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Practical recommendations for using ctDNA 
in clinical decision making

Stacey A. Cohen1,2 ✉, Minetta C. Liu3 & Alexey Aleshin3

The continuous improvement in cancer care over the past decade has led to a gradual 
decrease in cancer-related deaths. This is largely attributed to improved treatment 
and disease management strategies. Early detection of recurrence using blood-based 
biomarkers such as circulating tumour DNA (ctDNA) is being increasingly used in 
clinical practice. Emerging real-world data shows the utility of ctDNA in detecting 
molecular residual disease and in treatment-response monitoring, helping clinicians 
to optimize treatment and surveillance strategies. Many studies have indicated ctDNA 
to be a sensitive and specific biomarker for recurrence. However, most of these 
studies are largely observational or anecdotal in nature, and peer-reviewed data 
regarding the use of ctDNA are mainly indication-specific. Here we provide general 
recommendations on the clinical utility of ctDNA and how to interpret ctDNA analysis 
in different treatment settings, especially in patients with solid tumours. Specifically, 
we provide an understanding around the implications, strengths and limitations of 
this novel biomarker and how to best apply the results in clinical practice.

Over the past 20 years, there has been an incremental and consistent 
improvement in cancer survival rates1, largely attributed to more effec-
tive treatments and improved patient management strategies2. Refining 
the identification of patients who may benefit from adjuvant therapy 
following definitive management is critical to optimizing patient care. 
As appropriate interventions may improve outcomes, the judicious 
use of additional therapy can spare patients at low risk of recurrence 
from adverse treatment effects and unnecessary costs. The current 
paradigm of disease management centres around tumour-specific, 
stage-based recommendations, primarily relying on pathology and 
imaging results to optimize treatment plans for patients3. Although 
imaging is the accepted standard method to monitor disease pro-
gression or relapse and measure response to treatment, radiological 
findings are sometimes difficult to interpret correctly, leading to high 
rates of false positivity and negativity4. Blood-based metabolic tumour 
markers (for example, carcinoembryonic antigen (CEA), cancer anti-
gen (CA)-125, CA19-9 and lactate dehydrogenase (LDH)) represent 
a non-invasive approach to evaluate the status of disease. However, 
many of these established biomarkers are considered unreliable, as 
they can be elevated due to conditions unrelated to cancer, leading 
to low sensitivity and specificity5–9.

ctDNA has emerged as a non-invasive, blood-based biomarker 
that broadly reflects somatic variants found in the tumour tissue10. 
Several approaches to measure ctDNA have been developed, such as 
panel-based assays, next-generation sequencing and droplet digital 
polymerase chain reaction, and are discussed in depth elsewhere11,12. 
Beyond the inherent biologic differences for each tumour type, the 
variation in the underlying ctDNA detection methodologies (such 
as sequencing depth12) and analytical validation measures (such as 
sensitivity and specificity) for each assay affect the subsequent inter-
pretations of results11,13,14. Regardless of the assay, quantitatively meas-
uring circulating tumour burden, either through variant allele fraction 

(as a percentage) or tumour fraction (as the mean number of tumour 
molecules per millilitre), should also be considered while interpreting 
ctDNA results clinically13. ctDNA has several applications, including 
early cancer detection, comprehensive genomic profiling for treatment 
selection, detection of molecular residual disease (MRD), surveillance 
of recurrence and monitoring of treatment response14. The appropriate 
assay for each of these clinical applications may be different depending 
on what must be evaluated in that specific clinical scenario.

