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abstract

PURPOSE To evaluate early circulating tumor DNA (ctDNA) kinetics using a tumor-naı̈ve assay and correlate it
with clinical outcomes in early phase immunotherapy (IO) trials.

METHODS Plasma samples were analyzed using a 425-gene next-generation sequencing panel at baseline and
before cycle 2 (3-4weeks) in patients with advanced solid tumors treatedwith investigational IO agents. Variant allele
frequency (VAF) for mutations in each gene, mean VAF (mVAF) from all mutations, and change in mVAF between
both time points were calculated. Hyperprogression (HyperPD) was measured using Matos and Caramella criteria.

RESULTS A total of 162 plasma samples were collected from 81 patients with 27 different tumor types. Patients
were treated in 37 different IO phase I/II trials, 72% of which involved a PD-1/PD-L1 inhibitor. ctDNA was
detected in 122 plasma samples (75.3%). A decrease in mVAF from baseline to precycle 2 was observed in 24
patients (37.5%) and was associated with longer progression-free survival (hazard ratio [HR], 0.43; 95% CI,
0.24 to 0.77; P, .01) and overall survival (HR, 0.54; 95% CI, 0.3 to 0.96; P = .03) compared with an increase.
These differences were more marked if there was a.50% decrease in mVAF for both progression-free survival
(HR, 0.29; 95% CI, 0.13 to 0.62; P , .001) and overall survival (HR, 0.23; 95% CI, 0.09 to 0.6; P = .001). No
differences in mVAF changes were observed between the HyperPD and progressive disease patients.

CONCLUSION A decrease in ctDNA within 4 weeks of treatment was associated with treatment outcomes in
patients in early phase IO trials. Tumor-naı̈ve ctDNA assays may be useful for identifying early treatment benefits
in phase I/II IO trials.

JCO Precis Oncol 7:e2200509. © 2023 by American Society of Clinical Oncology

INTRODUCTION

Circulating tumor DNA (ctDNA) is a promising non-
invasive approach to characterize tumor-related alter-
ations in plasma.1,2 Tumor-informed assays use results
from genome or exome sequencing from tumor tissue to
track specific alterations in ctDNA. In contrast, tumor-
naı̈ve assays are based on detecting a fixed number of
genomic alterations (panels) and do not rely on tumor
tissue availability for sequencing. Recent studies have
shown that early changes in ctDNA levels over time (ki-
netics) are associatedwith long-term treatment outcomes3

and response to chemotherapy and targeted therapy.4-7

Similar findings have been observed in patients treated
with immunotherapy (IO), including immune checkpoint
inhibitors (ICIs) targeting PD-1/PD-L1 in melanoma, lung,
and gastric cancers.8-10 A decrease in ctDNA after
6 weeks of treatment is associated with long-term treat-
ment outcomes in two distinct cohorts of pan-cancer
patients treated with ICIs.11,12

Early phase clinical trials are a key step in drug
development. Many investigational drugs do not
move to later stages because of safety concerns or
limited efficacy.13 Themajority of anticancer drugs in early
phase trials are currently IO agents.14 However, these
trials face new challenges in terms of evaluating dose-
limiting toxicities, demonstrating antitumor activity and
establishing the recommended phase II dose for further
clinical development.15 There is growing support to move
to amodel in which selection of the recommended phase
II dose is guided not only by the highest tolerable dose but
also by pharmacodynamic and antitumor activity (Project
Optimus).16 ctDNA is an attractive noninvasive biomarker
that may provide early proof-of-mechanism readouts of
biological activity for investigational IO agents.17

Unique radiographic response patterns have been ob-
served with IO. Pseudoprogression (PseudoPD) is a late
response after an initial radiographic increase in tumor
burden.18 By contrast, hyperprogression (HyperPD)
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represents an accelerated tumor growth.19 There is contro-
versy about whetherHyperPD is a real biological phenomenon
or an artifact of the variability of radiographic response
assessments.20,21 In addition, there is no clear consensus on
how to identify HyperPD.22,23 Early changes in ctDNA may be
useful to anticipate to those radiographic response patterns.

We have previously reported a decrease in ctDNAwithin the
first 3 weeks of treatment in three patients who showed
radiological response in IO-based phase I/II clinical trials.24

We hypothesized that early ctDNA kinetics may identify
patients more likely to benefit from treatment before ra-
diological response and that there would be different ctDNA
kinetics in patients with HyperPD or pseudoPD.

