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Machine learning has been leveraged for image analysis applications throughout amultitude of subspecialties. This po-
sition paper provides a perspective on the evolutionary trajectory of practical deep learning tools for genitourinary pa-
thology through evaluating the most recent iterations of such algorithmic devices. Deep learning tools for
genitourinary pathology demonstrate potential to enhance prognostic and predictive capacity for tumor assessment in-
cluding grading, staging, and subtype identification, yet limitations in data availability, regulation, and standardiza-
tion have stymied their implementation.
Introduction

Multiple innovations and increasing use of digital pathology
workflows has led to more research in the area of computational
pathology and artificial intelligence (AI)-based tools for genitourinary
pathology diagnositcs. Increased emergence of deep learning tools has
followed suit with advances in technology, e.g., increased image
capture and processing speeds,1 enabling the development of programs
tasked to evaluate differences in cancer grading. Prostate cancer iden-
tification and grade-assessment has been the initial and primary focus
for AI-based approaches in GU pathology, with comparative paucity
seen in the development and interrogation of such tools purposed for
other GU foci, e.g., bladder, testis or kidney.2–5 This review paper
from the Genitourinary Pathology Society (GUPS) seeks to distinguish
the merits of digital pathology-based AI tools developed for GU prac-
tice through discussion of their diagnostic, prognostic, and therapeutic
potential while offering insight on future utility and challenges cur-
rently preventing full implementation.
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Digital pathology: Roadway to computational pathology

The rapidly blossoming arena of computational pathology has enabled
the objective diagnosis of whole slide images (WSIs) through optimization
of digital pathology (DP)workflow.6 These innovations have allowed for an
integrated digital workflow in laboratories where pathologists have access
to all the necessary clinical information and images related to the case.
These applications and viewing solutions are web-based and allow for inte-
gration of AI applications. These applications also allow for remote
workflows, clinical decision-support education, and research.7,8 AI-based
machine learning (ML) approaches brought forth through computational
pathology have allowed for sophisticated image analysis software to trans-
lateWSI pixels into numeric data for mathematical models, i.e., algorithms,
to aid pathologist interpretations (Table 1).9

The first documented efforts of computer-aided diagnosis (CAD) in GU
pathology are over 10 years old.10 Initial studies published from 2010 to
2013 presented promising data on 58 biopsy11 and 15–20 radical prostatec-
tomy cases,10,12 demonstrating 90% accuracy in distinguishing benign
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Table 1
Limitations to diagnostic AI implementation.

Limitations Discussion Current and future solutions

Data
Data standardization A considerable volume of data is generated for algorithm development, often derived

from multiple sources, presented via multiple file formats, and analyzed through multiple
AI models. Current analytical methods are non-standardized, consequently predisposing
to variations in classification and poor predictive capacity.

Fostering of a single open-source file format, similar to DICOM in
radiology, to facilitate expeditious access and interrogation.

Data availability and
cost

• Paucity of WSI datasets with pathologist annotations for ground-truth determination
limits employment of supervised learning techniques. The lack of WSI datasets impeding
the analytic capacity of deep learning techniques is emphasized in GUP primarily
pertaining to immunohistochemical (IHC) staining.
• Labeled WSI data is expensive, difficult to acquire, and time-consuming to produce. WSI
data storage costs have posed barriers to digital implementation in many laboratories.

• “Transfer learning,” e.g., pretrained networks, and data
augmentation techniques may be utilized to mitigate the
cumbersome nature of network training and data shortages,
though are not currently capable of acting as substitutes for
pathologist-annotated data
• Increased utilization of unsuperised learning techniques, which
do not require labeld data
• Circumvention of restrictions brought forth by data privacy and
proprietary techniques through open-source accessability in
conjunction with capital leverage for pathologist annotations

Data size Workflow (hardware and infrastructure) limitations, e.g., large network bandwith
requirements to handle large WSI file sizes

Advances in WSI scanning technology and digital data
transmission coupled with decreased costs of implementation on
the horizon

Data quality • High-resolution image reduction techniques, e.g., patch extraction, may compromise
data quality. Higher-level structural information, e.g., tumor extent or shape, may only be
captured through analysis of larger regions.
• Clinical translation of algorithms requires generalizability throughout a wide breadth of
patient populations and clinical institutions. IHC / H&E staining of tissue sections can
vary significantly across laboratories and at intra-laboratory level. Analysis performed on
low-quality tissue, histology slides, or staining will ultimately compromise the validity of
data

• Focused spatial correlation amongst patches, multi-level
magnification patch extraction, utilization of larger patch sizes.
• Normalization techniques, e.g., scale normalization for multi-
ple image aquisition devices with varying pixels sizes, stain
normalization, pixel-wise and patch-wise and semantic segmen-
tation CNN training for enhanced region of interest detection,
flexible thresholding techniques which compromise for varia-
tions in input data luminance.

Data utilization capacity Deep learning systems are currently only able to classify WSI specimens with a single
diagnosis.

• Removal of biological restricitons during algorithmic training
• “Artificial General Intelligence (AGI)” of the future will consist
of advanced algorithms employing multiple levels of
classification and segmentation in conjunction with a litany of
diagnostic deductive variables, mimicking the process of human
conciousness.

Regulation /
medico-legal /
accountability
and/or liability

• Demonstration of algorithm reproducibility on large patient populations containing
outliers and non-representative individuals has caused difficulties for AI development.
• “Black Box” transparency concerns surround the uninterpretable pathway of algorithmic
classification deduction. Segmentation, e.g., extraction, of image objects correlated with
clinical endpoints are hidden from pathologist interpretation.

• AI Models of the future may be used to develop "universal"
tumor grading systems applicable to the entire GU system
through combination of prognostic, morphologic, tumor marker,
and clinical course data.
• Rule extraction’, through which information about
histopathologic features used by an algorithm during its
previously hidden segmentation process, may mitigate such
concerns.
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from malignant cases in 1 study12 and a respective sensitivity and specific-
ity of 0.87 and 0.90 in another.10 Many algorithms for image analysis em-
ploy context-based gland quantification to distinguish benign prostatic
tissue from prostate cancer.10,13

Recent investigations have focused on AI-based prostate cancer detec-
tion using needle biopsy slides,5,14–22 radical prostatectomy slides,23 tissue
microarrays,16,24–26 or, rarely, a combination of radical prostatectomy and
TMA slides.16,27 The current era of technological advancement has fostered
development of computational tools purposed for the precise,
reproduceable extraction and analysis of WSI data for pathologist-assisted
diagnostics, biomarker discovery, and individualized precision
medicine.28,29 Such techniques allow for the extraction of information
from digitized images of patient specimens in combination with associated
metadata.

Machine learning models have been developed to assist GU pathology
related diagnoses through the identification of basic morphological
patterns.30,31 Such models recognize histopathological patterns of interest
vis-a-vis supervised training with scores of labeled, i.e., pathologist-
annotated, WSI data pertaining to features associated with a known out-
come (Fig. 1A). Modeled from neural networks within the human brain
that enable self-iterated improvement in cognitive deliberation, deep learn-
ing has emerged as an evolutionary progression from machine learning by
which programmable artificial neural networks (ANNs) are enabled to in-
dependently interpret or predict outcomes from unstructured or unlabeled
WSI data inputs (Fig. 1B). These networks can self-ascertain a plethora of
patterns present in a WSI input without assistance of a predefined output
set. ANN architecture is supported by a scaffolding of “nodes,” (artificial
2

neurons), including an input layer, multiple hidden layers, and an output
layer (Fig. 1C).

