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Abstract

Genes specifying long non-coding RNAs (lncRNAs) occupy a large 
fraction of the genomes of complex organisms. The term ‘lncRNAs’ 
encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed  
RNAs, and RNAs from processed introns. The various functions of 
lncRNAs and their many isoforms and interleaved relationships with 
other genes make lncRNA classification and annotation difficult. 
Most lncRNAs evolve more rapidly than protein-coding sequences, 
are cell type specific and regulate many aspects of cell differentiation 
and development and other physiological processes. Many lncRNAs 
associate with chromatin-modifying complexes, are transcribed from 
enhancers and nucleate phase separation of nuclear condensates and 
domains, indicating an intimate link between lncRNA expression and the 
spatial control of gene expression during development. lncRNAs also 
have important roles in the cytoplasm and beyond, including in the 
regulation of translation, metabolism and signalling. lncRNAs often  
have a modular structure and are rich in repeats, which are increasingly 
being shown to be relevant to their function. In this Consensus Statement, 
we address the definition and nomenclature of lncRNAs and their 
conservation, expression, phenotypic visibility, structure and functions. 
We also discuss research challenges and provide recommendations  
to advance the understanding of the roles of lncRNAs in development, 
cell biology and disease.
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Purpose of this Consensus Statement
In this Consensus Statement we present a current and coherent picture 
of the roles of lncRNAs in cell and developmental biology, identify the 
key issues in understanding their functions and chart the path for-
ward. We address lncRNA definition, nomenclature, conservation, 
expression, phenotypic visibility, functional assays and molecular 
mechanisms encompassing lncRNA connections to chromatin archi-
tecture, epigenetic processes, enhancer function and biomolecular 
condensates, as well as the roles of lncRNAs outside the nucleus.  
We argue that loci expressing lncRNAs should be recognized as bona 
fide genes and discuss lncRNA structure–function relationships as 
the means to parse mechanisms and pathways. Finally, we identify the  
current challenges and offer recommendations for understanding  
the relationship of lncRNAs to genome architecture, gene regulation 
and cellular organization.

The authors of this Consensus Statement were suggested by reco-
mmendations of colleagues. Consensus was reached by group e-mail 
and discussion.

Definition and nomenclature of lncRNAs
lncRNAs have been arbitrarily defined as non-coding transcripts of 
more than 200 nucleotides (200 nt), which is a convenient size cut-
off in biochemical and biophysical RNA purification protocols that 
deplete most infrastructural RNAs, such as 5S rRNAs, tRNAs, snRNAs 
and snoRNAs, as well as miRNAs, siRNAs and piRNAs23. This definition 
also excludes some other well-known short RNAs such as the primate-
specific snaRs (~80–120 nt), which associate with nuclear factor 90 
(ref. 24); Y RNAs (~100 nt), which act as scaffolds for ribonucleopro-
tein (RNP) complexes25; vault RNAs (88–140 nt), which are involved 
in transferring extracellular stimuli into intracellular signals26; and 
promoter-associated RNAs and non-canonical small RNAs produced by 
post-transcriptional processing27–29. Other non-coding RNAs lie close to 
the 200-nt border, such as 7SK (~330 nt in vertebrates), which controls 
transcription poising and termination, including at enhancers30,31, and 
7SL (~300 nt), which is an integral component of the signal recognition 
particle that targets proteins to cell membranes32 and the evolution-
ary ancestor of the widespread primate Alu (~280 nt) and rodent B1 
(~135 nt) small interspersed nuclear elements33–35. Given this grey zone of 
sizes, we support the suggestion that non-coding RNAs be divided into 
three categories36: (1) small RNAs (less than 50 nt); (2) RNA polymerase III  
(Pol III) transcripts (such as tRNAs, 5S rRNA, 7SK, 7SL, and Alu, vault and 
Y RNAs37), Pol V transcripts in plants and small Pol II transcripts such 
as (most) snRNAs and intron-derived snoRNAs38,39 (~50–500 nt); and 
(3) lncRNAs (more than 500 nt), which are mostly generated by Pol II.

Many lncRNAs are spliced and polyadenylated, which has led to 
their description as ‘mRNA-like’. However, other lncRNAs are not poly-
adenylated or 7-methylguanosine capped19,40–42, are expressed from 
Pol I (5.8S, 28S and 18S rRNAs) or Pol III promoters, or are processed 
from precursors, including from introns and repetitive elements, lead-
ing to the more agnostic descriptor ‘transcripts of unknown function’43. 
With respect to protein-coding genes, lncRNAs can be ‘intergenic’, 
antisense or intronic. They are also derived from ‘pseudogenes’, which 
occur commonly in metazoan genomes44, with more than 10,000 
pseudogenes identified in the mouse genome45 and almost 15,000 
identified in the human genome46, some of which have been shown to be 
functional44,47. lncRNAs also include circular RNAs generated by back-
splicing of coding and non-coding transcripts, also with demonstrated 
functions48, and trans-acting regulatory RNAs derived from sequences 
that conventionally act as the 3′ untranslated regions of mRNAs49.

Introduction
Research on long non-coding RNAs (lncRNAs), a previously unsus-
pected major output of genomes of complex organisms, has been 
dogged by uncertainty and controversy from its beginning. lncRNAs 
have the unfortunate distinction of being named for what they are not, 
rather than what they are. This loose description has its origins in the 
belief that the main role of RNA is to act as the intermediate between a 
gene and a protein, with other ‘housekeeping’ non-coding RNAs such 
as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nucleolar 
RNAs (snoRNAs), spliceosomal RNAs and other small nuclear RNAs 
(snRNAs) being ancillary to this function.

Broad recognition of RNA as a regulatory molecule occurred in the 
early years of the first decade of the twenty-first century with the unex-
pected discovery of large numbers of small interfering RNAs (siRNAs), 
microRNAs (miRNAs) and small PIWI-interacting RNAs (piRNAs) that 
regulate — through Argonaute family proteins — gene expression at 
transcriptional, post-transcriptional and translational levels in eukary-
otes1, although there were examples of other small regulatory RNAs 
in the literature, especially in bacteria2. A few long regulatory RNAs, 
notably meiRNA in the fission yeast Schizosaccharomyces pombe, hsrω, 
RNA on the X1 (roX1) and roX2 in Drosophila melanogaster, and H19 and 
X-inactive-specific transcript (XIST) in mammals, had also been reported 
in the preceding years3–7, but were regarded more as oddities than 
early examples of a general phenomenon. Moreover, the small regula-
tory RNAs did not disturb the conceptual framework that most genes 
encode proteins, but rather fitted comfortably into it. It was later found, 
however, that while some miRNAs are generated from the introns of pre-
mRNAs8, non-coding primary transcripts of miRNAs and of snoRNAs  
can also have functions9,10 and that rRNAs, tRNAs and snoRNAs are 
processed to generate small regulatory RNAs, including miRNAs11–14, in 
some cases contributing to transgenerational epigenetic inheritance15.

