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SUMMARY
The data-intensive fields of genomics andmachine learning (ML) are in an early stage of convergence. Geno-
mics researchers increasingly seek to harness the power of ML methods to extract knowledge from their
data; conversely, ML scientists recognize that genomics offers a wealth of large, complex, and well-anno-
tated datasets that can be used as a substrate for developing biologically relevant algorithms and applica-
tions. The National Human Genome Research Institute (NHGRI) inquired with researchers working in these
two fields to identify common challenges and receive recommendations to better support genomic research
efforts using ML approaches. Those included increasing the amount and variety of training datasets by inte-
grating genomic with multiomics, context-specific (e.g., by cell type), and social determinants of health data-
sets; reducing the inherent biases of training datasets; prioritizing transparency and interpretability of ML
methods; and developing privacy-preserving technologies for research participants’ data.
INTRODUCTION

Artificial intelligence is the science and engineering of making

intelligent machines, especially intelligent computer programs.1

Within the broader field of artificial intelligence, machine learning

is the study of computer algorithms that improve automatically

through experience.2 Genomics and machine learning have a

shared history dating back nearly a quarter century, with the first

applications of machine learning methods on DNA sequence

data being reported soon after the beginning of the Human

Genome Project. Nowadays, genomics is inherently a data-

intensive field of research; in fact, since the advent of next-gen-

eration DNA-sequencing methods, truly massive volumes of

exome, genome, and transcriptome sequencing data have

been generated, often with rich and complex metadata annota-

tions. This rich data landscape, which includes not just

sequencing data but additional layers of information such as

functional genomics and single-cell profiling, provides a natural

resource for the use of machine learning to derive biologically

and clinically meaningful insights.

Ever since early uses of machine learning in genomics (e.g., for

defining protein-coding sequences in Sanger sequencing data)

through to the current era of massively parallel DNA sequencing,

machine learning has consistently been a versatile tool for anno-

tating genomes and extracting knowledge from raw DNA

sequence data.3 Diverse applications of machine learning in ge-

nomics include genome sequence assembly, gene identifica-
This is an open access article under the CC BY-N
tion, annotation of gene function, genomic variant calling,

modeling of sequence evolution, genome-wide association

and genotype-phenotype predictions, inferring gene interac-

tions, and many more.4 This list of applications grows much

larger when considering the other omics sciences, such as tran-

scriptomics, proteomics, metabolomics, and metagenomics.

Particularly in the last decade, through a combination of acceler-

ated basic research in artificial intelligence coupled with ad-

vances in computational hardware, the application of machine

learning to biomedical research questions has seen a sharp ac-

celeration. This surge is not unique to genomics and has

occurred with many biomedical research fields (e.g., those

leveraging imaging data and electronic health records); however,

the application of machine learning to each of these data types

presents unique challenges that need to be addressed to

empower the next phase of biomedical machine learning

research. Such challenges include both domain-specific tech-

nical hurdles (e.g., developing standards for artificial intelligence

‘‘readiness’’ that are optimized for individual data types) as well

as challenges that are common across all fields of biomedicine

(e.g., the requirement for transparency and interpretability in ma-

chine learning algorithms, defined as the ability for humans to un-

derstand and be able to explain, in human terms, the decisions or

predictions made by these algorithms).

In this context, the National Human Genome Research Insti-

tute (NHGRI), which spearheads genomics research at the US

National Institutes of Health,5 seeks to help define a path forward
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for allowing machine learning to be used productively in geno-

mics research. While the examples above represent some

ways in which machine learning has already organically contrib-

uted to genomics research, the anticipated acceleration of de-

velopments and advances motivated the NHGRI to bring mem-

bers of the genomics and machine learning communities

together with bioethics researchers and social scientists to

create a roadmap for convergence of these three fields in an

ethical, transparent, and equitable manner. This convening role

was approached through multiple routes, such as conversations

with NHGRI awardees in these areas as part of the institute’s

strategic planning process (Table 1)5 and hosting events such

as the NHGRI’s 2021 ‘‘Machine Learning in Genomics: Tools,

Resources, Clinical Applications, and Ethics’’ workshop. Cumu-

latively, these community engagement exercises served to iden-

tify opportunities and obstacles underlying the application of

machine learning methods to basic genome sciences and

genomic medicine, to define the key scientific areas in genomics

that could benefit frommachine learning analyses, and to build a

map for the NHGRI’s unique role in pursuing those efforts.

Several challenges facing the convergence of machine learning

and genomics research and a set of recommendations were

identified for the NHGRI to consider in developing its strategic

priorities in this area (briefly described in the following section

and summarized in Figure 1).