Output results from several, often independent, steps of computation,
weighting (strength of neural node connection), and assessment. Multiple
layers of ANNs are used in deep learning to extract higher-level input fea-
tures from WSI (Fig. 1D & E).32–35 With no predefined output or outcome,
the algorithm is enabled to determine what it defines as natural patterns
present in the WSI input, i.e., “feature extraction.” Convolutional neural
networks (CNNs), widely used for WSI analysis, have demonstrated efficacy
in varying WSI analysis applications through utilization of an end-to-end
learning model trainable from databases containing up to millions of
WSIs.14,36 Fundamental deep neural architecture is reflected bymultiple con-
figuring layers of CNNs, with a convolutional layer functioning as a feature
extractor peppered by neurons of varyingweights arranged into complex fea-
ture maps.36 Histopathological classification of feature extracted tissue,
e.g., cancerous vs. non-cancerous, occurs via automated object-based seg-
mentation of similar image pixels within WSI data inputs (Fig. 1D, E).

GU specialist annotation via digital segmentation tools is performed
to define “ground-truth” classifications to object boundaries that may
be used to evaluate neural network performance (Fig. 2A). Small-
prototype image regions (patches) are extracted from WSIs to train
CNNs to detect features of interest (Fig. 2B, C). During training, an algo-
rithmic model uses labeled data from WSIs tagged with designating
properties, characteristics, and classifications via ground-truth annota-
tions by expert pathologists.

Lack of substantial training data may cause an algorithmic model to
“fit” too precisely to a limited dataset, thereby greatly hindering model



Fig. 1.Algorithm training and feature extraction (prostate cancer). A. LabeledWSIs used for CNN training. B. Unmarked/non-annotatedWSI data. C. CNN self-identifying and
classifying unmarkedWSI input data. D. (I–III): Non-cancerous histopathological patch classification from feature extracted normal glandular epithelium, smoothmuscle, and
prostatic blood vessels in stroma (in order from I to III). E. (I–III): Cancerous histopathological patch classification from feature extracted infiltrative margins indicative of
Gleason pattern (GP) 3, irregular masses of neoplastic glands indicative of GP 4, and occasional gland formation indicative of GP 5 (in order from I to III). G. Colorized
CNN output distinguishing feature-classified areas of prostate cancer corresponding to Gleason pattern score where yellow = GP3, orange = GP4, and red = GP5. H.
Automated intelligent segmentation demonstrating detection of digitized histological patterns in a region of tissue classified as GP3 where red = epithelial nuclei, orange
= epithelial cell cytoplasm, and yellow = lumen.
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performance in accurately classifying new or unlabeled data. There are a
number of preclinical analytical factors that may contribute to variability
in algorithm performance. Deep learning frameworks curated for general-
ized assessment of histopathology analysis address a multitude of chal-
lenges plaguing automated WSI analysis including, though not limited to
large WSI dimensions, insufficiency of WSI samples for training, staining
variability across laboratories, and the appropriate extraction of clinically
relevant features and meaningful information from WSIs.37 Significant
headway has been made towards realizing generalizability for deep learn-
ing applications in genitourinary pathology within the realm of prostate
cancer diagnostics.

AI solutions for GU pathology

Prostate cancer

Histopathological diagnosis of prostatic adenocarcinoma, typically exe-
cuted via light-microscopy examination of hematoxylin and eosin (H&E)
stained tissue sections, requires interpreting of a constellation of features38

sometimes beguiling malignancy and navigating the challenges presented
by biopsies with limited tissue presence.39 Furthermore, pre-analytic
(e.g., tissue artifact) and analytic (e.g., minimal or limited adenocarcinoma
3

of the prostate in needle core tissue) confounders40 have contributed to the
resulting inter-observer variability associated with this routine diagnostic
process.41 Analytical and pre-analytical factors cannot be mitigated by AI
and digital workflow alone and carefull assessment of these factors is
needed in order to implement AI solutions in the laboratory (Tables 1–3).

Complications in routine pathology reporting, interpretation, and histo-
pathological assessment of Gleason score have fomented the last decade of
shifting practices in prostate cancer grading. The turn of the millennium
brought forth greater understanding of morphological patterns
spearheading revisionary guidelines for prostate grading by the Interna-
tional Society of Urological Pathologists in 2005.42 Extension of Gleason
pattern (GP) 4 to incorporate poorly formed glands (those without lumens,
those with rare lumens, elongated compress glands, and elongated nests)
and cribriform cancers, in conjunction with discouragement for reporting
Gleason scores of <5, particularly from needle biopsies (for which further
changes included inclusion of minute, high grade foci), led to greater
reporting of high-grade cancer as a function of often minimal findings of
poorly formed or fused bands. High inter-observer variability has marred
the diagnosis of poorly formed glands, even among expert urologic pathol-
ogists (κ=0.34) 43, who have expressed concern pertaining to the compro-
mised significance of GS 7 following the 2005 guideline shift in pattern
classification. In 2012, Egevad et al studied the shift in approach to Gleason



Fig. 2. Annotation and patch extraction (prostate). A. Genitourinary specialist annotated prostate WSIs for CNN training. B. Series of “patches” selected from annotated WSI
regions for iterative patch-based training of CNN parameters. C. Example of data augmentation in which mirroring and cropping of extracted patched images occurs to
increase training dataset variation.
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grading among 337 pathologists. Findings demonstrated that, for the first
time, general pathologists gradedmore aggressively than did uropathology
experts. Authors hypothesized that if aggressive grading was perceived cor-
ollary to expertise in prostate pathology, such association may incline
Table 2
Deep learning concepts in GUP.

Algorithm training During training, an algorithmic model uses labeled data tagge
interest, such as WSI, to learn - thereby increasing the model’
Algorithms are classified as “supervised” (requiring human in
numerous medical specialties, with recent application in path
properties, characteristics, and classifications describing an ob
correct predictive diagnostics, among other decision-making p

Artificial neural network
(ANN)

Deep learning techniques are a subset of machine-learning alg
or predictive ability from unstructured or unlabeled data. Wit
natural patterns present in the GUP input (WSIs). Such techniq

Convolutional neural network
(CNN)

CNNs used in WSI analysis share the fundamental architectur
layer responds to different pattern-forming features within a W
through CNN, i.e., “feature extraction”. Manual annotation th
“ground-truth” classifications for object boundaries to benchm

Area-based measurements Quantify the parameters of basic elements forming the bluepr
color or intensity of staining in each pixel within a designated

Cell-based measurements Cell-based measurements identify and enumerate cells or nuc
shape) are grouped to predefined cell-structure profiles meeti

4

general pathologists to favor aggressive grading for adherence to newly
cemented ideals of best practice and avoidance of criticism.42

Prostate carcinoma grade from needle biopsies bears clinical
importance.44 Patients with cancer of the lowest grade (WHO grade
d with designating properties, characteristics, and classifications describing an object of
s propensity for correct predictive diagnostics, among other decision-making processes.
tervention), or unsupervised. Supervised machine learning techniques are utilized in
ology. During training, an algorithmic model uses labeled data tagged with designating
ject of interest, such as WSI, to learn - thereby increasing the model’s propensity for
rocesses.
orithms which use artificial neural networks (ANN) to develop independent interpretative
h no predefined output set, the algorithm is enabled to determine what it defines as
ues use multiple layers of artificial neural networks to extract higher-level input features.
e of deep neural networks (input layer, multiple hidden layers, output layer). Each CNN
SI. Features such as object boundaries can be elicited during automatic segmentation

rough digital segmentation tools is also performed by GUP specialists for defining
ark neural network performance.
int of a WSI. Pixel-based assessment is applied to area-based measurements wherein the
area is quantified through algorithm(s).