A bigger surprise, and challenge to the reigning understanding 
of genetic information, came in the early and middle years of the first 
decade of the twenty-first century, when global transcriptomic analy-
ses, intended to better define the proteome, revealed that most of the 
genome of animals and plants is dynamically transcribed into longer 
RNAs that have little or no protein-coding potential16–19. This surprise 
was compounded by the associated finding that the number, and to a 
large extent the repertoire, of protein-coding genes is similar in animals 
of widely different developmental and cognitive complexity — the nema-
tode worm Caenorhabditis elegans (comprising ~1,000 somatic cells) and 
humans (~30 × 1012 somatic cells20) both have ~20,000 protein-coding 
genes — which was termed the ‘g-value paradox’21. By contrast, the extent 
of non-coding DNA, and consequently the transcription of non-coding  
RNAs, has increased with increasing developmental complexity22.

Understandably, the common initial reaction of the molecular 
biology community was to suspect that these unusual RNAs are tran-
scriptional noise, because of their generally low levels of sequence 
conservation, low levels of expression and low visibility in genetic 
screens. Since then, however, there has been an explosion in the num-
ber of publications reporting the dynamic expression and biological 
functions of lncRNAs, aided by extensive technology development that 
has enabled their identification and characterization, although only 
a minority of lncRNAs have confident annotations and very few have 
mechanistic information. The realization that the genomes of plants 
and animals express large numbers of lncRNAs requires a framework 
for their classification and understanding of their functions and, more 
profoundly, a reassessment of the amount and type of information 
required to programme the development of complex organisms.
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There have been many attempts at nomenclature and classifica-
tion of lncRNAs, by the HUGO Gene Nomenclature Committee, the GEN-
CODE consortium and others, predominantly based on their genomic 
position and orientation relative to protein-coding genes46,50–53. Linking 
to nearby genes has been useful, as it provides context and has some-
times provided clues to lncRNA function, for example in regulating 
the expression of these genes, as is often the case with enhancers (see 
later), although enhancer activity should not be assumed to be directed 
to the most proximal genes.

Many early studies focused on long intergenic non-coding RNAs 
(lincRNAs), whose sequences do not trespass on nearby protein-coding 
loci, owing to the need to distinguish their function from that of pro-
teins. However, many other lncRNAs overlap protein-coding loci or 
are expressed from enclosed introns. Moreover, the traditional view 
of genomes as linear arrangements of discrete protein-coding genes 
fails to accommodate the discovery that eukaryotic transcription, best 
characterized in human and model organisms, is a fuzzy continuum54, 
with ‘genes’ within genes, genes interleaved with other genes and 
non-coding transcripts overlapping or originating within them18,43,55, 
together posing a growing problem for genome annotations.

In both humans and D. melanogaster, for example, many protein-
coding genes have 5′ exons that are incorporated into mRNA in early 
embryogenesis and lie hundreds of kilobases upstream of the usual first 
exon, bypassing many other genes in the intervening region56. Indeed, 
any base may be exonic, intronic or ‘intergenic’, depending on the tran-
scriptional output of the cell at any point in its developmental trajec-
tory or physiological state55. For this reason, unless a lncRNA is antisense 
to a protein-coding gene, we recommend naming lncRNAs for their own 
sake with allusion to a discerned characteristic or function (as has been 
traditional for proteins), such as XIST, antisense IGF2R non-protein-
coding RNA57 (AIRN), HOX antisense intergenic RNA58 (HOTAIR), Gomafu 
(‘spotted pattern’ in Japanese; also known as Miat)59, COOLAIR (referring 
to plant vernalization)60 and auxin-regulated promoter loop61 (APOLO), 
for easy recollection, preferably accompanied by complete exon–intron 
structures and genomic coordinates. If no biological context is available, 
we recommend naming the lncRNA according to the GENCODE system46.

The wide range of functions of ‘non-coding’ RNAs precludes 
straightforward classification as specific RNA classes, with some acting 
locally and some at a distance, or both62. In the absence of more specific 
categorization, we recommend retention of the general descriptor 
‘lncRNA’, noting that most have some type of regulatory or architectural, 
often related, role in cell and developmental biology, and because there 
are so many historical articles that use this term or variations thereof. 
Non-coding RNAs come in all shapes and sizes, and the territory is huge, 
covering most of the genome and a plethora of functions. Some RNAs 
have dual functions as coding and regulatory RNAs, and some, perhaps 
many, cytosolic lncRNAs encode small peptides63–66. Protein-coding 
loci also express lncRNAs through alternative splicing67–69, and, surpris-
ingly, the major transcript produced by ~17% of human protein-coding 
loci is non-coding70. Indeed, both lncRNA genes and mRNA genes can 
produce transcripts that function following different levels of process-
ing. Unspliced transcripts, spliced transcripts, circular RNAs, intronic 
RNAs and stable small RNAs generated from them can all have a func-
tion48,71,72. Any RNA can be regulatory, and any locus can encode both 
protein-coding and regulatory RNAs.

Well in excess of 100,000 human lncRNAs have been recorded52,73, 
many of which are specific to the primate lineage74. This is a vastly 
incomplete list due to the limited analysis of different cells at different 
developmental stages (see later). There are now hundreds of thousands 

of catalogued lncRNAs and dozens of databases (and databases of 
databases) with curated information75–80. Over the past decade, there 
have been ~50,000 publications with ‘long non-coding RNA’ as a key 
term and more than 2,000 publications reporting validated lncRNA 
functions81, although most have yet to be followed up in any detail.

From here on, we focus on lncRNAs derived from Pol II primary 
transcription units (and use the term in that context), as opposed to 
other non-coding RNAs that are expressed from Pol I or Pol III promot-
ers, processed from introns (which, it should be noted, constitute a 
major fraction of the non-coding RNA in mammals and other organ-
isms41,82–84) or formed by back-splicing, although many of the same 
considerations apply.

Conservation of lncRNAs
Most lncRNAs are less conserved among species than the mRNA 
sequences encoding the proteome. Initially, most of the mammalian 
genome (which included most lncRNA loci) was thought to be evolv-
ing neutrally, using the yardstick of the rate of divergence of common 
‘ancient repeats’ (derived from transposons) between the human and 
mouse genomes, on the assumption that these sequences are non-
functional and representative of the original distribution in the ances-
tor85. However, there is increasing evidence that transposable elements 
are widely co-opted as functional elements of gene expression and 
structure, forming promoters, regulatory networks, exons and splice 
junctions in protein-coding genes and lncRNAs86–89, and therefore 
cannot be used as indices of neutral evolution.