CENTRAL THEMES FOR MACHINE LEARNING IN
GENOMICS

Data, algorithms, and other resources
Machine learning approaches in genomics and other biomedical

research fields depend on comprehensive and systematic

FAIRness of training datasets (Table 1)6; hence, early and easy

access to both raw and processed datasets coming out of geno-

mics research networks and consortia should be promoted. As

an extension of this theme, more DNA sequencing data need

to be generated from across different branches of the evolu-

tionary tree to enable the development of models that use evolu-

tionary and information theory principles. In addition, the devel-

opment of machine learning approaches that leverage and

integrate multiple data types (e.g., population genomics, func-

tional genomics, and single-cell genome-wide imaging data) to

generate biological insights is also a high priority. While data

exist from hundreds of thousands of genome-wide association

study (GWAS) samples, only a few thousand have expression

quantitative trait locus (eQTL) data available,7 and available

gene expression data are very limited by the specific biological

context from which they were collected (being mostly from adult

tissue cell lines). Ideally, a variety of data types (epigenetic,

expression, and genome sequencing) derived from different

cell types, sample collection modalities, and sampled popula-

tions should be accessible to machine-learning methods devel-

opers. Training datasets should also be augmented with data

derived from statistically designed, model-driven experiments,

including perturbation assays.

Also of critical importance is the availability of experimental

metadata annotation, with such shared genomics metadata

optimized for machine learning approaches (including not only
2 Cell Genomics 4, 100466, January 10, 2024
the sample descriptions in a structured standardized format

but also quality control parameters). In this context, best prac-

tices for robust machine-learning-amenable dataset generation

with extensive, standardized metadata should be developed,

including ways to annotate perturbation datasets. Current stra-

tegies for releasing processed large-scale genomics data are

geared toward formats designed for genome browsers or

sequence data analysis pipelines rather than as input for ma-

chine learningmodels. This places an additional burden on users

who would like to instead apply machine learning-based ana-

lytics to the datasets. As an example of good practices in this

area, the NIH Common Fund Epigenomics Program (Table 1)

was highlighted. Through the combined efforts of federal science

administrators and awardees who were part of the program, a

strong and consistent focus was maintained throughout the pro-

gram life cycle on creating data that were made accessible from

an early stage (almost 2 years before their initial paper was pub-

lished) and were accompanied by consistently formatted and

contextually deep metadata files derived from a consortium-

wide ‘‘matrix of experiments.’’8,9 Alongside the raw data and

quality control metrics, the availability of such metadata allowed

the final dataset to become a substrate for development of mul-

tiple machine-learning-based epigenome analysis tools.10,11

As they stand, the majority of machine learning algorithms

used in genomics are typically developed for other research

fields and retrospectively optimized for genomics research. An

increased emphasis is needed on machine learning models

that are built specifically with the challenges facing genomics be-

ing kept in mind that are not only predictive but can also be used

to infer causality from genomic changes. To facilitate this, testing

of functional biology insights derived from machine learning ap-

plications deployed on existing observational datasets would

provide a greater experimental knowledge base for machine-

learning-based causal modeling in genomics. This is particularly

relevant, for example, when studying how genetic variation asso-

ciates with phenotype and gene function, such as to understand

the genomic architecture of complex disease phenotypes, and

how variants impact gene expression. For complex disease phe-

notypes, while linear regression models may be used as a base-

line, more complex non-linear methods like neural networks and

random forests may yield new insights when there is evidence of

non-linearity (especially when large training datasets are avail-

able). For example, large-scale biobank programs, such as the

US-based All of Us Research Program, the UK Biobank, or na-

tional networks such as the Australian Genomics-supported

Program in Advanced Genomic Investigation (PAGI) (Table 1),

are fertile grounds for machine learning in genomic medicine,

especially due to the comprehensive, high-quality, and multi-

modal data that are being collected in such projects. Applying

machine learning in such contexts could elucidate the role of ge-

notype-phenotype-environment interactions and the genetic ef-

fects shared across traits.

The accuracy and performance of most supervised machine

learningmodels are inherently linked to the availability of suitably

large training datasets; however, existing large and machine

learning-amenable datasets are few and far between in geno-

mics. Therefore, newer and less data-hungry methods that can

still yield rich mechanistic and causal models in genomics are



Table 1. Summary of web resources for machine learning in genomics

Web resource URL Brief description

NHGRI strategic planning process https://www.genome.gov/

about-nhgri/strategic-plan/overview

NHGRI-led community engagement

process to create a compendium of

ideas and opportunities for human

genomics research in the coming decade

FAIR data principles https://www.go-fair.org/fair-principles/ guidelines to improve the findability,