Investigations in the clinical setting have established associations 
between ctDNA detection and its concentration with tumour burden, 
response to therapy and prognosis15,16. Numerous studies using differ-
ent assay technologies indicate that ctDNA is a sensitive and specific 
biomarker for MRD detection. It may precede radiological imaging 
and other standard-of-care (SOC) methods by months but is optimally 
applied in conjunction with standard surveillance diagnostics17–20. 
However, the current knowledge of the clinical utility of ctDNA is lim-
ited to studies that were largely observational or anecdotal in nature 
and were narrowly defined to specific indications. There is a need to 
examine the clinical utility of ctDNA-based MRD testing in interven-
tional trials across indications. The current landscape of findings of 
such clinical trials has been reviewed previously12,16,21,22. Finally, only a 
few ctDNA-based MRD assays are currently available commercially to 
clinicians, and each has a different degree of predictive and prognostic 
value23–25. Thus, although existing data on the use of ctDNA in cancer 
patients is promising, it is crucial that ordering providers understand 
the implications, strengths and limitations of this novel biomarker in 
order to optimally apply the results to their clinical practice.

In this Perspective, we discuss our view on optimizing the use of 
ctDNA testing specifically for MRD detection for solid tumours. We 
also highlight how ctDNA can help guide clinical management of cancer 
patients during the course of their disease (Tables 1 and 2). The appli-
cation and utility of ctDNA testing for haematological malignancies 
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have been discussed previously26,27. Screening methods for early cancer 
detection also examine cell-free DNA (cfDNA), although other features  
(for example, methylation) are also assayed. Preliminary data suggest 
the clinical utility of such screens28,29, but they are not designed to moni-
tor disease progression, and are thus not included in this discussion. 
Here we begin by addressing the interpretation of ctDNA results prior 
and subsequent to surgery or definitive treatment. We then discuss 
technical considerations when ctDNA detection is indicated for MRD. We 
provide recommendations regarding the management of patients with 
ctDNA-positive and negative results after the completion of SOC ther-
apy. Last, we discuss the use of ctDNA testing for treatment-response 
monitoring in the neoadjuvant setting, specifically in the context of 
immunotherapy. In all cases, results from evaluating ctDNA should 
be taken in the context of the larger comprehensive assessment of the 
patient, thereby refining standard clinical staging and risk stratification.

Baseline ctDNA detection prior to surgery
Tumour fraction has been observed to vary both between tumour types 
and between patients with the same type of cancer30. The release of 
ctDNA from the primary tumour can be influenced by a number of fac-
tors, including tumour size, location, metabolic activity, histological 
subtype and grade and lymph node status31. In certain cases, clinical 
limitations may result in subclinical ctDNA levels, where patients appear 
to be ctDNA-negative (false negative). For example, attempted MRD 
detection while a patient is concurrently receiving adjuvant chemo-
therapy may produce a false-negative result because of the systemic 
treatment.

For tumour-informed ctDNA testing, which selects the blood-based 
biomarkers from previously acquired tumour tissue (either from a 
biopsy or resection specimen), the source and quality of tumour tissue 
has a significant role in the success of plasma-based ctDNA testing. 
If the patient has undergone radiation or chemotherapy treatment 
prior to obtaining the tissue specimen, it is likely that non-clonal 
tumour-specific variants may disappear in response to the selective 
pressure of treatment. Thus, ctDNA testing based on detecting these 
non-clonal variants may fall below the limit of detection in subsequent 
plasma samples.

In another scenario, as demonstrated in Fig. 1a, small primary tumour 
size and certain histologies (including sarcoma, renal cancer, lung 
adenocarcinoma, hormone receptor-positive breast cancer and brain 
cancer32,33) may result in lower tumour shedding and consequently, 
undetectable ctDNA at the time of diagnosis and/or progression. Thus, 
ctDNA detection varies depending on tumour biology. As ctDNA-positive 
patients undergo cancer-directed therapy, a significant reduction in 
tumour burden may lead to ctDNA negativity. Of note, in contrast to 
post-treatment timepoints, the correlation between baseline and/or 
pre-operative ctDNA status and long-term outcomes is not fully under-
stood. Some studies have shown that there is no correlation between 
baseline or pre-operative ctDNA status and outcome34, whereas others 
have shown a strong correlation between pre-operative ctDNA positivity 
and survival outcomes35,36. Thus, it remains unclear whether and how 
these pre-operative ctDNA levels should influence clinical decision mak-
ing, and how the variability may be related to assay design in addition 
to clinical features.