Regulatory sequences, including promoters and lncRNAs, are 
known to evolve rapidly due to more relaxed structure–function con-
straints than protein-coding sequences and due to positive selection 
during adaptive radiation85,90–92. Many lncRNAs are cell lineage specific. 
Indeed, given their association with developmental enhancers (see 
later), variation in the complement and sequences of lncRNAs may be 
a major factor in species diversity.

Loci expressing lncRNAs exhibit many of the characteristics of 
protein-coding genes, including promoters, multiple exons, alterna-
tive splicing, characteristic chromatin signatures, regulation by mor-
phogens and conventional transcription factors, altered expression 
in cancer and other diseases74,93–98, and a range of half-lives similar to 
those of mRNAs99.

The promoters of lncRNAs exhibit levels of conservation compara-
ble to those of protein-coding genes18,74. lncRNAs also have conserved 
exon structures, splice junctions and sequence patches18,74,93,97, and they 
retain orthologous functions despite rapid sequence evolution100–102. 
Indeed, low sequence conservation can be misleading.

The lncRNA telomerase RNA template component (TERC), which is 
required for telomere maintenance — a vital cellular function — differs 
widely in size and sequence, but has conserved structural topology 
from yeast to mammals, albeit with some variation, and a conserved 
catalytic core103–108 (see also later). X chromosome dosage compensa-
tion in Drosophila spp. requires the formation of a nuclear domain 
through phase separation by the lncRNAs roX1 and roX2 interacting with 
the intrinsically disordered region (IDR) of a specific partner protein, 
male sex lethal 2 (MSL2). Replacing the IDR of the mammalian ortho-
logue of MSL2 with that of the D. melanogaster protein and expres-
sion of roX2 is sufficient to nucleate ectopic X chromosome dosage 
compensation in mammalian cells, showing that the roX–MSL2 IDR 
interaction is the primary determinant of compartmentalization of the 
X chromosome and that such interactions are preserved over vast evo-
lutionary distances109. Similar processes are involved in the regulation 
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of X chromosome dosage compensation in placental mammals by XIST, 
which performs several functions, including repulsion of euchromatic 
factors, scaffolding of new heterochromatic factors and reorganization 
of chromosome structure110–113.

Expression
Although there are exceptions (such as metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1; also known as NEAT2), which 
is one of the most abundant Pol II transcripts in vertebrate cells114, and 
nuclear paraspeckle assembly transcript 1 (NEAT1); see later), lncRNAs 
generally show more restricted expression patterns than mRNAs74,115, 
and are often highly cell specific116, which is consistent with a role in the 
definition of cell state and developmental trajectory. They also have 
specific subcellular locations, often nuclear, although a large fraction 
is cytoplasmic75. Although it is sometimes asserted that there are a few 
hundred cell types in a human, broad classifications obscure the fact that 
each cell occupies a precise place in a developmental ontogeny, illus-
trated by the differential expression of HOX genes in superficially similar 
skin cells in different regions of the body117, and by the expression of  
lncRNAs in various regions of the brain118–121 and at different stages  
of development122. lncRNAs are also dynamically expressed during dif-
ferentiation of mammalian stem, muscle, mammary gland, immune 
and neural cells, among many others81,116, with a transition during devel-
opment from broadly expressed and conserved lncRNAs towards an 
increasing number of lineage-specific and organ-specific lncRNAs123. 
lncRNA expression can also be strongly influenced by environmental fac-
tors, a feature that is especially prominent in plants124–126, which include 
a range of stress responses in animals and drug resistance in cancer127–133.

The restricted expression of lncRNAs in different cells at different 
stages of development and their generally low copy number (owing to 
their regulatory nature) accounts for their sparse representation in bulk-
tissue RNA sequencing datasets134, whereas many lncRNAs are relatively 
easy to detect in particular cells118. The undersampling of lncRNAs is now 
being rectified by targeted capture98,135, advanced imaging136–138, spatial 
transcriptomics139 and, in some cases, single-cell sequencing120,121,140, 
which make it clear that, whereas ~20,000 human lncRNA loci have been 
identified by GENCODE46 and ~30,000 by the FANTOM consortium141, 
there is likely at least an order of magnitude more.

Due to the high complexity and the variation in transcription ini-
tiation and termination sites, expression levels and splicing, compre-
hensive characterization of transcriptomes is extremely challenging.  
A recent study showed that the low expression of a lncRNA can be essen-
tial for its functional role by ensuring specificity to its regulated targets, 
suggesting that low abundance levels may be an essential feature of 
how lncRNAs work142. To fully catalogue the universe of lncRNAs, and 
properly record their exon–intron organization and splice variants, 
high-depth sequencing will need to be performed on cells at all stages of 
differentiation and development, undergoing different neural, immuno-
logical and other physiological processes, and in various disease states. 
This is a huge task, but we recommend that future gene expression pro-
filing should include full transcript analysis not just of mRNAs but also 
of small RNAs and lncRNAs that are intergenic, antisense and intronic 
to the annotated genes, and their stoichiometry143.

Phenotypic visibility
Like miRNAs, most lncRNAs have not been identified in genetic screens. 
There are two reasons for this. First, most genetic screens historically 
focused on protein-coding mutations, which often have severe conse-
quences that are easy to track; by contrast, regulatory mutations often 

have subtle consequences that affect quantitative traits. Second, it is 
difficult to identify causal mutations among the many variations that 
occur in non-coding sequences. Indeed, most variations that influence 
human quantitative traits and complex disorders occur in non-coding 
regions, which are replete with genes expressing lncRNAs144,145 that are 
transcribed in cell types relevant to the associated trait141,146.

There are exceptions of lncRNAs that have been identified geneti-
cally, notably the roX1 and roX2 RNAs involved in X chromosome acti-
vation in male fruitflies5, mammalian parentally imprinted H19, Airn 
and Kcnq1ot1 RNAs in mice6,57,147,148 and others such as Tug1 in mice149, 
MAENLI (ref. 150) and HELLP (named for ‘haemolysis, elevated liver 
enzyme levels and low platelet count’; also known as HELLPAR)151, 
which are associated with disorders or developmental processes.  
In Arabidopsis thaliana, non-coding intronic single-nucleotide poly-
morphisms important for flowering-time adaptation were found to 
alter the splicing of the lncRNA COOLAIR152.