METHODS

Patients and Samples

From December 2017 to March 2020, we prospectively
consented patients with advanced solid tumors in early phase
clinical trials at the Princess Margaret Cancer Centre in an
institutional liquid biopsy biobanking program (LIBERATE,
ClinicalTrials.gov identifier: NCT03702309). For this analysis,
we included patients treated with investigational IO therapies,
including ICIs, bispecific antibodies, vaccines, or cytokines
(either in monotherapy or in combination with other immu-
nomodulatory agents or molecular targeted therapy). Patients
with available plasma samples before treatment (baseline)
and before second cycle (pre-C2) (usually 3-4 weeks after
first dose) were included. This study was approved by the
Princess Margaret Cancer Centre Research Ethics Board
(no. 18-5815).

Patient demographic, clinical, and treatment outcome data
were collected. Treatment outcomes were measured as
overall survival (OS) from the date of enrollment in the early
phase clinical trial, progression-free survival (PFS), and re-
sponse rate on the basis of iRECIST version 1.1. The clinical
benefit rate was considered complete response, partial re-
sponse, or stable disease (SD) for.6 months. HyperPD was

calculated using two different criteria previously published:
Caramella (which analyzes both pretreatment and on-
treatment radiological assessments) and Matos (which
uses only on-treatment radiological assessments).25,26

DNA Extraction, Library Preparation, and Sequencing

for ctDNA

Sample processing and genomic profiling were performed as
previously described.24 Briefly, plasma and buffy coat were
isolated from whole blood after centrifugation and before cell
free DNA extraction using the QIAamp Circulating Nucleic
Acid Kit (Qiagen, Germantown, MD). Target enrichment was
performed using xGen lockdown probes (Integrated DNA
Technologies, Coralville, IA) targeting 425 cancer-associated
genes (Data Supplement). The capture reaction was per-
formed with Dynabeads M-270 (Life Technologies, Carlsbad,
CA) and the xGen Lockdown hybridization and wash kit (In-
tegrated DNA Technologies) according to the manufacturer’s
protocols. Captured libraries were on-bead polymerase chain
reaction (PCR) amplified with Illumina p5 and p7 primers in
KAPAHiFi HotStart ReadyMix (KAPABiosystems,Wilmington,
MA), followed by purification using Agencourt AMPure XP
beads (Beckman Coulter, Indianapolis, IN). Libraries were
quantified by quantitative PCR using a KAPA Library Quan-
tification Kit (KAPA Biosystems). Library fragment size was
determined using Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA). The target-enriched library was then se-
quenced on an Illumina sequencing platform (Illumina, San
Diego, CA), according to the manufacturer’s instructions.

Trimmomatic27 was used for FASTQ file quality control.
Leading and trailing of low-quality (quality reading below
20) or N bases were removed. Pair-end reads were then
aligned to the human reference genome-19 using the
Burrows-Wheeler Aligner28 with default parameters. PCR
deduplication was performed using Picard V2.9.4 (Broad
Institute, Cambridge, MA). Local realignment around indels
and base quality score recalibration were performed using
the Genome Analysis Toolkit (GATK 3.4.0; Broad Institute,

CONTEXT

Key Objective
Early changes in circulating tumor DNA (ctDNA) are associated with radiographic response to various systemic treatment. We

evaluated ctDNA kinetics using a tumor-naı̈ve assay in patients treated with experimental immunotherapy (IO) in early
phase clinical trials.

Knowledge Generated
Reductions in ctDNA within the first 21 days of treatment in IO-based early phase clinical trials were associated with ra-

diological response and progression-free and overall survival. These associations were more marked with .50% decrease
in ctDNA levels from baseline. Patients with radiological hyperprogression did not show greater increases in ctDNA levels
compared with patients who had radiological progression but did not meet criteria for hyperprogression.

Relevance
Our study demonstrates that ctDNA is an early pharmacodynamic response biomarker in early phase IO clinical trials that may

be useful to inform drug development.
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Cambridge, MA). Somatic single-nucleotide variants were
identified using MuTect,29 and small indels were detected
using Scalpel Fang.30 The cutoff for somatic mutation
detection was a variant allele frequency (VAF) of 0.5%, with
five supporting reads in plasma samples. Somatic muta-
tions were filtered using matched germline DNA obtained
from buffy coat peripheral blood mononuclear cells. If a
mutation met the above cutoff in at least one sample, the
detection cutoff for the samemutation was dropped in other
samples to reduce false negatives. The final list of muta-
tions was annotated using vcf2maf.39