lei through morphometry-based assessment, through which similar pixels (e.g., in size or
ng specific criteria.
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group 1, or Gleason score 6) are candidates for active surveillance. Cancers
of intermediate grade are candidates for definitive therapy—radical prosta-
tectomy or radiation therapy. Patientswith cancers of the highest grade can
be enrolled in clinical trials using neoadjuvant therapy to potentially de-
crease the size and stage of the tumor. Though grade is an important metric
for assessment and categorization of patientswith prostate cancer, grade as-
signment by manual microscopy has limitations. Visual interpretation of
histological slides, typically 3 levels for each of 12 biopsies, is time consum-
ing. Moreover, grade reproducibility is subject to inter- and intra-patholo-
gist subjectivity. Multiple studies revealed the kappa values of inter-
pathologist variance to range between 0.27 and 0.7.45,46 Particularly chal-
lenging is distinguishing tangentially sectioned GP 3 from GP 4 (kappa =
0.27).46 Intra-pathologist variance is also notable in this instance. Repro-
ducibility of grade ranging from 65% to 100% (mean 81.5%) has been re-
ported, with lowest reproducibility recorded for the cribriform variant of
GP 4.46 Ever more strikingly, many inter-observer studies exclusively eval-
uate GU expert assessment of prostate cancer while skirting inclusion of a
wider breadth of practicing pathologists.47–49 Inclusion of a more diverse
range of non-specialist community pathologists in such studiesmay demon-
strate far lower kappa values.

Prognosis has also been subjected to incongruous consensus and confu-
sion resulting from emphasis of higher-grade groupings, such as GP 5 pat-
terns present within GP 8 tumors. Many issues remain regarding
diagnosis and quantification of high-grade patterns.50

There are currently no recommendations suggesting incorporation of
histologic features (apart from gland architecture) into tumor grading or
surgical pathology reports, despite such features conferring worse progno-
sis than Gleason score alone.51

Cribriform gland with irregular border is an important feature in GP 4,
as the diagnosis of cribriform GP4 (CrP4) is independently associated with
adverse clinical outcomes, with a growing body of evidence strongly sug-
gesting its presence as impactful upon clinical management of prostate ad-
enocarcinoma, yet inter-observer consensus remains non-reassuring for
expert delineation of varying gland structures, particularly with fused and
ill-defined cribriform patterns.47,52–54 The inherently error-prone nature
of subjective human manual assessments predisposes to inconsistency in
identification.54–56 Cribriform growth patterns are associated with clini-
cally worse biochemical recurrence-free, metastasis-free, and cancer-
specific survival.56 Therein emerges a series of broken steps, parlayed
from diagnostics into prognostics and patient care, where machine
learning tools have emerged to deliver robust, replicable identification
Table 3
GU prostate study limitations.

Limitations Discussion

The studies of biopsies assess individual biopsies, not the full set of
biopsies (typically 12) taken during a prostate biopsy session

• Biopsy samples s
regions with incre

None of the studies have assessed correlation of grade by AI with clinical
outcome

• Model-fitting is i
• Performance of D
analytical compon
patient-based data

The number of pathologists involved in selecting assessment sets vary
from 1 to 15

• The larger the nu
• Likewise, increas
studies, the numb

None of the studies report whether variants of each grade that might be
challenging to grade are explicitly included

• Although the hig
progress, there are
• Exceptions may b
progressive.

The methods and materials used in different studies are additional sources
of variance

• Sample nature va
and radical prosta
• The unit of imag
• Investigators hav
demonstrated incr
Xception, and Mo

Additional sampling inconsistencies Sampling varies w
transrectal biopsie

Only limited data is available on radical prostatectomy and transurethral
specimens

5

of cribriform glands and other histopathological features that may soon
find themselves cemented within standard grading procedure. Machine
learning tools have recently demonstrated promising results for the au-
tomated detection of cribriform patterns in prostate histology
images.49,55,56 For the first time, researchers employed quantitative
machine-based methods to investigate the prognostic utility of invasive
cribriform adenocarcinoma (ICC) within specific Gleason grade groups,
with results suggestive of ICC morphology fraction of tumor area (crib-
riform area index) having a strong prognostic role in patients with
Gleason grade 2 cancer with little GP4 due to higher concordance
index with biochemical recurrence than patients without evidence of
ICC. Doubling of cribriform area index in those with ICC morphology
was prognostic after controlling for Gleason grade, surgical margin pos-
itivity, pre-operative prostate-specific antigen level, pathological T
stage, and age, yielding a hazard ratio of 1.19.56

AI tools for image analysis have allowed a more objective diagnostic
recognition of prostatic adenocarcinoma, as such tools are not as subject
to inter-observer variance which may stem from innumerable biases.42 As
variance in inter-pathologist grading for prostate cancer is significant
(eliciting a kappa value as low as 0.3), gold-standards of differing grades
must be identified.46,57 Deep learning algorithms may be validated against
expert-annotated, “gold-standard,” WSIs to assess accuracy, precision and
reproducibility of the algorithmic model’s ability to identify variations in
tissue grading.

AI-assisted prostate cancer detection & grading

The first effort to utilize deep neural networks for prostatic adenocarci-
noma detection in needle biopsy tissue, reported in 2016, involved the dig-
itization and annotation of H&E-stained prostate biopsy tissue slides from
254 patients which were separated into training, experimental, and valida-
tion sets.14 Slide image patches were used to train CNNs for cancer detec-
tion. Mean ROC for the median analysis was 0.98–0.99 for the 90th
percentile analysis. Up to 32% of cancer-negative slides could be excluded,
potentially streamlining diagnostic sign-outs (Table 3).

Arvaniti et al. trainedMobileNet, a deep CNN derivative, to grade pros-
tate cancer using a discovery cohort of primary prostate carcinomas as
0.6 mm diameter cores in tissue microarrays from 641 patients. MobileNet
was assessed on a test cohort of tissue microarray cores from 245 prostatec-
tomies. The test cohort had been graded independently by 2 pathologists.
Using Cohen’s quadratic kappa statistic, agreement between the AI model
hould be representative of prostate cancer. More specifically, they should represent tumor
ased risk of progression.
mproved if validation is based on the patient rather than cores or patches.
eep Learning in distinguishing low-grade from high-grade prostate cancer by “leave-out”
ents is best through excluding patches/cores within iterative studies, using solely
.
mber of pathologists, the more likely the algorithm is to be applicable to clinical samples.
ed institutional-origin of samples consequently enhances algorithm robustness. In
er of institutions from which the tissue originated, ranged from 1 to 3.
hest-grade component is conventionally regarded as the part which cancer cells might
exceptions to this presumption.
elie the assumption of the largest area of tumor involvement being the most likely to be

ries within differing studies. Tissue sources included tissue microarrays, needle biopsy
tectomy samples.
e (patch size) varies.
e used differing CNN programs, including MobileNet and NASNetLarge. NASNetLarge
eased accuracy in comparison to other programs including ResNet, Inveption V3,
bileNet.
ithin prostate tumor site. Tumors in the anterior/transition zone are under-sampled by
s.
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and each pathologist was 0.75 and 0.71, respectively. Agreement between
the 2 pathologists was 0.71. Since the clinical outcome of each patient was
known, the accuracy of the model in categorizing each cancer into low risk
vs. intermediate risk was assessed. The model was significantly more accu-
rate in distinguishing low-risk from intermediate-risk (P=.098) than was
either pathologist (P=.79 and P=.29, respectively).25 However, misclassi-
fications at tissue borders from preparation artifacts were noted along with
incorrectly annotated stromal tissue as GP 3, potentially from occasional in-
clusion of stromal tissue in training regions annotated as GP 3.