Many lncRNAs have been associated with the cause and pro-
gression of cancers, through altered expression of and/or mutations 
(including translocation breakpoints) in lncRNAs that act as oncogenes 
or tumour suppressors153–155. Other lncRNAs are involved in human 
genetic disorders81,156,157, including DiGeorge syndrome and other 
neurodevelopmental and craniofacial defects158–160. Phenylketonuria, 
one of the first documented human genetic disorders, caused mostly by  
mutations in the enzyme phenylalanine hydroxylase, is caused also  
by mutations in a lncRNA that can be treated by modified RNA mimics161.

A route to analysing lncRNA biological function is to silence or 
delete, or (less commonly) ectopically express, lncRNAs that have been 
identified in RNA sequencing datasets, usually as being differentially 
expressed. There have been problems with the interpretation of such 
experiments, however, particularly the difficulty of disentangling the 
loss of lncRNA expression from the loss of DNA regulatory elements162,163, 
which has been addressed by strategies such as inserting polyadenyla-
tion sites for early transcription termination or transcription repres-
sion by CRISPR interference (CRISPRi), replacement of the lncRNA 
with a reporter gene that leaves the promoter intact or deletion of 
lncRNA exons (although loss of downstream regulatory elements can-
not be ruled out), antisense-mediated blockade of lncRNA splice sites, 
CRISPR–Cas13 targeting of the lncRNA (rather than its DNA sequence) 
and transgene rescue163,164. There are now many studies that have dem-
onstrated the biological roles of lncRNAs163, and high-throughput loss-
of-function reverse genetic screens are increasing the search speed, 
identifying, for example, lncRNAs that are required for mammalian 
cell growth and migration, brain, skeletal, lung, muscle and heart devel-
opment, immune function, epidermal homeostasis and cancer drug 
responses or lncRNAs that have fitness effects81,165–170 (Fig. 1). CRISPRi-
mediated transcription repression of more than 16,000 lncRNAs in seven 
human cell lines identified almost 500 lncRNAs required for normal  
cellular proliferation, 89% of which were expressed in only one cell type167.

Phenotypic consequences of mutations in regulatory RNAs, like 
some protein-coding mutations, may be context dependent and not 
evident in laboratory conditions, and may be obscured by the robust-
ness of biological systems171. Loss of Malat1, which localizes in nuclear 
speckles and associates with splicing factors, has no major phenotypes 
in mice114,172–174; however, it does affect cancer progression and syn-
apse formation, among other physiological and pathophysiological 
processes175,176. Neat1, which is required for the assembly and function 
of enigmatic, mammal-specific nuclear organelles called ‘paraspeck-
les’177–179, does not appear to be required for normal development in 
mice but is important for the differentiation of reproduction-related 
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female tissues such as corpus luteum and mammary gland180. Deletion 
of brain cytoplasmic RNA 1 (BC1), a highly expressed brain lncRNA, is 
seemingly harmless in mice but results in behavioural changes that 
would be lethal in the wild181. So extensive phenotyping is important, 
especially for cognitive functions. Organoid models may help to  
identify phenotypes in vitro182,183.

Functional annotation of lncRNAs can also be undertaken by 
molecular phenotyping184. Analysis of expression patterns, lncRNA–
chromatin interactions and other molecular indices following CRISPR–
Cas13-mediated depletion of more than 400 lncRNAs in culture 
indicated that lncRNAs regulate many genes involved in development, 
cell cycle and cellular adhesion, among other processes185.

Biological functions of lncRNAs
Characterized examples have indicated that RNAs participate in virtu-
ally all levels of genome organization, cell structure and gene expres-
sion, through RNA–RNA, RNA–DNA and RNA–protein interactions, 
often involving repeat elements88,186,187, including small interspersed 
nuclear elements in 3′ untranslated regions188. These interactions are 
involved in the regulation of chromatin architecture and transcription 
(see later), splicing (especially by antisense lncRNAs)189–191, protein 
translation and localization188,192,193, and other forms of RNA processing, 
editing, localization and stability194,195.

Many lncRNAs are involved in the regulation of cell differentiation 
and development in animals and plants23,81,116,124,196. They also have roles 
in physiological processes such as (in mammals) the p53-mediated 

response to DNA damage197, V(D)J recombination and class switch recom-
bination in immune cells198, cytokine expression199, endotoxic shock200, 
inflammation and neuropathic pain201–203, cholesterol biosynthesis 
and homeostasis204,205, growth hormone and prolactin production206, 
glucose metabolism207,208, cellular signal transduction and transport 
pathways209–212, synapse function213,214 and learning215, and have roles in 
the response to various biotic and abiotic stresses in plants124,125. There 
is also an emerging association of lncRNAs with the cell membrane216 
and with ribozymes217.

Presently, a growing number of lncRNAs have their own stories, 
and the literature is becoming replete with them. However, several 
convergent themes are emerging, which explain lncRNA ubiquity 
and importance in differentiation and development: the associa-
tion of lncRNAs with chromatin-modifying proteins; the expression 
of lncRNAs from developmental ‘enhancers’; and the formation of 
RNA-nucleated phase-separated coacervates.

Control of chromatin architecture
Epigenetic modifications of chromatin supervise differentiation and 
development in complex organisms218. DNA methylation is known 
to be directed by small non-coding RNAs in plants219, and the RNAi 
pathway is required for heterochromatin formation and epigenetic 
gene silencing in fungi and animals220. The mammalian de novo DNA 
(cytosine 5)-methyltransferase 3A (DNMT3A) and DNMT3B, but not the 
maintenance DNA methylase DNMT1, bind siRNAs with high affinity221. 
In turn, DNMT1 (which restores methylation at hemimethylated CpG 
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Fig. 1 | Visible phenotypes of mutations in long non-coding RNA genes in 
mice163. The following long non-coding RNAs (lncRNAs) are listed in the figure 
underneath their associated phenotypes: Airn, antisense of IGF2R non-protein-
coding RNA147,435; Charme, chromatin architect of muscle expression436; Chaserr, 
CHD2 adjacent, suppressive regulatory RNA437; Fendrr, FOXF1 adjacent non-
coding developmental regulatory RNA165,438; Firre, functional intergenic repeating 
RNA element316; Gaplinc, gastric adenocarcinoma predictive long intergenic 
non-coding RNA200; H19, clone pH19 (ref. 439); Handsdown, downstream of the 
protein-coding gene Hand2 (ref. 440) Kcnq1ot1, Kcnq1 overlapping antisense 
transcript 1 (ref. 441); linc-Brn1b, long intergenic non-coding RNA (lincRNA) 
downstream of the Brn1 protein-coding gene165; linc-Epav, endogenous 