Below we present data demonstrating the prognostic value of 
tumour-informed ctDNA status prior to surgery in lung, breast, kid-
ney and bladder cancers, wherein patients who test ctDNA-negative 
prior to surgery (at baseline) are observed to have better out-
comes compared with ctDNA-positive patients (Fig. 1b). It should 
be noted that these observations are based on personalized and 
tumour-informed ctDNA testing (SignateraTM multiplex polymerase 
chain reaction–next-generation sequencing-based test). These obser-
vations may or may not be applicable to other ctDNA testing method-
ologies as the underlying technologies and interpretation of results  
may differ16.

ctDNA detection subsequent to surgery
When ctDNA is detected (that is, detection of MRD) following defini-
tive surgery, patients have a risk of relapse approaching 100%, varying 
on the basis of the cancer type, ctDNA assay and whether repeated  
(longitudinal) testing is performed20,24,37. The frequency at which ctDNA 
becomes detectable after surgery or treatment with curative intent 
is dependent on the tumour biology38 and the aggressiveness of the 
residual disease. For example, patients whose ctDNA is detectable at 
the MRD timepoint but is undetectable following adjuvant therapy 
may have improved long-term outcomes compared with those with 
persistent positivity. This latter scenario suggests resistance to treat-
ment, possibly owing to tumour heterogeneity and clonal evolution, 
contributing to an eventual relapse39.

Table 1 | General recommendations for utilizing ctDNA in 
clinical practice

Setting Clinical position

Early stage

Prior to treatment ctDNA-positive patients to be treated 
with SOC.

After surgery ctDNA could be evaluated for 
prognostication, ideally starting two 
weeks after definitive therapy; adjuvant 
therapy should be given per standard 
guidelines.

After completion of best SOC 
including systemic therapy

Persistent ctDNA-positive patients could 
be considered for clinical trials that 
accept ctDNA-positive patients. More 
intense imaging surveillance should be 
considered.

Treatment-response monitoring

Neoadjuvant treatment monitoring In cases where clinical complete 
response to neoadjuvant therapy 
permits consideration of non-operative 
management, persistent detection 
of ctDNA positivity may deter a 
non-operative approach.

Unresectable or advanced disease Early assessment of response to 
systemic therapy with potential to switch 
treatment regimens if ctDNA does not 
decrease.

Immunotherapy setting

True progression Consideration should be given to altering 
the treatment regimen for patients who 
may have radiological and molecular 
(ctDNA) evidence of progression.

Pseudoprogression Consideration should be given to 
not cease immunotherapy regimen 
prematurely for patients who have 
unconfirmed radiological progression 
accompanied by a ctDNA decrease.

Hyperprogression Understanding whether large 
fluctuations in DNA could potentially 
identify hyperprogression requires 
additional research.

Exceptional responders Treatment discontinuation could be 
considered for ctDNA-negative patients 
with continued surveillance monitoring 
with ctDNA monitoring added to SOC 
approaches.

IRAEs Treatment could be discontinued for 
ctDNA-negative patients with continued 
monitoring using ctDNA and SOC 
approaches.

IRAEs, immune-related adverse events; ctDNA, circulating tumor DNA; SoC, standard of care; 
IO, immunotherapy.
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Technical aspects of ctDNA detection
MRD is a subclinical disease that is associated with a high risk for recur-
rence, which cannot be detected by standard imaging techniques. 
Evaluating MRD using ctDNA enables the detection of micrometastatic 
disease. It should be noted that a negative ctDNA result suggests a 
decreased risk of recurrence, rather than a guaranteed lack of recur-
rence18–20,24,34,36,37. SOC post-surgical surveillance is limited to imaging 
and/or blood-based biomarkers (that is, CEA, CA-125, CA 15-3 and LDH) 
that are a proxy for ongoing disease, but these have demonstrated poor 

sensitivity and specificity for assessing MRD6–9. The addition of ctDNA 
to standard surveillance can complement the current paradigms and 
may improve the time to detection of a cancer recurrence.