Nagpal et al. used images from 752 tissue biopsies from 4 sources to
train a deep learning system. In a study of biopsies from752 patients, agree-
ment of the model-based grade was reported, with grading by 2 GU pathol-
ogists and separately by general pathologists. Agreement occurred in 72%
(68%–75%) and 58% (54%–61%), respectively. The model was less likely
to over-grade WHO grade group 1 than grade group 2. The model was
also less likely to over-grade WHO grade group 1 and more likely to
undergrade higher grades in comparison to general pathologists. ROC
curves distinguished model-based grade groups 1 and 2 from grade groups
3 through 5 (AUC = 0.97).58

A CNN used in Bulten’s study of 5759 biopsies from 1243 patients had a
kappa of 0.85 compared with 3 GU pathologists, superior to the kappa of
0.82 from a pathologist panel.59

Strom reported the performance of a study based on needle biopsies
from 976 patients in which the mean kappa was 0.62, similar to the
kappa of 15 participating GU pathologists (kappa range 0.60–0.73).5

Bulten et al.60 demonstrated that use of AI improved overall grading of
prostate biopsies. A group of 14 GU pathologists graded a set of 160 pros-
tate biopsies. Fourteen pathologists graded 160 biopsies with and without
AI algorithms. Using AI, the 14-member panel of pathologists agreed signif-
icantly. Quadratically weighted Cohen’s kappa was 0.87 vs. 0.799 when
graded independently.

The performance of AI algorithms has, within the parameters of these
studies, demonstrated equivalence to the capabilities of GU specialists
while surpassing those of general pathologists. However, as methods and
materials employed were not subject to standardization (e.g., tissue sample
variations from microarray, needle biopsy, and radical prostatectomy
sources), evaluation of their results as a conglomerate, rather than a collec-
tion of individual exploratory endeavors, is speculative and therefore po-
tentially misleading. Additionally, deep learning models were trained by
WSIs of individual biopsies with varying image patch sizes, rather than
complete sets of 12 tissue cores typically obtained during clinical assess-
ment for prostate cancer. Studies ostensibly eschewed clinical relevance
by neglecting to assess the correlation of AI-grading with clinical outcome.

Prostate biopsy samples must properly represent the lesional tissue
which could be prostate cancer or benign mimickers of prostate cancer,
not just the areas conferring increased risk of progression. Convention
often assumes such areas to be tissue regions of the highest-grade, however
there are exceptions which belie this presumption. Information indicating
the explicit inclusion of grading variants potentially posing challenges to
the grading process was not provided within our selection of studies. Sam-
ple site variance must also be accounted for, as tumors in located in the an-
terior/transition zone of the prostate are notably under-sampled by
transrectal biopsies.61,62

Given inter-pathologist variance in grading, the gold-standard or
“ground truth” of grade ismore robust if established bymore than 1 pathol-
ogist. 26 The number of pathologists involved in selecting assessment sets in
our study selection varied from 1 to 15.25,58–60 The larger the number of pa-
thologists used for selection, the more likely the algorithm is to be applica-
ble to clinical samples. Likewise, increase in the institutional origin of
samples consequently enhances algorithm robustness. In these studies,
the number of institutions from which the tissue originated ranged from 1
to 3.25,58–60

Model-fitting may be homed for clinical implementation if validation is
based on the patient rather than tissue cores or image patches. Performance
of deep learning in distinguishing low-grade from high-grade prostate can-
cer by “leave-out” analytical components is best accomplished through
6

excluding patches/cores within iterative studies and using solely patient-
based data.26

Differing deep CNN models were used by investigators, including
MobileNet25 and NASNetLarge.27 In the latter study, NASNetLarge was
more accurate than other programs, which included ResNet, Inveption
V3, Xception, and MobileNet. Conversely, Arvaniti found that MobileNet
was less likely to overfit than other evaluated programs (VGG-16,
Inception-V3,3 ResNet-50, and DenseNet-121).25

Substantial progress has occurred over the last 2 years, with reports
which variably included the following characteristics: large numbers of
cases; use of training, validation, and test sets; interpretations by expert
GU pathologists to establish “ground truth” for diagnosis; use of slides
from multiple institutions; use of differing scanners, including scanners
from other institutions.5,18,22,27,63 Achieving standardization of such char-
acteristics is corollary to achieving generalizability of computer-aided diag-
nostic tools.

High throughput deep learning facilitating generalizability

Two large-capacity, high-speed WSI scanning systems, the Ultra-Fast
Scanner, i.e., “UFS”, (Philips IntelliSite Pathology Solution, Amsterdam,
Netherlands) and the Aperio AT2 System® (Leica Biosystems,™Wetzlar,
Germany), were used in a 2019 Campanella et al.18 study to evaluate a
deep learning system trained on WSIs of 12 132 prostate needle core biop-
sies from Memorial Sloan Kettering (MSK). Following training, the system
was evaluated by 12 727 prostate needle core biopsies sourced from institu-
tions around the world.

The Aperio AT2 System® scanned most biopsy samples produced at
MSK. A smaller subset of 1274 biopsies were scanned by the UFS at the
same location. Data from WSIs captured by these devices, in conjunction
with that of global-origin WSIs, allowed for a robust assessment of general-
izability. The investigators found that approximately 10 000 slides were
necessary for effective training of their system.64 Authors found variations
in brightness, contrast, and sharpness affected predictive performance in
both WSI devices, with PIPS demonstrating a 3%-point change in the area
under the curve (AUC) accordingly. Additionally, 6 false negatives were
characterized by very low tumor volume.40 In 72 cases, the algorithm
falsely identified foci of small glands as cancer in instances where small
glands had hyperchromatic nuclei and at least a few cells with prominent
nucleoli. The investigators concluded that their prostate model would
allow removal of >75% of slides from pathologist workloads without sensi-
tivity losses, and that their system could allow non-subspecialized (non-GU
pathologists) to diagnose prostate cancer confidently and efficiently. As
WSIs in this study were tied 1:1 with synoptic data elements, primarily be-
nign vs. adenocarcinoma, the weakly supervised framework used provided
a scalable mechanism by which datasets may be created, thereby address-
ing an issue plaguing the current development of AI tools for GU pathology.
However, as investigators did not specifically distinguish which of the 75%
of cases were removeable, the projected clinical and operational applicabil-
ity of their study is still left to conjecture.