retrovirus-derived lncRNA positively regulates antiviral responses442; lincRNA-
Cox2, lincRNA downstream of the inflammation response gene Cox2 (ref. 443); 
lincRNA-Eps, lincRNA involved in erythroid prosurvival201; lnc-Lsm3b, interferon-
inducible non-coding splice variant of the U6 small nuclear RNA-associated 
Sm-like protein lsm3 gene444; Maenli, master activator of engrailed1 in the limb165; 
Mdgt, midget165; Meg3, maternally expressed gene 3 (also known as Gtl2)445,446; 
Norad, non-coding RNA activated by DNA damage447; Peril, perinatal lethal long 
non-coding RNA165; Pnky, pinky (also known as lnc-Pou3f2)448; Tug1, taurine 
upregulated gene 1 (refs. 165,166,449) Upperhand, lncRNA upstream of the Hand2 
cardiomyocyte transcription factor locus318; Xist, X-inactive-specific transcript450. 
Figure courtesy of Daniel Andergassen and John Rinn.
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dinucleotides following DNA replication) binds lncRNAs to alter DNA 
methylation patterns at their cognate loci222–224, but this is still largely 
unexplored territory.

There are more than 100 different histone modifications that are 
differentially established by enzymes at a myriad of different posi-
tions in plant and animal genomes to control gene expression during 
development. The most studied are Polycomb repressive complex 1 
(PRC1) and PRC2, which catalyse monoubiquitylation of histone H2A 

Lys119 (ref. 225) and dimethylation and trimethylation of histone H3 
Lys27 (H3K27), respectively, but in mammals neither complex con-
tains sequence-specific DNA-binding proteins218. Early studies sug-
gested that PRC2 and/or the associated H3K9 methyltransferase G9a 
are recruited during mouse X chromosome inactivation by Xist186, 
and the control of parental imprinting in mice by Airn226 and Kcn-
q1ot1 (ref. 227), although these associations involve complexities and 
uncertainties228,229.
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A subsequent survey of more than 3,300 lncRNAs in human cells 
showed that ~20% (but only ~2% of mRNAs) interact with PRC2, and 
that other lncRNAs are associated with other chromatin-modifying 
complexes230. Moreover, depletion of a selection of these RNAs caused 
derepression of genes normally silenced by PRC2 (ref. 230). PRC2 
associates with many RNAs228,231,232, more than 9,000 in embryonic 
stem cells233. There are conflicting reports of whether these associa-
tions are nonspecific (‘promiscuous’)228,234 or specific high-affinity 
interactions with different RNAs232,235, although these alternatives are 
not mutually exclusive229. Some recent studies have shown that RNA is 
required for PRC2 chromatin occupancy, PRC2 function and cell state 
definition236, and that the interaction of PRC2 with RNA can regulate 
transcription elongation232. PRC1 function also appears to be controlled 
by RNA237,238. However, deconvoluting RNA–protein interactions is 
complicated by the low affinity of many antibodies used in pulldown 
assays and the fact that PRC2, for example, has at least two subunits 
that bind RNA228. The recent development of denaturing crosslinked 
immunoprecipitation (dCLIP), which is based on high-affinity biotin–
streptavidin pulldowns, has indicated that PRC2 interacts with G-rich 
RNA motifs, including RNA G-quadruplexes, to achieve specificity  
of RNA-mediated recruitment232,239,240.

Other lncRNAs associate with the gene-activating Trithorax com-
plexes (which methylate H3K4), including enhancer RNAs involved 
in the maintenance of stem cell fates and lineage specification241–245. 
H3K9 dimethylation is regulated by lncRNAs during the formation of 
long-term memory in mice246. lncRNAs also control methylation of a 
number of non-histone proteins involved in animal cell signalling, gene 
expression and RNA processing247.

Many other proteins involved in modulating chromatin archi-
tecture, including HOX proteins, pioneer transcription factors such as 
NANOG, OCT4 (also known asPOU5F1), SOX2 and other high mobility 
group (HMG) proteins, and proteins of SWI/SNF chromatin remodelling 
complexes, have only vague or promiscuous DNA sequence specific-
ity248–251, which indicates that other factors are involved in determining 
their targets at different stages of cell differentiation and development. 
Moreover, binding-site selection by the zinc-finger transcription factor 
CTCF, which, together with cohesin complexes, anchors chromosome 
loops252, was shown to be controlled by the lncRNA just proximal to Xist 
( Jpx) during early cell differentiation, thereby regulating chromatin 
topology on a genome-wide scale253. CTCF binds thousands of RNAs, 

including Xist, Jpx and the lncRNA Xist antisense RNA (Tsix), which 
targets CTCF to the X inactivation centre254.

There is abundant evidence that RNA may guide chromatin remod-
elling complexes, although accessibility dictated by DNA and histone 
modifications (which are also likely directed by regulatory RNAs) may 
also have a role. The D. melanogaster Hox protein Bicoid (which controls 
anterior–posterior patterning) binds RNA through its homeodomain255. 
SOX2 binds RNA with high affinity through its HMG domain256,257, as do 
other members of the HMGB family257–259.

During mouse embryogenesis, the Sox2 locus expresses also an 
overlapping lncRNA260, and there are well-documented examples of 
lncRNAs that interact with SOX2 to regulate pluripotency, neurogen-
esis, neuronal differentiation and brain development257,261–264. SWI/
SNF nucleosome remodelling complexes are directed to specific 
sites in chromatin or are antagonized by lncRNAs, including XIST 
and enhancer RNAs, in a wide range of differentiation processes and 
cancers251,265–270.

The lncRNA MaTAR25, which is overexpressed in mammary can-
cers, acts in trans to regulate the tensin 1 gene through interaction with 
the transcription co-activator PURB271. The master transcription factor 
myoblast determination protein (MYOD), which can reprogramme 
mammalian fibroblasts into muscle cells and is central to muscle dif-
ferentiation in vivo, is regulated by lncRNAs272–274, as are other aspects 
of muscle gene expression275. The pioneer transcription factor CBP also 
binds RNAs, including those transcribed from enhancers, to stimulate 
histone acetylation and consequently transcription276. Some transcrip-
tion factors (OCT4, NANOG, SOX2 and SOX9) are also regulated by 
lncRNAs, including pseudogene-derived lncRNAs277–281, and recipro-
cally regulate the expression of lncRNAs282. Enhancer-derived lncRNAs 
also regulate the expression of the nuclear hormone receptor ESR1  
(ref. 283) and of CCAAT/enhancer-binding protein-α (CEBPA)284.