Statistical Analysis

Demographics and clinical characteristics are summarized
as means, medians, and proportions. Associations between
categorical variables were examined using Fisher’s exact test.
ctDNA was quantified using the mean VAF (mVAF) of all
detected mutations in ctDNA. Different variants of the same
gene were counted as different mutations. The change be-
tween the pre-C2 and baseline ctDNA was defined as mVAF
change rate = (pre-C2 mVAF − baseline mVAF)/(baseline
mVAF + 0.001%) × 100%. To calculate mVAF change rate,
all variants were included regardless of whether were present
at both time points or only at a single time point. The asso-
ciation between categorical variables and median mVAF was
examined using the Wilcoxon test. Kaplan-Meier curves were
compared using the log-rank test for survival analysis. Hazard
ratios (HRs) were calculated using a Cox proportional hazards
model. A two-sided P value of ,.05 was considered statis-
tically significant. All statistical analyses were performed using
R software (v.4.1.1).40

RESULTS

Patient Characteristics

A total of 123 patients were included in the cohort of
early phase clinical trials within the LIBERATE program

(102 patients received IO) (Fig 1). Plasma samples were
available for analysis at baseline and at pre-C2 in 81
patients (79%). The median time from the first dose of
treatment to pre-C2 sample collection was 21 days
(range 19-55). One patient participated in two trials and
other in three trials; the number of different individuals
included was 78. The demographic, clinical, and
treatment characteristics are summarized in Table 1.
The median age was 58 (21-79) years. Patients were
diagnosed with 27 different tumor types and enrolled in
37 IO-based early phase trials. Most patients received at
least a PD-(L)-1 inhibitor (n = 58, 71.6%). The median
follow-up duration was 10.3 months (1.8-46.9 months).
The median OS and PFS was 10.3 months (95% CI, 9.5
to 15.1) and 1.9 months (95% CI, 1.8 to 2.6),
respectively.

Detection of ctDNA in Plasma Samples

ctDNA profiling was performed on 162 plasma samples.
Average coverage depth and quality control are sum-
marized in the Data Supplement. Mutations in ctDNA
were identified in 122 samples (75.3%): 60 (74%) at
baseline and 62 (76.5%) at pre-C2. At an individual
patient level, ctDNA was detected at any time point in 64
patients (79%): 58 at both time points, two at baseline,
and four at pre-C2. Overall, ctDNA at baseline was de-
tected in most tumor types, except mesothelioma and
sarcoma, where the rates of detection were lower (20%
and 33%, respectively). The genomic alterations de-
tected in the ctDNA in ≥3 patients are summarized in the
Data Supplement. None of the most frequent mutations
detected at baseline predicted PFS or OS (Data Supplement).
The median mVAF was 5.1% (range: 0.5%-57.5%) at
baseline and 4.1% (range: 0.2%-55.6%) at pre-C2. Baseline
ctDNA levels were not associated with differences in OS or
PFS (Data Supplement).

LIBERATE phase I cohort
(N = 123)

Treated with IO
(n = 102)

Baseline and pre-C2
plasma sample available

(n = 81)

Mean VAF change rate
(n = 64)

Screening failure                                      (n = 3)
No IO                                                       (n = 18)

ctDNA no detected time points             (n = 17)

No baseline                                                (n = 2)
Neither baseline or pre-C2                      (n = 1)
No pre-C2                                                (n = 18)
   Collection before or after C2                (n = 8)
   Did not receive first dose                       (n = 5)
   Progression before C2                          (n = 3)
   COVID-19 restrictions                           (n = 1)
   Consent withdrawn                               (n = 1)

FIG 1. Flow diagram of the pa-
tients included in the analysis.
ctDNA, circulating tumor DNA; IO,
immunotherapy.
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Mean VAF Change Rate and Treatment Outcome

We evaluated whether the change in ctDNA between
baseline and pre-C2 (mVAF change rate) was associated

TABLE 1. Main Characteristics of Patients Included in the Overall
Population (N = 81)

Characteristics
Patients,
No. (%)

Sex

Male 44 (46)

Female 37 (54)

Stage at study entry

Locally advanced 3 (4)

Metastatic 78 (96)

Tumor type

Sarcoma 9 (11)

Colorectal carcinoma 8 (10)

Breast carcinoma 7 (9)

Melanoma 6 (7)

Head and neck squamous cell carcinoma 5 (6)

Mesothelioma 5 (6)

Ovary carcinoma 4 (5)

Prostate carcinoma 4 (5)