Another high-volume study from the year 2020 assessed how a deep
learning system trained on 36 644 WSIs, 7514 of which had cancerous
foci (Paige ProstateAlpha®, Paige AI, NewYork, NewYork.) influenced pa-
thologists in the detection/diagnosis of prostatic adenocarcinoma. 304 ex-
pertly annotated prostate needle biopsy WSIs were used to establish
ground truth for evaluation of the deep learning system.21 General pathol-
ogists had an average sensitivity of 74% and specificity of 97%without the
system, and an increased sensitivity to 90% with no change in specificity
with the system. The authors concluded that this system could serve as an
effective second-read, e.g., quality assurance, tool. Moreover, the system
could be used in settings where GU pathology subspecialists were not pres-
ent, including countries with large-scale healthcare disparities. Finally, the
Paige Prostate® system has been validated in 2 additional institutions,65,66

including one in a separate country.65 Earlier this year, Perincheri et al.66

employed Paige Prostate® to review 1876 prostate core whole slide im-
ages, with a sensitivity of 97.7% and specificity of 99.3%. The authors
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noted an area for possible improvement of the algorithm was the enhanced
identification of out-of-focus scans. Regarding carcinomas missed by the al-
gorithm, 80% were <1 mm and 2 had foamy gland features, indicative of
false-negative results.40 An additional study65 highlighted Paige Prostate®
to display high sensitivity (99%) and specificity (93%) at part-specimen
level. Paige Prostate® also identified 4 patients whose diagnoses were
upgraded from benign/suspicious to malignant. The platform software
was recently authorized for use as adjunct (supplement) by the FDA for de-
tection of areas suspicious for carcinoma in digital images of prostate nee-
dle biopsy tissue sections.67

Also in 2020, Strom et al.5 reported on employing neural networks in
assessing 6682 digitized prostate needle biopsies from 976 patients. An ex-
ternal validation set contained 87 biopsies evaluated by 23 global GU pa-
thologists. The system achieved ROC AUC of 0.997 for diagnosing benign
vs. prostatic adenocarcinoma on the independent test set and 0.986 on
the external validation set. They concluded their AI system could detect
prostatic adenocarcinoma comparable to international experts in GU Pathol-
ogy. Strengths of this investigation were large cohort sizes and the inclusion
of deceptively benign-appearing prostatic adenocarcinomas such as pseudo-
hyperplastic and atrophic pattern variants,mimickers of prostatic adenocarci-
noma, and sections with thick cuts, fragmentation, and poor staining. These
sections, with pre-analytic artifacts, can confound prostatic adenocarcinoma
detection.40 Evaluations for all AI systems should include cases with pre-
analytic artifacts, benign mimickers of prostatic adenocarcinoma,68 and de-
ceptively benign-appearing prostatic adenocarcinomas.40,69

Pantanowitz et al.22 covered development of an AI-based algorithm
trained on 549 H&E-stained slides, with an internal test set of 2501 slides
and an external test set of 1627 slides digitized on a second scanner. The al-
gorithm achieved an AUC of 0.997 for prostatic adenocarcinoma detection
in the internal test set and 0.991 in the external validation set. The AI tool
was further tested on 11 429 slides (from 941 cases) as a second-read sys-
tem. In that test, 10.9% of slides diagnosed by the pathologist as benign
were flagged as cancer, 9% of which (n=51), upon pathologist re-review,
prompted orders for additional sections or stains. Re-review of those cases
was estimated to consume a minimal amount of time. One case initially di-
agnosed as benign by the pathologist was flagged by the AI tool and was
subsequently diagnosed as low-volume Gleason score 6 prostatic adenocar-
cinoma. This study highlights the usefulness of an AI-based algorithm as a
quality assurance second-read procedure, in a routine practice setting.
Such AI-based second-read quality assurance procedures can be less time-
consuming thanmanual human second-read procedures, although compar-
ative time data are not yet available.

Tolkach et al.27 described in 2020 the development of deep learning
models for the detection of prostate cancer tissue in WSIs of 379 radical
prostatectomy cases in a training cohort, with 2 TMA validation cohorts
from 2 different institutions. Accuracy of prostatic adenocarcinoma detec-
tion was 97.3%–98%.

Evaluating AI-assistance to understand overreliance

Employing expert-level AI assistance was evaluated in by Steiner et al.2

Accuracy of tumor detection with and without AI assistance was evaluated
in 240 prostate needle core biopsies. Prostatic adenocarcinoma diagnostic
recognition was higher with AI assistance, with an absolute increase in
1.5%. Accuracy for unassisted review by 20 general pathologists was
92.7%, assisted reviews were 94.2%, while AI algorithm alone obtained
95.8%. Specificity was increased with AI assistance in 12 cases and de-
creased in 2 cases. Regarding the 2 false-positive AI calls, AI assistance
was appropriately disregarded by the pathologists. Sensitivity was in-
creased with AI assistance in 38 cases and decreased in 16 cases. There
were 6 cases with false-negative AI calls, which upon review exhibited
small tumor foci–typical of false-negative results.40 Understanding how to
avoid overreliance on AI assistance is an important goal. Efforts must be
made to use these tools as synergistic decision-support tools. The latter
may be challenging as some of these tools are “locked systems” and it is
“all or nothing.” Additionally, the investigators found a decreased amount
7

of review time with AI assistance, with 13% less time spent per biopsy for
assistance-associated reviews vs. unassisted reviews. One of the possible
reasons for this decrease is faster localization of small regions-of-interest
in needle core tissue. Additional issues to consider are that most of the com-
mercially available software is focused on the applications in prostate biop-
sies and not on radical prostatectomy or transurethral resection specimens.

Urothelial carcinoma

Diagnostic information, including grading (low vs. high), staging (non-
invasive vs. lamina propria vs. muscularis propria invasion), divergent dif-
ferentiation, lymphovascular invasion and presence of carcinoma in situ, is
crucial for management and prognostication of patients with urothelial
carcinomas.70 However, evaluation of urothelial carcinoma invasion and
grading presents challenges, with considerable inter-observer variability
among pathologists.71,72 However, studies evaluating deep learning tech-
niques in grading urothelial carcinomas are scarce.73–75 One such study in-
volved 328 TURBT specimens with consensus reading by 3 expert GU
pathologists for developing deep learning algorithms for urothelium recog-
nition and grading.75 The AI-grading algorithm demonstrated moderate
agreement with consensus reading (kappa=0.48), similar to the agreement
among pathologists (kappa=0.35, 0.38, and 0.52, respectively). The AI al-
gorithm correctly graded 76% of low-grade cancers and 71% of high-grade
cancers according to consensus reading, an indication that deep learning
can be used for the fully automated detection and grading of urothelial
cell carcinoma.

Domain knowledge enhancing feature extraction

Domain knowledge, i.e., expert knowledge, used during training data
preparation, has demonstrated to enhance the performance of feature selec-
tion in machine learning tools. Domain experts may select specific features
pertinent to a classification task, as demonstrated by a study utilizing auto-
matic pipelines for the purpose of feature extraction for 3 invasive patterns
characteristic of the T1 stage of bladder cancer, e.g., desmoplastic reaction,
retraction artifact, and abundant pinker cytoplasm. Six supervisedmachine
learning models trained on pathological features from 1177 H&E-stained
images of bladder cancer tissue achieved an accuracy of 91%–96% in dis-
tinguishing non-invasive (Ta) and invasive (T1) urothelial tumors.76 Inter-
estingly, CNN models that automatically extract features from images
produced an accuracy of 84%, indicating that feature extraction driven by
domain knowledge outperforms CNN-based automatic feature extraction.

More studies are needed on large patient populations frommultiple cen-
ters to overcome compounding factors such as variability in H&E staining
and image acquisition. Rather than correlating with “consensus” grading
by pathologists, future studies should correlate grading by AI algorithms
with clinical outcomes. In addition, deep learning can also uncover subvi-
sual features or molecular correlations of prognostic significance that can
be unrecognized by pathologist eyes. Harmon et al. used deep learning
models to assess morphological features of primary urothelial carcinomas
in cystectomy specimens, merging them with microenvironment (lympho-
cyte infiltration) features to derive a final patient-level AI score to predict
the probability of pelvic lymph node metastasis.77 The AUC of AI score
(0.866) was significantly better than AUC for the clinicopathological
model consisting of age, T-stage, and lymphovascular invasion (0.755,
P=.021).