accessibility, interoperability, and

reusability of digital assets with an

emphasis on machine actionability

NIH Common Fund

Epigenomics Program

https://commonfund.nih.gov/epigenomics NIH-funded program to accelerate

understanding of how genome-wide

chemical modifications to DNA regulate

gene activity without altering the

DNA sequence itself

All of Us Research Program https://allofus.nih.gov/ NIH program aiming to collect and study

data from one million or more people

living in the US to enable individualized

disease prevention, treatment, and care

UK Biobank https://www.ukbiobank.ac.uk/ a large-scale biomedical database and

research resource containing in-depth

genetic and health information from

half a million UK participants

Program in Advanced Genomic

Investigation (PAGI)

https://www.australiangenomics.org.au/

accelerating-precision-medicine-

through-machine-learning/

Australian initiative to use machine l

earning and artificial intelligence to

uncover unprecedented insights from

genomic and clinical information

Data Science for Health Discovery

and Innovation in Africa (DS-I Africa)

https://dsi-africa.org/ Africa-centered program harnessing

data science technologies to develop

solutions to that continent’s most

pressing public health problems

NIH Common Fund Bridge2AI program https://commonfund.nih.gov/bridge2ai NIH program setting the stage for

widespread adoption of artificial

intelligence (AI) that tackles complex

biomedical challenges

NIH AIM-AHEAD program https://datascience.nih.gov/

artificial-intelligence/aim-ahead

NIH program to increase the participation

and representation of researchers and

communities currently underrepresented

in the development of AI/machine

learning (ML) models

GenoMed4All https://genomed4all.eu/about/ European Union project aiming to deploy

‘‘white box’’ AI models to diagnose, treat,

and predict hematological diseases

Cell Maps for AI (CM4AI) https://cm4ai.org/ a project seeking to map the spatiotemporal

architecture of human cells and use these

maps toward the grand challenge of

interpretable genotype-phenotype learning

NHGRI Machine Learning in

Genomics workshop

https://www.genome.gov/event-calendar/

machine-learning-in-genomics-tools-

resources-clinical-applications-and-ethics

NHGRI-hosted workshop to stimulate

discussion around the opportunities and

obstacles underlying the application of

ML methods to basic genome sciences

and genomic medicine

Perspective
ll

OPEN ACCESS
needed.Methods such as zero-shot learning, where themodel is

able to learn even in contexts not observed during training, may

have applications in genomic medicine.12 As an example, a

model originally trained on cell culture data could be subse-

quently used on patient-derived xenograft data and eventually

guide patient treatment plans. Generative adversarial networks
(GANs) and adversarial training generate ‘‘realistic’’ simulated

data to train machine learning methods by combining small

amounts of biologically observed data with simulated data.13

This creates a larger training dataset that is expected to have

the same characteristics as the original dataset. However, the

imbalance between effectively unlimited simulated data versus
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Figure 1. Summary of challenges and recommendations from machine learning in genomics

Perspective
ll

OPEN ACCESS
limited observed biological data could result in machine-learning

models that more closely represent the idiosyncrasies of the

simulator than the actual biology of the studied system. Given

that for some studies, such as evolutionary genetics and ances-

tral population studies or forensic DNA analyses, high-quality

biological samples for genomic studies are limited, it is critical

to delineate the circumstances in which synthetic training data-

sets are useful and, when they are, how such data can be gener-

ated to be representative of actual biological or population data.

To maximize the availability of suitable training datasets,

which may currently be compartmentalized in different data re-

positories under different institutional data governance and ac-

cess policies, and national and international data access regula-

tions (e.g., in the Data Science for Health Discovery and

Innovation in Africa [DS-I Africa] program) (Table 1), federated

data infrastructure for genomics is a crucial need. Specifically,

federated data technology enables virtual unification of data

from different sources under a uniform data model, while the un-

derlying data stores operate autonomously and without data
4 Cell Genomics 4, 100466, January 10, 2024
leaving their original locations. This would allow for a larger num-

ber of currently isolated genomics training datasets to become

accessible to machine learning models, which could run feder-

ated queries as though the data were combined. Together with

such federated data infrastructures, privacy-preserving technol-

ogies enabling safe and ethical data access should be

pursued.14

Genomic medicine and ethical, legal, and social
implications (ELSI) research
Machine learning models have several applications in the imple-

mentation of genomic medicine such as to recommend diag-

nostic tools and pharmacogenomic therapies based on the

patient’s genetic makeup.15 However, before clinical implemen-

tation of such models can become a widespread reality, it is crit-

ical to address the underrepresentation of many ethnic groups

and the social, environmental, and health disparities prevalent

in clinical research and healthcare datasets.16,17 Machine

learning algorithms may exacerbate inherent biases in the
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training data, leading to biased findings and contravening the