Figure 2a depicts a hypothetical clinical scenario regarding the proba-
bility of ctDNA-based MRD detection post-surgery. Post-surgical ctDNA 
levels (MRD timepoint) may fall below the assay’s limit of detection, 
exhibiting a low probability of MRD detection (that is, a false negative). 
At this level, it would be ideal to interpret results in a binary fashion (that 
is, positive or negative). The likelihood of detecting MRD when present 
improves as the ctDNA levels increase. However, at concentrations 

Table 2 | Representative clinical application of ctDNA in solid tumours in ongoing clinical trials across different treatment 
settings

Cancer type Neoadjuvant setting Adjuvant setting Surveillance

Colorectal cancer Rectal: post-total neoadjuvant 
treatment to inform interventions 
(surgery versus watch and 
wait) in combination with other 
traditional methods.

Inform risk-based adjuvant treatment decisions  
(escalate or de-escalate adjuvant treatment).
Clinical trials:
• BESPOKE (NCT04264702)
•  CIRCULATE Japan (comprising GALAXY 
(UMIN000039205), ALTAIR (NCT04457297) and  
VEGA (jRCT1031200006))

• CIRCULATE USA (NRG-GI008)
• CIRCULATE Germany (AIO-KRK-0217)
• DYNAMIC II (ACTRN12615000381583)
• COBRA (NCT04068103)
• DYNAMIC III (ACTRN12617001566325)
• PEGASUS (NCT04259944)
• TRACC Part C (NIHR128529)

Monitor for early recurrence detection.
Clinical trial:
• BESPOKE (NCT04264702)

Treating on molecular recurrence
Clinical trial:
•  CIRCULATE Japan (comprising 
GALAXY (UMIN000039205), 
ALTAIR (NCT04457297), and VEGA 
(jRCT1031200006))

• NCT03803553

Oesophagogastric 
cancers

Assess response to neoadjuvant 
therapy.
Clinical trial:
• CURE (NCT04576858)

Inform risk-based adjuvant treatment decisions. Monitor for early recurrence detection.
Clinical trial:
• CURE (NCT04576858)

Breast cancer Identify non-responders, with 
possible changes in treatment 
prior to surgery.
Clinical trial:
• I-SPY 2.2 TRIAL (NCT01042379)

Inform risk-based adjuvant treatment decisions, in 
conjunction with other clinical, pathological and 
genomic risk factors.
Clinical trials:
• PERSEVERE (NCT04849364)
• ASPRIA (NCT04434040)

Identify recurrence earlier than traditional 
tools, before the patient becomes 
symptomatic.
Treating on molecular recurrence.
Clinical trials:
• LEADER (NCT03285412)
• DARE (NCT04567420)
• c-TRAK-TN (NCT03145961)

Bladder cancer Assess response to neoadjuvant 
therapy. May guide treatment 
strategy for exceptional 
responders and non-responders.

Inform risk-based adjuvant treatment decisions and 
identify patients likely to benefit from immunotherapy.
Clinical trials:
• IMvigor010 trial (NCT02450331)
• TOMBOLA (NCT04138628)
• IMvigor011 (NCT04660344)

Monitor for disease recurrence.
Clinical trial:
• IMvigor011 (NCT04660344)

Gynaecologic 
malignancies

Not applicable Inform risk-based adjuvant treatment decisions.
Clinical trial: NCT05212779

Monitor for recurrence.
Clinical trial: NCT05212779

Lung cancer Identify non-responders, with 
possible changes in treatment 
prior to surgery.