Future studies should also develop algorithms to assist the identification
of other pathological features, such as muscularis propria invasion, the
main crossroad towards a more aggressive therapy (e.g., radical cystec-
tomy, neoadjuvant chemotherapy, or chemoradiation).78 Additional future
development in computational pathology should be focused in the area of
cytopathology, particularly in the area of urine cytology. Automated
image analysis of biomarkers such as PD-L1 should also be further devel-
oped with deeper integration into a digital workflow

As the first step to develop an automatedmethod to improve the staging
accuracy, 3 anatomic layers, i.e., urothelium, lamina propria, and
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muscularis propria, must be automatically recognized. Niazi et al.79 used a
modified U-Net model, a CNN-based semantic segmentation framework, to
develop a deep learning algorithm for segmentation of the bladder wall.
The best performing algorithm achieved an accuracy comparable to the
inter-observer variability among pathologists, raising the possibility that
an algorithm for mitosis detection could be used for tumors where mitosis
counts play an important role in grading, such as neuroendocrine tumors,
and possibly urothelial carcinomas.

Renal carcinoma

Accounting for 60%–85%of all RCC and representing 2%–3%of all can-
cers with an annual incidence increase of 5%, clear cell renal cell carcinoma
(ccRCC) is the most common malignant tumor of epithelial origin in the
kidney and the most dominant type among 40 subtypes of RCC. Low late-
stage survival rates are due in part to high resistance to chemotherapy
and radiotherapy. Though ccRCC is asymptomatic in its early stages, 25%–
30% of patients have metastasis at the time of diagnosis. Patients with local-
ized ccRCCs removed by nephrectomy have a high risk of metastatic relapse
(20%–30%), with more than 40% of patients eventually dying from the
disease.80 Early detection of ccRCC is therefore vital. Correct classification
of ccRCC grade and stage is essential for guiding clinical management,
molecular-based therapies, and prognosis.81 Fuhrman grade (incorporating
nuclear size, nucleolar prominence, and nuclear membrane irregularities) is
widely accepted as a prognostic factor in RCC despite poor inter-observer
agreement,81 a major limitation to the examination of H & E images by pa-
thologists along with the time required to diagnose.82 Diagnostic challenges
have occurred with the presence of additional morphological features,
e.g., sarcomatoid or spindle cell pattern, and greater eosinophilic cytoplasmic
staining in higher grade ccRCC. Computational pathology approaches have
shown that it is possible to overcome these limitations and to identify subtle
morphological differences between clinical groups.82

Recently, computational methods have been helpful in using gene ex-
pression profiling to separate out the various stages of ccRCC. A study by
Bhalla et al. analyzed gene expression of 523 samples to identify genes dif-
ferentially expressed in early and late stages of ccRCC, achieving a maxi-
mum accuracy of 72.64% and 0.81 ROC using 64 genes on validation
dataset.83 However, classification models still lack generalizability for the
accurate and reliable prediction of ccRCC tumor stages.84 In addition,
most available studies concerning renal diagnostics and prognostics focus
on ccRCC, due to its dominance, which has yielded greater data availability
for further ccRCC algorithm training.85 As a result, there is only limited data
available on primary RCC subcategories (sucha s chromophobe, papillary
RCC etc) apart from clear cell.

AI-assisted renal tumor classification and staging

Fenstermaker et al.86 developed a CNNmodel for the identification and
presence of RCC on histopathology specimens and differentiation of RCC
subtype (clear cell, chromophobe, papillary) and grade (Fuhrman grades
1 through 4). The model was trained on 3000 normal and 12 168 RCC tis-
sue samples from 42 patients (digital H&E-stained images from the Cancer
Genome Atlas). The model achieved an overall accuracy of 99.1% for dis-
tinguishing normal parenchyma from RCC, with 97.5% accuracy in distin-
guishing between subtypes. Accuracy for Fuhrman grade prediction was
98.4%.

In an earlier (2019) study, Tabibu et al.82 developed a CNN for the au-
tomatic classification of RCC subtypes along with the identification of fea-
tures that predict survival outcome. Histopathological WSIs and clinical
information from the Cancer Genome Atlas were used for training. 1027
ccRCC, 303 Papillary RCC, and 254 Chromophobe WSIs were selected,
with a corresponding 379, 47, and 83 normal tissue images per each respec-
tive RCC subtype. CNNs were able to distinguish clear cell and chromo-
phobe RCC from normal tissue with a classification accuracy of 99.39%
and 87.34%, respectively. Further distinguishing between ccRCC, chromo-
phobe, and papillary RCC by CNN achieved a classification accuracy of
8

94.07%. Generated risk index (based on tumor shape and nuclei) was
found to have significant association with patient survival outcome.

In 2018 and 2020, Singh et al. focused on distinguishing early and late
stages of papillary RCC through development of machine learning models
using features extracted from single and multi-omics data from the Cancer
Genome Project. Gene expression and DNA methylation data were inte-
grated in the latter study which demonstrated slightly better performance
(MCC 0.77, PR-AUC 0.79, accuracy 90.4).85,87,88

Another recent study employed machine learning algorithms to predict
the probability of RCC recurrence within 5 and 10 years after
nephrectomy.80 Data from 6849 patients was collected from patients listed
in a Korean RCC web-database, from which analytical data from 2814 pa-
tients was used to predict recurrence.

Investigators in 1 study developed an automated computational pipe-
line to extract image features to delineate TFE2 Xp11.2 translocation RCC
(TFE3-RCC), an aggressively progressive and challenging diagnosis often
misdiagnosed with other RCC subtypes, from ccRCC. AUCs ranged from
0.84 to 0.89 when evaluating the classification models against an external
validation set.89

Much work needs to be done in the area of renal cell diagnosis and clas-
sification to create meaningful and robust clinical tools for the practicing
pathologists. However, there are a number of promising research studies
as discussed here which will set the stage of creating clinical grade-AI
tools in the future.

Testicular germ cell and sex cord tumors

Pathological features crucial for directingmanagement of patientswith tes-
ticular cancer include histological subtypes (and their quantification) and
staging.90,91 Distinction between seminoma and its mimics, such as atypical
seminoma vs. embryonal carcinoma, seminoma vs. solid yolk sac tumor, and
quantification of seminoma and non-seminomatous components, are critical
for risk stratification andpost-operativemanagement.92,93 Lymphovascular in-
vasion would upstage an otherwise organ-confined tumor from pT1 to pT2.
However, diagnosis of lymphovascular invasion is notoriously challenging.
Building AI tools for rapid detection of lymphovascular invasion is not trivial
but a stepwise approach combining immunohistochemistry and morphol-
ogy-based algorithms may help in the creation of an AI-based clinical tool.
No studies so far have attempted to develop AI algorithms to address these
challenges, which would offer plentiful opportunities for future research. For
instance, future tools may be developed to address quantification of non-
seminomatous components and staging based on different recognition of tes-
ticular/paratesticular anatomy.

AI-assisted testicular tumor classification and staging

One recent study developed a deep learning algorithm for testicular
germ cell tumors, to quantify tumor infiltrating lymphocytes (TILs) on
H&E-stained tissue sections.94 The correlation coefficient between manu-
ally annotated (3 pathologists) and algorithm-counted TILs was good (over-
all F-score=0.88).While onWSIs (n=89),mean Kappa value between the
algorithm and pathologists (Kappa 0.35) was comparable to inter-
pathologist (Kappa 0.33). Regarding seminomas, tumors with highest TIL-
tertile quantified by algorithm had no relapse, while TIL quantifications
performed visually by 3 pathologists on the same tumors were not signifi-
cantly associated with outcome. Deep learning-based algorithms can be
used for the objective detection of TILs in testicular germ cell tumors
more objectively and may thereby demonstrate utility as a prognostic bio-
marker for disease relapse.