Enhancer action
Enhancers are non-coding genomic loci that control the spatiotemporal 
expression of other genes during development. There appear to be 
~400,000 (±100,000) enhancers in the mammalian genome285–288, 
sometimes clustered into ‘super-enhancers’ or ‘enhancer jungles’288–291. 
Enhancers are thought to function by juxtaposing transcription fac-
tors bound at the enhancer promoters with the promoters of target 
genes292,293.

Fig. 2 | Roles of long non-coding RNAs in nuclear organization. a, 5′ small 
nucleolar RNA-capped and 3′-polyadenylated long non-coding (lncRNAs) 
(SPAs)42 and small nucleolar RNA-related lncRNAs (sno-lncRNAs)41 accumulate 
at their sites of transcription and interact with several splicing factors such as 
RNA-binding protein FOX-1 homologue 2 (RBFOX2), TAR DNA-binding protein 
43 (TDP43) and heterogeneous nuclear ribonucleoprotein M (hnRNPM) to 
form a microscopically visible nuclear body that is involved in the regulation 
of alternative splicing42. b, The lncRNA functional intergenic repeating RNA 
element (Firre) is transcribed from the mouse X chromosome and interacts with 
the nuclear matrix factor hnRNPU to tether chromosome X (chrX), chr2, chr9, 
chr15 and chr17 into a nuclear domain451,452. c, The lncRNA nuclear paraspeckle 
assembly transcript 1 (NEAT1) is essential for the formation of paraspeckles178. 
NEAT1 sequesters numerous paraspeckle proteins to form a highly organized 
core–shell (dark and light purple, respectively) spheroidal nuclear body453. 
The middle region of NEAT1 is localized in the centre of paraspeckles, and the 
3′-end and 5′-end regions are localized in the periphery453. Different paraspeckle 
proteins are embedded by NEAT1 into the spheroidal structure in the core  
region (non-POU domain-containing octamer-binding protein (NONO), fused  

in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ)) or in  
the shell region (RNA-binding motif protein 14 (RBM14))453. d, The lncRNA 
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is localized 
at the periphery of nuclear speckles172,454 and is involved in the regulation 
of pre-mRNA splicing339,455. MALAT1 interacts with the U1 small nuclear RNA 
(U1 snRNA)428, whereas proteins such as SON DNA- and RNA-binding protein 
and splicing component 35 kDa (SC35) are localized at the centre of nuclear 
speckles456. e, The lncRNA CHD2 adjacent, suppressive regulatory RNA (Chaserr) 
forms a compartment within a region of the mouse chromosome corresponding 
to a topologically associating domain that includes its own gene as well as the 
Chd2 gene (encoding chromodomain DNA helicase protein 2 (CHD2))437. Chaserr 
limits in cis the expression of Chd2, which is important for proper regulation of 
many genes (not shown). f, The perinucleolar compartment contains the lncRNA 
pyrimidine-rich non-coding transcript (PNCTR), which sequesters pyrimidine 
tract-binding protein 1 (PTBP1) and thus suppresses PTPBP1-mediated pre-mRNA 
splicing elsewhere in the nucleoplasm369. The size of nuclear bodies is indicated 
where relevant457. Figure adapted from ref. 80, Springer Nature. Part e courtesy of 
Inna-Marie Strazhnik and Mitch Guttman.
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There is no question that enhancer action alters chromatin 
topology and may be responsible for the formation of chromatin-
loop domains that act as local transcription and splicing hubs294,295. 
Enhancers are transcribed in the cells in which they are active141,289,296–299, 
which has led to uncertainty about whether the resulting RNAs are 
by-products of the binding of transcription factors or have a role in 
enhancer activity298.

The latter appears to be the case. The epigenetic landscape of and 
the features of transcription initiation at the promoters of protein- 
coding genes and enhancers are almost indistinguishable296–300. Enhanc-
ers express bidirectional promoter-associated short RNAs301–303, termed 
‘eRNAs’, although such short RNAs are not specific to enhancers, as 
similar bidirectional transcripts are produced from the promoters 
of protein-coding genes304,305. Also analogously to mRNAs produced 
from protein-coding genes, enhancers express long (non-coding) RNAs 
(confusingly also referred to as ‘eRNAs’298,306), and transcription is con-
sidered the best molecular indicator of enhancer activity in develop-
mental processes296,297,306–308 and cancers288. Moreover, enhancer-lncRNA 
splicing has been shown to modulate enhancer activity309,310.

Although the extent of congruency of combined genetic and 
high-depth transcriptomic data is uncertain, as their availability is 
still limited, the data suggest that many if not most lncRNAs are derived 
from enhancers141,298 and that lncRNAs are required for enhancer activ-
ity163,284,311–314, examples including the lncRNAs Evf2 (also known as 
Dlx6os1)315, Firre316, Peril317, Upperhand (also known as Hand2os1)318 
and Maenli150 in mice. Enhancer RNA function is fertile ground for 
investigation, but if enhancer loci are considered bona fide ‘genes’, 
the g-value paradox (the perceived lack of increase in gene number 
with developmental complexity) is resolved. It also means that a key 
development in the evolution of complex organisms was the use of RNA 
to organize developmental trajectories319. It appears that “every cell 
type expresses precise lncRNA signatures to control lineage-specific 
regulatory programs”270, and that cell state during ontogeny is likely 
directed by lncRNAs.

Formation of biomolecular condensates
The past decade has seen the growing appreciation of the role of biomo-
lecular condensates, or phase-separated domains (PSDs), in the organi-
zation of cells and chromatin. These condensates are highly dynamic 
assemblies with high local concentrations of macromolecules, a feature 
that promotes functional interactions. The condensates usually contain 
both RNA and proteins320–322, the latter having IDRs, which are the major 
sites of post-translational modifications323. IDRs interact with and are 
tunable by many partners324. The fraction of the proteome containing 
IDRs has expanded with cellular and developmental complexity323, and 
nearly all proteins involved in the regulation of development, includ-
ing most transcription factors, histones, histone-modifying proteins, 
other chromatin-binding proteins, RNA-binding proteins, splicing fac-
tors, nuclear hormone receptors, cytoskeletal proteins and membrane 
receptors, contain IDRs323,325–332.

RNA is crucial for the form, composition and function of phase-
separated RNA–protein condensates320–322. Specific ‘architectural’ 
lncRNAs333 associate with nuclear condensates of different half-lives 
and functionalities, including in centrosomes334, nucleoli335 (the 
lncRNAs SLERT138 and LETN336), nuclear speckles (the lncRNA MALAT1  
(refs. 173,337)) rich in RNA-processing factors, speckle-related conden-
sates that contain the lncRNA Gomafu in mice338,339 and paraspeckles 
(the lncRNA NEAT1 (refs. 340,341)) (Fig. 2), in vertebrates as well as 
polyadenylation complexes342 and other condensates in plants343.  