Inform risk-based adjuvant treatment decisions, 
including chemotherapy and sequential immunotherapy, 
or targeted therapy.
Clinical trials:
• IMpower010 (NCT02486718)
• MERMAID (NCT04385368)
• LUCID (NCT04153526)
• ADAURA (NCT02511106)
• MELROSE (NCT03865511)
• NCT04367311
• NCT04585477
• NCT02759853

Monitor for disease recurrence.
Clinical trial:
• LUCID (NCT04153526)

Skin cancer Not applicable Inform risk-based adjuvant treatment decisions and 
whether combination immunotherapy is needed for 
patients with advanced-stage disease.
Clinical trials:
• DETECTION (NCT04901988)
• CheckMate 76K (NCT04099251)
• Keynote 716 (NCT03553836)
• INTERIM (NCT03352947)
• CAcTUS (NCT03808441)
• SECOMBIT (NCT02631447)
• EBIN (NCT03235245)
• AVAST-M (ISRCTN 81261306)

Monitor for disease recurrence.

https://clinicaltrials.gov/ct2/show/NCT04264702
https://rctportal.niph.go.jp/en/detail?trial_id=UMIN000039205
https://clinicaltrials.gov/ct2/show/NCT04457297
https://clinicaltrials.gov/ct2/show/NCT04068103
https://clinicaltrials.gov/ct2/show/NCT04259944
https://clinicaltrials.gov/ct2/show/NCT04264702
https://rctportal.niph.go.jp/en/detail?trial_id=UMIN000039205
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https://clinicaltrials.gov/ct2/show/NCT02759853
https://clinicaltrials.gov/ct2/show/NCT04153526
https://clinicaltrials.gov/ct2/show/NCT04901988
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https://clinicaltrials.gov/ct2/show/NCT03553836
https://clinicaltrials.gov/ct2/show/NCT03352947
https://clinicaltrials.gov/ct2/show/NCT03808441
https://clinicaltrials.gov/ct2/show/NCT02631447
https://clinicaltrials.gov/ct2/show/NCT03235245


262 | Nature | Vol 619 | 13 July 2023

Perspective

below 0.1 copies per millilitre, ctDNA detection still remains depend-
ent on probabilistic sampling; thus, a patient who tests ctDNA-positive 
may falsely test negative if subsequent sampling is performed very 
close to the previous timepoint. ctDNA data can be interpreted more 
quantitatively at levels above 1.0 copies per millilitre, making it more 
desirable for treatment-response monitoring.

Another factor to consider is the timing of blood draw relative to the 
time of surgery. Previous studies have suggested that cfDNA levels can 
increase in response to surgical trauma, along with many cancer-related 
and other factors40. Detection of ctDNA in instances of elevated baseline 
cfDNA may be more difficult, leading to more false negatives. This can 
be overcome by longitudinal monitoring. On the basis of existing evi-
dence41, we suggest a waiting period of two weeks post-surgery, before 

an initial blood sample is drawn for ctDNA-based MRD testing42. It is also 
recommended to consider a short interval follow-up draw (for exam-
ple, one month later) to confirm a negative result. This testing interval 
should allow for timely initiation of adjuvant treatment if indicated.

Several retrospective studies have shown improved performance of 
MRD detection with serial ctDNA (Fig. 2b), where a high sensitivity and 
specificity have been reported for detection of recurrence (sensitivity 
79–100%, specificity 88–100%) across a range of solid tumours16. Fur-
thermore, in initial studies in which ctDNA was obtained in conjunction 
with standard surveillance, testing agnostic to other clinical parameters 
provides a substantial average lead time of 3 to 18 months between 
ctDNA-based MRD detection and recurrence detected by radiological 
imaging for these cancers18–20,43–48. Now that ctDNA is being used more 
widely in clinical practice with rapid result turnaround times, we antici-
pate a trend in shorter lead times to be reported, as the detection of 
positive ctDNA logically prompts radiographic evaluation49. However, 
the historical data is still impactful in establishing a role for ctDNA in 
conjunction with current SOC surveillance strategies. The exceptional 
performance of ctDNA was recently acknowledged in a task force con-
sensus statement from the US National Cancer Institute, concluding 
that the presence of ctDNA was strongly associated with high risk of 
disease recurrence in patients with colorectal cancer, and that current 
results suggested that ctDNA is a robust marker for MRD50,51.