Biliary duct carcinoma 3 (4)

Endometrium 3 (4)

Pancreatic adenocarcinoma 3 (4)

Renal clear cell carcinoma 3 (4)

Salivary gland carcinoma 3 (4)

Cutaneous adenocarcinoma 3 (4)

Suprarrenal carcinoma 3 (4)

Cervix carcinoma 2 (4)

Esophagus adenocarcinoma 2 (4)

Others (anal carcinoma, conjuctival melanoma,
gastric carcinoma, mucoepidermoid carcinoma
(head and neck), nasopharyngeal cancer,
neuroendocrine tumor, small-cell lung
carcinoma, small bowel carcinoma, one each)

8 (10)

Microsatellite stability

Instable (MSI) 7 (9)

Stable (MSS) 13 (16)

Unknown 61 (75)

No. of drugs

1 27 (33)

2 51 (63)

3 3 (4)

Therapies

Monotherapy 25 (31)

Anti–PD-(L)1 monotherapy 5 (6)

Checkpoint inhibitor 14 (17)

Immunomodulator 3 (4)

Vaccines 3 (4)

(Continued in next column)

TABLE 1. Main Characteristics of Patients Included in the Overall
Population (N = 81) (Continued)

Characteristics
Patients,
No. (%)

Combinations 56 (69)

Anti–PD-(L)1 + other checkpoint 22 (27)

Anti–PD-(L)1 + MAPK pathway inhibitor 10 (12)

Anti–PD-(L)1 + immunomodulator 7 (9)

Anti–PD-(L)1 + vaccine 2 (3)

Anti–PD-(L)1 + interleukine 6 (7)

Two anti–PD-(L)1 2 (3)

Anti–PD-(L)1 + immunomodulator + interleukine 2 (3)

Anti–PD-(L)1 + checkpoint inhibitor +
immunomodulator

1 (1)

Anti–PD-(L)1 + checkpoint inhibitor + interleukine 1 (1)

Checkpoint inhibitor + immunomodulator 2 (3)

Two checkpoint inhibitors 1 (1)

No. of site of metastases

Locally advanced 3 (4)

1 28 (34)

2 27 (33)

3 16 (20)

.3 7 (9)

Sites of metastases

Liver

Lung

Peritoneal

Bone

Lymph node

Others (kidney, brain, adrenal, pleural, and skin)

ECOG

0 24 (30)

1 57 (70)

Best response

Complete response 3 (4)

Partial response 5 (6)

Stable disease 23 (28)

Progressive disease 50 (62)

Clinical benefit rate 16 (20)

Hyperprogression

Yes (Matos criteria) 9 (11)

Yes (Caramella criteria) 4 (5)

Abbreviations: ECOG, Eastern Cooperative Oncology Group; MSI,
microsatellite instability; MSS, microsatellite stability.
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with treatment outcomes and survival in the 64 patients
with ctDNA detection at any time point.

Patients with a decrease in ctDNA showed a longer median
OS (10.8 months; 95% CI, 9.53 to NR) compared with those
with an increase (9.1months; 95%CI, 6.2 to 13.1) (HR, 0.54;
95% CI, 0.3 to 0.96; P = .033) (Fig 2A). These differences
weremoremarkedwhenmolecular response was considered
as a decrease .50% from baseline (Fig 2B), with a median
OS that was not reached (95% CI, 9.53 to NR) versus
9.6 months (95% CI, 6.7 to 11.9) (HR, 0.23; 95% CI, 0.09 to
0.6; P = .001). Similar findings were observed if molecular
response was considered a reduction .20% (Fig 2C).

Similarly, median PFS was shorter in patients with an in-
crease in ctDNA compared with a decrease, 1.8 (95% CI,
1.6 to 1.9) versus 2.7 months (95% CI, 1.9 to 5.6); HR 0.43

(95% CI, 0.24 to 0.77); P = .003 (Fig 3A). Differences
were more marked if molecular response was considered
as a reduction .50%: PFS was 1.8 months (95% CI, 1.6
to 1.9) versus 3.5 months (95% CI, 2.8 to NR), HR 0.29
(95% CI, 0.13 to 0.62); P , .001 (Fig 3B). This was also
observed when there was a decrease in mVAF of .20%
(Fig 3C).