RNP condensates also include cytoplasmic membraneless organelles 
such as P-granules344,345, subcellular-localized translational messen-
ger RNP assemblies346 and synaptic compartments320,322,347. The mam-
malian cytoplasmic lncRNA NORAD, which is induced by DNA damage 
and required for genome stability, prevents aberrant mitosis by seques-
tering Pumilio proteins (which bind many RNAs to regulate stem cell 
fate, development and neurological functions) into PSDs through its 
repeat sequences137,348.

It has been proposed that RNAs have a central role in organizing 
the genome and gene expression by the formation of spatial com-
partments and transcriptional condensates349–353. Phase separation 
appears to drive chromatin long-range interactions and to be required 
for the action of enhancers and super-enhancers328,351,354–357 as well  
as for transcription, transcription factors and polyadenylation com-
plexes342,358–361, although transcription factor hubs have been reported 
to operate in the absence of detectable phase separation362. PSDs 
scaffolded by lncRNAs, including repeat-rich RNAs363,364, mediate the 
formation of heterochromatin353,365,366, euchromatin367, Polycomb 
bodies368 and alternative splicing369. lncRNAs are a substantial compo-
nent of rapidly renaturing, repeat-rich RNA (technically termed ‘CoT-1 
RNA’), and high-resolution imaging shows many repeat-containing 
RNAs bound to chromatin, indicating that the collective presence of 
thousands of lncRNAs serves to counter chromatin condensation364. 
High-resolution imaging also shows the localization of many lncRNAs 
in compartments in the nucleus that resemble PSDs136,353. These data all 
suggest that there are thousands of low copy number lncRNAs involved 
in the organization of chromosome territories.

lncRNA structure–function relationships
lncRNAs generally range in size from around 1 kb to longer than 
100 kb (refs. 370,371) and have a modular structure372–375. They are 
often multi-exonic and highly alternatively spliced (Fig. 3a), a feature 
that was not obvious before the advent of high-depth sequencing98. 
They also contain a higher proportion of GC–AG splice sites376 and are 
therefore less efficiently spliced than protein-coding transcripts377,378, 
which are properties associated with alternative splicing379. Alterna-
tive splicing has, unsurprisingly, been shown to alter the function of 
lncRNAs42,152,380,381.

Some lncRNAs also exhibit common motifs and motif combi-
nations101. At least 18% of the human genome is conserved among 
mammals at the level of predicted RNA structure382, and similar and 
potentially paralogous RNA structures occur at many places through-
out the genome383,384. Chemical probing has shown that lncRNAs, 
including Xist, form complex multidomain structures108,385–389, with 
chemical data matching data predicted by evolutionary conserva-
tion of secondary structure389. Moreover, lncRNAs with similar k-base 
oligonucleotide (short motif) content have related functions despite 
their lack of general homology, implying that small sequence elements 
are also key determinants of lncRNA function390.

Many lncRNA exons are derived from transposable elements187,391. 
The most highly conserved sequences in Xist, which has been inten-
sively studied, are its repeats7, whereas its unique sequences have 
evolved rapidly392, and many of its biological functions, including 
recruitment of gene-repressive complexes and gene silencing, are 
mediated through its modular repeat elements142,186,388,393–399. Trans-
posable element-derived sequences participate in many RNA–protein 
interactions369,400,401, which leads to the conclusion that repeat struc-
tures are common building blocks of lncRNAs87,391,396 and essential 
components of their function391.
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The molecular mechanisms of lncRNA action are unclear. In most 
well-characterized cases of RNA regulation, such as RNAi, snoRNAs, 
CRISPR and telomerase, RNA acts as a guide to target effector pro-
tein complexes to complementary RNA or DNA sequences. Data on 
selected lncRNAs (for example, HOTAIR, roX1, roX2, Meg3, Tug1, PAR-
TICLE (also known as PARTCL), PAPAS and KHPS1) indicates that they 
form triplex structures with DNA at purine-rich GA stretches to recruit 
chromatin modifiers to specific loci across the genome402–408, with 
evidence that triplex formation by lncRNAs is a widespread phenom-
enon409–411. Others, especially antisense lncRNAs, appear to function 
through RNA–DNA hybrid formation61,412,413, but detail is presently 
lacking.

lncRNA RNP structure and function have been well characterized 
in only one instance, the telomerase complex, which has been studied 

for decades. Telomerase reverse transcriptase (TERT) catalyses the 
addition of telomere repeats to chromosome ends, and other proteins 
in the complex provide nuclear localization, stability or recruitment to 
telomeres or to Cajal bodies. The lncRNA TERC provides the scaffold 
for assembly of the RNP and the template for DNA polymerization 
by TERT, and mutations in TERT and TERC are major contributors to 
the aetiology of cancer and the cause of hereditary disorders such as 
dyskeratosis congenita103–107,414–416.

By contrast, while we know the phenotypes caused by the loss of 
some lncRNAs, we know almost nothing about how most of them work, 
although, considering that as recently as 2010 the very existence of 
pervasive transcription was still a matter of contention417–419 and the 
sheer number of lncRNAs, substantial progress has been made. It is 
assumed, in our view reasonably, that generally lncRNAs will engage 
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Fig. 3 | Modular structures of long non-coding RNAs. a, Targeted RNA 
sequencing has revealed that human chromosome 21 (chr21) is pervasively 
transcribed into long non-coding RNAs (lncRNAs) and that lncRNA exons are 
almost universally (but not randomly) alternatively spliced to form diverse  
and complex isoforms98. The circle indicates the fraction of non-coding exons 
across all chr21 transcripts that are alternatively or constitutively spliced.  
b, Modular structural domains in lncRNAs that fulfil a range of functions372–375, 
including targeting DNA, such as in the case of auxin-regulated promoter loop 
(APOLO)61; binding other RNAs — for example, terminal differentiation-induced 

non-coding RNA (TINCR)458, potentially involving RNA-binding proteins such 
as Staufen 1; and recruitment of proteins — for example, pyrimidine-rich non-
coding transcript (PNCTR) recruiting of pyrimidine tract-binding protein 1 
(PTBP1) through special RNA motifs369 and X-inactive-specific transcript (XIST) 
recruiting split ends homologue (SPEN) and Polycomb repressive complex 2  
(PRC2), perhaps in concert, which is the subject of active exploration and 
debate142,397,399,423,424,459. Modular functional domains can be repeated within a 
lncRNA or in multiple different lncRNAs7,87,186,369,388,391,393–401. Figure courtesy of 
Tim R. Mercer.
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in multilateral interactions similarly to TERC and the telomerase com-
plex108, and there is some evidence to support this assumption in cases 
such as XIST (Fig. 3b), but the assumption has not yet been rigorously 
tested. There are promising discoveries, such as the demonstration 
that conserved pseudoknots in lncRNA Meg3 are essential for stimula-
tion of the p53 pathway420. There is also growing evidence of discrete 
structural organization in lncRNAs421. Nonetheless, there is a long 
journey ahead to understand the structure and function of the many 
thousands of lncRNAs, and their splice variants, in the context of their 
associated RNP complexes and biomolecular condensates in both the 
nucleus and the cytoplasm.