Limitations to diagnostic AI implementation in GU pathology

Implementation of algorithmic AI tools for GU pathology has been
marred by many limitations stemming from accountability, availability,
and reliability of WSI data used in their creation.
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A considerable volume of data is generated for algorithm development,
currently derived from a litany of different sources,1 presented by a variety
of WSI file formats, and is analyzable via a diversity of AI models. Lack of
standardization seen throughout all stages of algorithmic construction
and utilization predisposes to variations in machine learning classification
with consequent poor predictive capacity. The adoption of a single open-
source file format applicable to digital pathology, like that of DICOM for ra-
diology, may facilitate expeditious access and interrogation, i.e., curation,
of WSI datasets currently lacking universal image formatting.95 Interna-
tional standardization is needed to facilitate uniformity of image formatting
for exchangeable data and designated quality control measures forWSI that
may aid in leveraging accountability for AI-assisted diagnostic tools within
clinical practice.

Paucity ofWSI datasets with GU pathologist annotations for ground-truth
determination limits employment of supervised learning techniques. The lack
of WSI datasets impeding the analytic capacity of deep learning techniques is
emphasized in GUP primarily pertaining to immunohistochemical (IHC)
staining. Stemming from limited data sources, immunolabeled WSI datasets
containing in situmolecular cell data, observable through multiplexed immu-
nofluorescence (IF), are evermore sparce. "Transfer learning" via pretrained
networks and data augmentation techniques may be utilized to mitigate the
cumbersome nature of network training and data shortages, though are not
currently capable of acting as substitutes for pathologist-annotated data. In-
creased utilization of unsupervised learning techniques, which do not require
labeled data, may also mitigate shortfalls in expertly annotatedWSIs that are
often expensive, difficult to acquire, and time-consuming to produce. WSI
data storage costs have posed barriers to digital implementation in many lab-
oratories. Restrictions brought forth by data privacy and proprietary tech-
niques may be circumvented with open-source accessibility. Graphical
Processing Units (GPUs) are preferential to Central Processing Units (CPUs)
for training and utilization of deep neural networks due to their significantly
superior processing speed yet are significantly more costly. Large WSI file
sizes command large network bandwidths that present hurdles in imple-
menting infrastructure with the capacity to process swaths of data used for
AI tools, yet advances in WSI scanning technology and digital data transmis-
sion coupled with decreased costs of implementation are near upon the
horizon.1

High-resolution image reduction techniques, e.g., patch extraction, may
compromise data quality while higher-level structural information,
e.g., tumor extent or shape, may only be captured through analysis of larger
tissue regions. Focused spatial correlation amongst patches, multi-level mag-
nification patch extraction, and utilization of larger patch sizes are some of
several techniques that have been developed to address these issues.

Clinical translation of algorithms requires generalizability throughout a
wide breadth of patient populations and clinical institutions. IHC/H&E
staining of tissue sections can vary significantly across laboratories and at
intra-laboratory level. Analysis performed on low-quality tissue, histology
slides, or staining will ultimately compromise the validity of data obtain-
able for image analysis, i.e., pre-analytical variables. High-quality tissue
can be rendered useless by inadequate slide preparation from blurred vi-
sion, over- or under-staining, air-bubbles, and folded tissue. Such errors
can produce inaccurate algorithms.

Normalization techniques, e.g., scale normalization for multiple image
acquisition devices with varying pixels sizes, stain normalization, pixel-
and patch-wise and semantic segmentation CNN training for enhanced re-
gion of interest detection, flexible thresholding techniques which compro-
mise for variations in input data luminance.

Limitations in machine learning generalizability are not only relegated
to algorithmic development for GU pathology but extend to the plethora
of AI literature investigating ML used for a wide range of applications
throughout the gamut of urology disciplines.96 Chen et al. reported variabil-
ity and heterogeneity of documented outcomes and methodologies re-
ported in publications within the subfields of oncology, infertility,
endourology, and general urology in a recent literature review, emphasi-
zing the crucial need for developing methods to standardize reporting to
curtail limitations of generalizability in research.96
9

Deep learning systems for GU are currently only able to classify WSI
specimenswith a single diagnosis. Removal of biological restrictions during
algorithmic trainingmay serve towiden the scope of diagnostic capabilities
in machine learning. "Artificial General Intelligence (AGI)" of the future
may consist of advanced algorithms employing multiple levels of classifica-
tion and segmentation in conjunction with a litany of diagnostic deductive
variables, mimicking the process of human consciousness.

Demonstration of algorithm reproducibility on large patient popula-
tions containing outliers and non-representative individuals has caused dif-
ficulties for AI development. AI Models of the future may be used to
develop "universal" tumor grading systems applicable to the entire GU sys-
tem through combination of prognostic, morphologic, tumor marker, and
clinical course data.

“Black Box” transparency concerns surround the uninterpretable pathway
of algorithmic classification deduction. Segmentation, e.g., extraction, of
image objects correlated with clinical endpoints are hidden from pathologist
interpretation. Segmentation steps for deep neural network classification in-
volve extraction of image objects correlated with clinical endpoints which
are not included for review in thefinal output and therefore subject to distrust
by pathologists who may prefer to accept more “transparent” AI algorithms.
As with any proposed medical implementation that lacks information crucial
to explaining its mechanics, this renders it unaccountable, with regulatory
barriers inevitable to follow. “Rule extraction,” through which information
about histopathological features used by an algorithm during its previously
hidden segmentation process, may alleviate such concerns. Efforts towards
extracting translucency from the opacity of black box algorithms are inher-
ently efforts in preserving trust, accountability, responsibility, and patient au-
tonomy while eliminating potential biases obscured by an epistemologically
opaque methodology. Translucency may be approached through ethical
and practical arguments supporting the computational realism of AI as op-
posed to, or in conjunction with, developing computational mechanisms
that may allow self-iterative algorithms to be surveyable by humans.97 Reli-
ability surrounding the clinical use of AI has raised concerns of potential leg-
islative burdens incurred by developers, healthcare networks, patients, and
physicians alike. The primary challenge limiting AI tools is that of an episte-
mological and ethical nature—one which interrogates the philosophical no-
tion of trust in ML programs presenting outcomes which, though ultimately
bearing subject to physician interpretation, remail inexplicable in instances
where diagnoses are inscrutable.97

Physician liability and AI-assistive tools

Liability concerning the use of assistive AI-tools has not been formerly
etched into case law due to the recent emergence of such devices in clinical
settings. However, general tort law principles (those which generally favor
standard of care, regardless of its outcome) may be extrapolated to garner
relevant discussion onmedical AI and liability, a subject that ultimately ex-
tends beyond legal ramifications for physicianswhomisuse such tools.98 As
pathology practice is progressively ensconced by an ecosystem of
healthcare systems and vendors offering machine learning tools, so too
does the concept of physician liability become intertwined with these addi-
tional entities that may suffer from a proverbially shared burden of redress.
An increase in liability, applied anywhere within our current ecosystem of
pathology practice, may ultimately disincentivize development of AI tools
along with their adoption in healthcare systems and clinical practice.99

Gerke et al. noted the high level of concern directed toward scrutinizing
algorithmic performance, particularly due to the inconsistent performance
of AI-toolswhich, despite their promise, are not immune to the introduction
of human biases incurred from training.99