mVAF change rate was also associated with radiological
response. All patients with radiological response had a de-
crease in ctDNA compared with only 32.2% of patients who
had SD/PD (P = .001) (Fig 4A). These differences were more
markedwhen therewas a. 50%decrease in ctDNA levels. A
mVAF decrease of. 50%was only seen in six (10%) patients
who did not experience response (Fig 4B). Similar findings
were observed regarding clinical benefit (Data Supplement).
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FIG 2. ctDNA change rate and overall survival. ctDNAmean VAF change rate was evaluated at C2 compared with baseline. Responders were defined by
mean VAF changes of (A) ,0%, (B) ,−50%, and (C) ,−20%. ctDNA, circulating tumor DNA; HR, hazard ratio.
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We performed a subanalysis restricting to patients treated
with a PD(L)-1 inhibitor alone or in combination with other
therapies (n = 58). ctDNA was detected at any of the time
points in 45 patients. Baseline ctDNA levels were not as-
sociated with PFS or OS. There was a statistically significant
difference for longer PFS and OS if ctDNA decreased at any
of the prespecified cutoffs (0%, −20%, and −50%) (Data
Supplement). Once again, differences were more marked
for the cutoff −50%.mVAF change rate was also associated
with radiological response and clinical benefit.

Mean VAF Change Rate to Predict Hyperprogression

HyperPD was evaluated in all patients who had PD within
2 months of treatment (n = 49), 43 with ctDNA detection at
baseline (87.8%). All patients were evaluable using theMatos
criteria. Nine patients (all with ctDNA detected) were clas-
sified as having HyperPD (18.4% of patients with PD within

2 months). Three patients were not evaluable according to
Caramella criteria because prebaseline radiological assess-
ments were not available. Four patients (all positive for ctDNA
at baseline) were considered to have HyperPD (4.9%); two of
them were also using Matos criteria. There was a non-
statistically significant trend toward a higher median mVAF
change rate in those with HyperPD using Matos Criteria: The
median mVAF change rate was +0.41 (95% CI, 0.02 to
1.53) for HyperPD versus +0.24 (95% CI, 0.03 to 1.25) for
standard PD (P = .53) (Fig 5A). A similar trend was ob-
served in those using Caramella criteria: The median mVAF
change was +0.78 (95% CI, −0.2 to 2.13) in HyperPD
versus +0.23 (95%CI, 0.09 to 1.18) in standard PD (P = .5)
(Fig 5B). There were no differences in the median mVAF at
pre-C2 or baseline between HyperPD and standard PD
(Data Supplement). We also compared median mVAF change
among HyperPD and the remaining population (standard PD,
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FIG 3. ctDNA change rate and progression-free survival. ctDNA mean VAF change rate was evaluated at C2 compared with baseline. Responders were
defined by mean VAF changes of (A) ,0%, (B) ,−50%, and (C) ,−20%. ctDNA, circulating tumor DNA; HR, hazard ratio.
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complete response, partial response, and SD), and we did not
see significant differences (Data Supplement). In regard to
genomic alterations, there were more patients with baseline
TP53mutations among HyperPD compared with standard PD
(77.8% v 32.4%, P = .02).

Mean VAF Change Rate to Predict Pseudoprogression

In our cohort, eight patients (9.8%) were treated beyond
RECIST progression, but all of them discontinued IO after

their subsequent radiological assessment because of fur-
ther tumor growth. Therefore, none of them can be con-
sidered PseudoPD. Interestingly, a patient with MSI-high
endometrial carcinoma discontinued treatment because of
PD according to iRECIST criteria after 90 days on treatment
with a PD-L1 checkpoint inhibitor and MAPK pathway
inhibitor. The patient then received palliative radiation to
the retroperitoneal lymph nodes. This patient is currently
alive (OS = 44.9months) with no further systemic treatment
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and no evidence of disease. The ctDNA kinetics in this
patient between baseline and pre-C2 showed a dramatic
decrease in the VAF of all variants (Data Supplement).

DISCUSSION

In this study, we demonstrated that a decrease in ctDNA
within the first 3-4 weeks of treatment is associated with
radiological response, clinical benefit, and longer survival in
patients treated in early phase IO clinical trials. This as-
sociation was more marked when the decrease in ctDNA
was .50%. Differences in median OS and PFS using
this cutoff are clinically meaningful compared with any de-
crease in ctDNA (decrease in ctDNA.0%) where differences
in median OS and PFS are only 1.7 and 0.9 months, re-
spectively. Therefore, our data suggest that molecular re-
sponse should be considered a decrease of ctDNA .50%.
This cutoff has been used as a standard for molecular re-
sponse in patients with advanced non–small-cell lung cancer
and melanoma treated with ICIs.31-33 Early ctDNA kinetics
were also recently evaluated in a pan-cancer cohort of
patients.34 A decrease in ctDNA levels within the first 21 days
of treatment was predictive of treatment outcomes. Several
differences are noted when compared with our analysis. The
abovementioned study included patients treated with exper-
imental and standard therapies; only 13% of the patients were
treated with IO. That study used a tumor-informed ctDNA
assay while we used a tumor-naı̈ve one.