Challenges
If the complex ontogenies of animals and, to a lesser extent plants, 
require a large number of RNAs to guide the epigenetic decisions at 
each cell division, then it is not surprising that many lncRNAs have 
common protein-binding modules and specific targeting sequences 
that vary between different stages of development. The challenge is to 
define which lncRNAs and modules within them interact with effector 
proteins and which convey target (DNA or RNA) specificity. The former 
is complicated by the multisubunit nature of many RNP complexes, 
but is being addressed by technologies such as iCLIP422, RAP–MS423, 
ChIRP-MS388 and iDRiP424. Determining target specificity is even more 
difficult, as specific targeting requires only short stretches of nucleo-
tide complementarity given the strength of RNA–RNA and RNA–DNA 
interactions425, but it may be tackled by new methods that analyse 
RNA–chromatin and RNA–RNA interactions, such as GRID-seq426, 

RADICL-seq427, RIC-seq428 and RD-SPRITE353. Other lncRNAs are local-
ized in cytoplasmic compartments, whose components also need to 
be characterized.

Understanding the roles of lncRNAs and how they function in 
dynamic assemblies with other macromolecules will provide a more 
comprehensive understanding of cell and developmental biology 
and of gene–environment interactions. Emerging challenges include 
understanding the roles of lncRNAs and RNA modifications in func-
tional plasticity, especially in the brain, and the dysregulation of these 
lncRNA-mediated pathways in neurological disorders, cancer and 
other diseases.

Recommendations
 1. In the absence of more specific categorization, we recommend 

retention of the general descriptor ‘lncRNA’ for non-coding 
RNAs greater than 500 nt in length.

 2. Unless a lncRNA is antisense to a protein-coding gene (in which 
case the designation ‘gene name-AS’ should be used), we reco-
mmend naming lncRNAs for their own sake with allusion to a 
discerned characteristic or function (as has been traditional for 
proteins), preferably accompanied by complete exon–intron 
structures and genomic coordinates. If no biological context is 
available, we recommend naming the lncRNA according to the 
GENCODE system46.

 3. We recommend that future gene expression profiling should in-
clude full transcript analysis of the isoforms and stoichiometry 
of mRNAs, lncRNAs and small RNAs in cells at different stages of 

Glossary

Cajal bodies
Nuclear structures often associated with 
the nucleolus that have important roles 
in RNA metabolism and the formation 
of ribonucleoproteins involved in 
transcription, splicing, ribosome 
biogenesis and telomere maintenance.

Coacervates
Condensed liquid-like droplets 
formed by oppositely charged 
macromolecules, in vivo involving the 
interaction of positively charged amino 
acids in the intrinsically disordered 
regions of proteins with the negatively 
charged backbone of RNAs.

GC–AG splice sites
A non-canonical variant of the major 
U2-type GT–AG splice junctions.

Intrinsically disordered region
A polypeptide segment containing a 
high proportion of polar or charged 
residues and insufficient hydrophobic 
residues to form a stable tertiary 
structure.

Modified RNA mimics
Chemically synthesized RNA molecules 
containing chemical modifications  
to increase their stability or target 
affinity, facilitate their action and/or 
bypass detection by innate immunity.

Nuclear speckles
Irregularly shaped nuclear domains 
enriched in pre-mRNA splicing factors, 
located in the interchromatin regions  
of the nucleoplasm of mammalian cells.

Pol V transcripts
Short RNAs transcribed by a specialized 
plant-specific RNA polymerase (Pol) 
which maintain the repression of 
transposons and genomic repeats.

Polycomb bodies
Nuclear foci of Polycomb group 
proteins, within which Polycomb  
group protein-bound regions  
of DNA are localized and contact  
each other.

Pioneer transcription factors
Proteins that have the unique ability to 
bind target sites in closed chromatin 
and open closed chromatin to activate 
gene expression and implement new 
cell fates.

Primary transcription units
The long precursor RNAs transcribed 
from chromosomal regions (‘genes’) 
before splicing and assembly of the 
exons into an mRNA or long non-coding 
RNA and before processing of the 
intronic RNAs into trans-acting smaller 
RNAs.

Quantitative traits
Phenotypic characteristics that vary 
continuously in natural populations, 
including many aspects of morphology, 
physiology, behaviour and disease 
susceptibility.

Small interspersed nuclear 
elements
Repetitive non-coding sequences 
of 100–600 bp that are common in 
animal and plant genomes. They 
are derived from retrotransposons 
and are propagated through an RNA 
intermediate

Super-enhancers
Enhancer-dense genomic regions  
found near genes that have key roles  
in determining cellular identity.

Transcription factor hubs
Complex topological assemblies,  
in which multiple genes and regulatory 
factors interact with each other.

X inactivation centre
A complex locus in the X chromosome 
that is required for the near-global 
inactivation of one of the two  
X chromosomes in female mammals, 
a spreading process initiated by the 
expression of XIST.
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differentiation, and in various physiological and disease states, 
learning and stress conditions.

 4. These efforts should be complemented by cell-based, organoid- 
based and in vivo studies using strategies for conditional 
and tissue-specific or cell type-specific gain-of-function and  
loss-of-function of lncRNAs.

More broadly, identifying and understanding the roles of lncRNAs  
and RNA regulatory networks in multicellular development, cell  
biology and disease will require the following:

 1. The determination of the interplay between lncRNAs, chroma-
tin modifications, proteins and the genome in the assembly 
of the nuclear domains essential for chromatin organization, 
enhancer function, transcription and splicing. This effort will 
require the development of antibodies with high specificity 
for protein–RNA complexes, and of intracellular RNA-tracking 
methods429.

 2. The determination of lncRNA localization, structure–function 
relationships and interactions using a range of sequencing, 
chemical probing, imaging methods430–433 and cryogenic electron  
microscopy434.

 3. The identification and characterization of the many unknown 
nuclear and cytoplasmic compartments decorated by specific 
lncRNAs.

 4. Harnessing the power of machine learning to interrogate large 
genomic, epigenomic, transcriptomic, proteomic and phenomic  
datasets to identify causal links and pathways.

Published online: xx xx xxxx
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