Under current law, physicians are subject to liability in circumstances
upon which a predefined legislative and institutional standard of care is
unadhered to, thereby resulting in patient injury. From the vantage point
of assistive AI-tools within the scope of this framework, algorithms may
choose to eschew standard protocols for a more patient-specific,
i.e., personalized approach. Price et al. noted the paradoxical nature of
the legislative constraints crafted to preserve patient welfare, as such
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limitations may inadvertently cultivate an ecosystem of practice by which
adherence to legal standards are opted for in lieu of AI recommendations
that may be of greater value to a patient, simply due to the latter falling out-
side the range of “accepted” treatment. In broad terms, physicians and
healthcare systems may be liable under malpractice though not liable for
the decision-making capacity of AI-tools. Algorithm designers, however,
may bear the burden of faulty AI while avoiding liability from negligence
or malpractice facing physicians who use such tools in an assistive
capacity.99

Discussion

Recent years have welcomed a foundation of literature supporting the
use of AI for urology;96,100 however, the rapid accumulation of promising
clinical trials and published articles detailing urological ML applications
have not been met with an equivalent proliferation of educational efforts
preparing clinicians for discussions of implementation. AI literacy will be
tantamount to practical competency in the emergent future, as more WSI
devices obtain regulatory approval in the USA and globally,1,77,96,101–104

while pathologists encroachingly find themselves in leadership roles that
dictate the interdisciplinary interplay of AI across urology, pathology, radi-
ology, metabolomics, genomics, and other disciplines.

Chen et al. reported in a comprehensive literature review that disease
diagnosis was the most common application in ML for urology. 73 out of
112 articles included in the review included those which interrogated ML
algorithms developed for automating and improving the detection of uro-
logical pathologies. Over 60% of publications entailed the utilization of al-
gorithms for the detection of prostate cancer with applications in analyzing
serum, urine, novel biomarker, radiomics, clinical variables, pathology
slides, and electronic health records (EHR).96

As prostate cancer is themost commonmalignancy seen by urologists, it
is foreseeable that most articles featured by Chen et al. involved new and
novel algorithmic development for its detection.96 Our review followed
suit, with most AI literature featuring accounts of algorithms developed
for prostate cancer identification,many of which portrayedML applications
bounds beyond those focused on other GU systems. Yet, such devices, even
for prostate cancer, have seen limited clinical implementation within the
USA. Within the realm of GU pathology to date, only prostate recognition
and grading has demonstrated capacity for clinical utilization. Most current
studies evaluating ANN endeavors within other GU systems are currently
relegated to academia, though still draw interest in their valuable potential.
Validative efforts have been tantamount to implementation of non-AI
assistedWSI for GU in clinical practice. However, limited validation studies
within this realm have been circumvented by positive accounts of digital
implementation shared by many departments.105–108,109 Such circumven-
tion through clinical implementation has not yet been realized for deep
learning tools in GU pathology.

Human prognostic and therapeutic deliberation incorporates multidis-
ciplinary discussions and performance status assessments.110 The incorpo-
ration of contextual clinical information into deep learning systems will
allow these systems to interpret a diversity of information critical to such
deliberation. Machine learning algorithms have demonstrated integrability
into electronic health records (EHRs) to generate accurate predictions of
short-term mortality for cancer patients, outperforming routinely used
prognostic indices.111 Yet replicating the subjective nature of physician–pa-
tient interactions via AI-directed data mining of EHR has proven difficult
due to the low quality and poor design of such databases. Bayesian infer-
ence has been applied to algorithmic development to suggest multiple po-
tential diagnoses given a set of clinical findings, though there still are
limitations in advising practitioners on useful next steps.112

Reproducibility of algorithms in comparison to standard histopatholo-
gical assessment is an essential consideration in AI development for
image analysis. “Algorithm—pathologist correlation” is utilized in this re-
gard, with reproducibility most preferably assessed through multiple pa-
thologists to emulate routine practice. Measures of reproducibility include
pathologist–algorithm correlation and measures of inter-pathologist
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variability.113 It is important to maintain awareness of a “gold-standard
paradox” overlying algorithmic validation. Pathologist scoring is used for
the analytical validation of an image analysis tool, however such tools are
used to overcome biases that are known to be exhibited during traditional
pathologist assessment of tissue sections.114

Histopathological examination is widely viewed as the gold-standard pro-
cedure for achievement of afinal diagnostic conclusion.115However, histopa-
thological examination is also highly susceptible to the introduction of
artifacts which can alter otherwise normal morphologic and cytologic tissue
features.115 High-quality, well-annotated, and large datasets composed from
high-quality histology yield high performing deep learningmodels.116,117 Au-
tomated CNN-based tools, e.g., HistoQC and DeepFocus,118,119 have been de-
veloped to standardize the quality of whole slide imaging. GAN (generative
adversarial network)-based approaches in eliminating noise to produce nor-
malized H&E stained images have also been proposed.120

Although such conditions for training are ideal, large datasets are diffi-
cult to allocate for rare diagnosis or for prediction of outcomes in clinical
trials using a small cohort of patients. Performance of deep learning models
has also declinedwhen data from different sources and imaging devices has
been used for testing.6 AI-algorithms have still demonstrated accurate pre-
dictive capacity despite a lack of training variables or standardization of
data.85

This capacitymay soon extend to successful prediction of genemutation
probability in cancer from digitized H&EWSIs, as demonstrated in a recent
study evaluating the performance of a deep learning model developed to
determine SPOP (speckle-type POS protein) gene mutation in prostate can-
cer via tractable deep learning using a small dataset of 20–55 positive
examples.121

Commercial software vendors have leveraged machine learning for
GUP applications in immune-oncology, e.g., the OptraScan (San Jose, Cali-
fornia) image analysis solution: OptraASSAYS® (RUO) offers prostate and
kidney analysis libraries. In addition to predictive prognostics, such solu-
tionsmay be utilized in future immunotherapy applications. High PD-L1 ex-
pression has demonstrated association with poor clinical outcomes in
prostate cancer patients, with important roles in immunotherapy, chemo-
therapy, and vaccines in the treatment of prostate cancer.122,123The
OptraScan platform supports interpretation of PD-L1 IHC expression on
tumor and immune cells in solid tumors.

Machine or deep learning empowered automated diagnostic algorithms
have demonstrated the capacity to assist pathologists’ decision-making pro-
cess in difficult cases. Yet, outside of the realm of prostate pathology, or-
chestration of machine learning tools for integrability within GU
reporting workflows has been overlooked. Apart from those for prostate pa-
thology, most AI assistive tools feature in our review have been developed
as standalone tools. For instance, with bladder, one tool may grade, but still
another is required to assess depth of invasion. For the fully streamlined fa-
cilitation of GU reporting, a machine learning tool must: 1) recognize there
is tumor, 2) grade the tumor, and 3) judge depth of invasion. These tasks be
seamless and running in parallel or appropriate sequence, rather than hav-
ing a pathologist select from a dropdown separately for each step in
reporting the diagnosis. Constant manual selection of individual tools with-
out general intelligence adds friction to reporting in digital sign-out
workflows.

Conclusions

Machine learning tools developed for GU pathology have demonstrated
promising applications in diagnosis and prognosis, identification of histo-
logic subtypes and identification of tumor grades via analysis of histopa-
thology specimens.

AI-algorithms have demonstrated the capacity to help aid clinicians in
prognostic management and the development of precision treatment strat-
egies. Though efforts still are necessary to improve prognostic capacity, AI
applications in GU pathology will ultimately aid pathologists in tumor as-
sessment via enhanced accuracy and efficiency of histopathological diag-
nostic execution.
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