fundamental biomedical ethical principle of ‘‘do no harm’’ (e.g.,

through falsely finding differences in the level of urgent care

needed among equally sick patients from different ethnic

groups).18,19 Additionally, clinically underserved communities

are unlikely to develop trust in machine-learning-guided

genomic-based treatment plans unless health disparities

research is incorporated from the start of the model-building

process. To engender trust in the use of these approaches and

to build a culture of ethical and transparent machine-learning ap-

plications in genomic medicine, partnerships should be pro-

moted among the full spectrum of stakeholders. This includes

clinical research participants, genomics and ELSI researchers,

machine-learning scientists, and advocates for the clinical pop-

ulations being studied (e.g., rare disease community organizers).

As an example of this promoted partnership model, machine-

learning model developers working in clinical settings could be

required to develop an understanding of health disparities

research as a prerequisite for applying their models to patient

data. Such partnerships could also alleviate the concern that

machine-learning algorithms used in genomic medicine may

reduce the role of physicians, which may be attributed to clini-

cians and machine-learning scientists operating in siloed

environments.20,21

Concurrently with inclusion of underrepresented minorities,

other ELSI considerations include establishing standards and/

or guiding principles for explainability, transparency, reproduc-

ibility, trustworthiness, and accountability regarding machine

learning applications in genomic medicine.22 At present, ELSI

research at the interface of machine learning and genomic med-

icine reveals a multitude of scenarios in need of further research

support or regulatory clarification. For example, when treatment

plans for individual patients involve input from machine learning

algorithms, how to assign accountability for adverse clinical out-

comes among healthcare practitioners, regulatory bodies, and

algorithm developers is currently unclear.23 The development

of tools such as feature attribution methods that measure the

impact of each feature on a certain prediction should be pro-

moted, as well as algorithmic impact assessment frameworks

to promote transparency and accountability.24,25 Ultimately,

the application of machine learning approaches in the genomic

medicine and healthcare delivery setting will require partner-

ships and collaborations with US domestic and international reg-

ulatory agencies, such as the US Food and Drug Administration

and its worldwide counterparts.

Workforce development
The rapid expansion of genomics and its applications in preci-

sion medicine, together with the current surge of machine

learning usage in biomedical research, should be put on a sus-

tainable track by adequate investment in multidisciplinary work-

force development, ideally targeting college-level students as a

future resource in addition to doctoral students and postdoctoral

fellows. Current training programs in genomics and machine

learning are typically compartmentalized, as trainees usually

have either experimental or computational exposure to geno-

mics research, and, conversely, computer science and machine

learning students usually have minimal genomics training. To be
able to interpret massive and multidimensional datasets, geno-

mics researchers should be introduced to the fundamentals of

machine learning early in their career path. Vice versa, genomics

offers machine learning practitioners opportunities to solve

fundamental questions in biology and medicine, and hence cor-

responding efforts should bemade to increase knowledge of ge-

nomics fundamentals among that community.26 In addition,

partnerships are encouraged between academic genomics

research institutions and private industries that competitively re-

cruit machine learning scientists with significant remuneration

and benefits. A possible route to such synergies could be

through establishing non-traditional scientist positions in aca-

demic research institutions that offer competitive salaries funded

by industry for research projects that are of interest to both the

academic and corporate stakeholders.

Conclusions
In this perspective, we identify key opportunities and challenges

and set priorities for future activities in support of the adoption of

machine learning approaches in genomics research. Not just at

the NHGRI but also at NIH in general, promoting the conver-

gence of machine learning and biomedicine is viewed as a

high priority. In Figure 1, we have summarized the key challenge

areas for this convergence as viewed through a genomics-

focused lens and plan to address them in the near future, while

also leveraging recent progress made by related activities

at the NIH such as the Bridge2AI and AIM-AHEAD programs or

the European Union’s GenoMed4All project (Table 1). Indeed,

the Bridge2AI program, which has been designed from the

ground up for artificial and human intelligence to work in hand,

has a substantial genomics component through the CM4AI

data generation project, which seeks to map the spatiotemporal

architecture of human cells and use these maps toward the

grand challenge of interpretable genotype-phenotype learning

(Table 1). However, at this time, the gap between the state of cur-

rent datasets and the needs of the field remains massive. While

not all ideas and gaps discussed in this perspective may get ad-

dressed by future NHGRI- and NIH-supported research pro-

grams, through a combination of community input solicited by

the NHGRI and detailed analysis of existing NIH funding portfo-

lios in relevant areas, we expect to develop an evidence-based

strategy for the NHGRI to support the convergence of machine

learning and genomics.
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