. We defined the GIInger threshold as the median cut-off value that maximized the overall percent agreement be-

tween GIInger classification and the HRD status assigned to the samples. To aid the interpretation of the GIInger scores, we

subsequently shifted the threshold to 0.0, so positive GIInger scores correspond to HRD-positive status and vice versa. The score

shift does not affect the analytical performance.

Code availability
The deep learning frameworks used here (TensorFlow resp. Keras) are available at https://www.tensorflow.org/resp. https://keras.io/

. The Python libraries used for computation and plotting of the performance metrics (Pandas, Numpy, SciPy, Scikit-Learn, Lifelines,

MatPlotLib and Seaborn) are available under https://pandas.pydata.org/, https://numpy.org/, https://www.scipy.org/, https://

scikit-learn.org/stable/, https://github.com/CamDavidsonPilon/lifelines/, https://matplotlib.org/and https://seaborn.pydata.org/,

respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analytical performance evaluation
Algorithm performance was assessed through the Area Under the Curve (AUC) in Receiver Operating Characteristic (ROC) profiles

with either BRCA mutational status or HRD classification (according to HRDetect) as reference method using the scikit-learn python

library (v.0.24.0) ROC and AUC functions (default parameters). LOH, TAI,13 and LST14 for breast FF samples used in the analysis were

obtained from Supplementary Table 17 of Nik-Zainal et al.47 HRD12 scores for these samples were obtained through HRDetect

manuscript.18

To establish the percent agreement between GIInger and the reference method, we classified patient samples as follows: patients

classified by GIInger and reference method as GI positive and negative were classified as True Positive and Negative (TP and TN

respectively); GIInger GI positive samples classified using reference method as negative were considered to be False Positives

(FP); and GIInger GI negative samples classified by reference method as positive were considered to be False Negatives (FN). We

determined overall percent agreement (OPA) as (TP + TN)/(TP + TN + FP + FN); Positive percent agreement (PPA) as TP/(TP +

FN) and Negative percent agreement (NPA) as TN/(TN + FP).

The 95% confidence interval for the OPA was computed with respect to CLSI guideline EP12A2E:

OPA Q1 = 2 � ðTP + TNÞ+ 1:96 � �2
OPA Q2 = 1:96 � SQRT½1:96 � �2 + 4 � ðFP + FNÞ � ðTP + TNÞ = ðTP + TN + FP + FNÞ�
OPA Q3 = 2 � ðTP + TN + FP + FN + 1:96 � �2Þ
OPA 95 CI lower = 100:0 � ðOPA Q1 � OPA Q2Þ = OPA Q3
OPA 95 CI upper = 100:0 � ðOPA Q1 + OPA Q2Þ = OPA Q3

The overall rejection rate for analytical performance evaluation was calculated as N_rejected/N_tot with N_rejected being the num-

ber of samples reported as "Inconclusive" or "Rejected" and N_tot being the total number of samples considered. The sample in-

clusion criteria used to select the 327 samples were the following (samples were still included if the following information was not

available): sample type: FFPE; cancer type: Ovarian; DQNR3; tumor contentR30%; NGS library yieldR250 ng. Replicate samples

were removed such that only the replicate with the highest coverage available for GIInger analysis was retained.

Association with clinical outcome
Progression-free survival, defined as the duration between randomization and investigator-assessed disease progression or death,

was the primary endpoint of the trial PAOLA-1.7 Progression-free survival was assessed in the intention-to-treat population, defined

as all patients who were randomized, regardless of the treatment received.
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In each subgroup of patients (HRD-positive and HRD-non-positive), progression-free survival was compared between the olaparib

group and the placebo group using the stratified log rank test. The Kaplan-Meier method was used to estimate PFS curves and me-

dian PFS timeswith associated 95%CIs. Hazard ratios were estimated fromCox proportional hazardsmodels adjusted on treatment

group, and associated 95% CIs and p values were provided.

To assess the association between HRD status and PFS outcome, the statistical analyses were done with R version 4.2.0 (main

packages: survival v.3.3–1, survminer v.0.4.9, ggplot2 v.3.4.0).

Comparison between the number of fragments
The number of 2x150 bp fragments needed for 1x whole genome sequencing coverage is �10 million. Due to the requirement for

determining LOH events genome-wide of GIS, this method relies on targeted capture of �26,500 SNPs at an average depth

of >400x.48 Assuming an on-target rate between 50 and 80%, which is typical for this type of experiment, between 21.2 and 13.2

million fragments need to be sequenced to ensure appropriate coverage on these positions.

Comparison between GIInger and BRCA status between standalone and combined workflow
To establish percentage agreement betweenGIInger score andBRCA status obtained using data generated using lpWGSor targeted

capture alone or as part of the lpWGS+captureworkflow, we classified patient samples as follows: patients classified in the sameway

using standalone or combined workflow were classified as True Positive and Negative (TP and TN respectively); Samples classified

as BRCA or GI positive using the standalone method and as negative using the combined workflow were considered to be False

Negatives (FN); Samples classified as BRCA or GI negative using the standalone method and as positive using the combined work-

flow were considered False Positives (FP).

Twenty (20) variants of unknown significance (VUS) or pathogenic variants in BRCA were reported by SOPHiA DDM (VAF> 5%) in

the 124 samples analyzed using data collected from either standalone or combined workflows. Nineteen (19, 95%) were found using

data collected using both workflows. One variant of unknown significance was detected in the combined workflow (VAF = 5%), but

not in the capture-only workflowwas below 5%. This variant was excluded from the analysis of variant fraction concordance between

BRCA variants found using the 2 workflows.
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