Our results are also consistent with previous studies
evaluating anti–PD-(L)1 therapies in patients with different
tumor types, where a decrease in ctDNA 6 weeks after the
first dose predicted longer survival.11,12 There are some
notable differences between those studies and our work.
First, on-treatment detection occurred earlier than in those
studies (within 3-4 weeks). Second, our cohort included a
broader population of advanced solid tumor types and
various investigational IO treatments. Most patients in our
cohort received PD-1 or PD-L1 ICIs alone or in combination
with other novel drugs. Finally, we used a 425-gene panel
tumor-naı̈ve ctDNA panel in contrast to a bespoke tumor-
informed ctDNA assay11 or a smaller 73-gene panel.12

Large tumor-naı̈ve ctDNA panel sequencing may in-
crease the sensitivity of detection and dynamic ctDNA
assessments and may be more broadly applicable across
tumor types. In the early phase IO clinical trial field, a study
showed that baseline ctDNA detection using shallow
whole-genome sequencing was associated with shorter
OS.35 We did not see such differences. The above-
mentioned study suggested that early increases in ctDNA
levels were associated with shorter PFS. We found that any
change in ctDNA levels can be associated with OS and PFS.

We were unable to differentiate HyperPD and pseudoPD in
our cohort using ctDNA. We observed a similar rate of
HyperPD compared with previous studies using the most
commonly applied criteria (Matos 12.7% and Caramella

4.9%). However, some of the patients who were considered
HyperPD were exposed before to anti–PD-(L)1 therapy, and
others did not receive anti–PD-(L)1 therapy in this study so
that categorization may not be accurate. We found a higher
proportion of TP53 mutations in the plasma of HyperPD
patients. Previous studies using tumor sequencing have
reported that MDM2 amplification, EGFR aberrations,
SMARC2 mutations, and APC signaling alterations are as-
sociated with HyperPD.36 In our cohort, we did not observe
any pseudoPD. However, one of the patients showed an
initial PD but the longest OS suggesting a potential pseu-
doPD. Interestingly, there was a sharp decrease in ctDNA
pre-C2. This is consistent with prior studies that have shown
that ctDNA may help distinguish pseudoPD in melanoma or
non–small-cell lung cancer.37,38

Our study had several limitations. This is a retrospective
analysis of patients at a single institution although they were
prospectively recruited. Our cohort was heterogeneous, with
many different tumor types and a variety of experimental IO
treatment regimens, including investigational agents that are
no longer in clinical development. Some patients could not
be evaluated for ctDNA kinetics because ctDNA was not
detected at any time point. This was particularly notable for
patients with sarcoma and mesothelioma, where the fixed
ctDNA panel may not be optimized for plasma mutation
detection or where there may be less shedding of ctDNA.
Accordingly, there were 64 patients in our cohort with ctDNA
detected at any time point, and this relatively small number is
reflected in the wide CIs for the median OS and PFS esti-
mates. We also acknowledge that our study was focused
on ctDNA values rather than specific variants that may arise
before progression and that could be potentially interesting to
explore in subsequent studies. Finally, the correlation be-
tween ctDNA decrease and radiological response should be
interpreted with caution as only eight patients in our cohort
experienced radiographic response.

In conclusion, our study suggests that ctDNA kinetics is an
early response biomarker in early phase IO clinical trials, as
demonstrated in other settings. An early increase in ctDNA
after one cycle of treatment may identify patients who do not
benefit from experimental IO therapy. This could prompt an
earlier radiological response assessment or early discon-
tinuation of ineffective treatment, avoiding continued ex-
posure to ineffective experimental drug treatment. In
contrast, a marked decrease in ctDNA may also be reas-
suring to continue experimental treatment beyond the initial
dose limiting toxicity period. This study provides a rationale
for integrating ctDNA kinetics in early phase clinical trials as
a pharmacodynamic biomarker which can precede changes
in radiological imaging. Further validation studies with a
prespecified ctDNA cutoff (ie, decrease .50%) and real-
time analysis are required before this approach should
routinely be used in clinical practice.
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