Although an appreciation of differences in the performance of vari-
ous ctDNA-based assays awaits further research, there is an overall 
strong indication that ctDNA-based MRD detection identifies a sub-
group of patients at high risk for recurrence within multiple cancers52, 
with a growing body of literature for specific types, including colo-
rectal20,53,54, breast19, bladder18, lung55 and pancreatic56 cancers, and 
multiple myeloma37. Adapted management of disease based on ctDNA 
positivity can now be envisioned in the clinical setting.

Management of ctDNA-positive patients
Many studies have outlined the role of ctDNA testing in disease man-
agement as an early indicator of cancer recurrence18–20,23,24,44,46,48,57. 
However, recent studies have shown that the poor prognosis associated 
with ctDNA positivity can be modified by effective adjuvant systemic 
therapy58–60. Although on-treatment ctDNA clearance is correlated 
with a favourable prognosis61–63, the current evidence does not suggest 
that ctDNA clearance alone is sufficient for prediction of long-term 
survival benefit (disease free survival or recurrence-free survival). Thus, 

Hazard ratio = 3.38
95% condence interval: 2.1–5.5
P < 0.0001

0

0.25

0.50

0.75

1.00

R
el

ap
se

-f
re

e 
su

rv
iv

al

0 2 4 6 8 10

Time (years)

317 212 85 11 1 0ctDNA-positive
169 127 51 9 3 1ctDNA-negative

Number at risk

Hazard ratio = 6.5
95% condence interval: 3.2–5.1
P < 0.0001

0

0.25

0.50

0.75

1.00

O
ve

ra
ll 

su
rv

iv
al

0 2 4 6 8 10

Time (years)

a

ctDNA-negative
ctDNA-positive

D
ia

gn
os

is

Micrometastases

ctDNA detection level

ct
D

N
A

 in
 p

la
sm

a 
(c

op
ie

s 
p

er
 m

l)
ct

D
N

A
 in

 p
la

sm
a 

(c
op

ie
s 

p
er

 m
l)

b

c

ctDNA-negative ctDNA-positive

ctDNA-negative ctDNA-positive

317 204 85 11 1 0ctDNA-positive
169 128 51 9 3 1ctDNA-negative

Number at risk

S
ur

ge
ry

Fig. 1 | Interpretation of ctDNA results in the peri-operative setting and 
prognostic value of ctDNA status prior to surgery for predicting survival 
outcomes. a, Hypothetical schema demonstrating that tumour subtype and 
size can influence tumour shedding and consequently ctDNA status at baseline 
prior to surgery. In the top example, the tumour subtype and size result in 
ctDNA that is not detected prior to surgery. Following surgery, the patient 
remains ctDNA-negative, but with serial sampling over time, the tumour 
progresses and can be detected through ctDNA. In the bottom example, ctDNA 
is detected in the patient prior to surgery. Immediately after surgery, the 
ctDNA status can return to negative, but this does not preclude the possibility 
of MRD, as ctDNA levels can fall below the limit of detection. Repeat testing 
over time may identify micrometastatic disease in advance of radiological 
relapse. Tumour size and cancer subtype can also influence the rate by which 
micrometastatic disease can become detectable using ctDNA testing.  
b, Association of ctDNA status prior to surgery with recurrence-free survival in 
patients with early-stage cancer. c, Association of ctDNA status prior to surgery 
with overall survival in patients with early-stage cancer. These data are based 
on the SignateraTM multiplex polymerase chain reaction–next-generation 
sequencing-based test (average sequencing depth > 105,000). Cancer types 
included: non-small cell lung cancer (NSCLC) (n = 93), breast cancer (n = 296), 
renal cell carcinoma (n = 36) and muscle-invasive bladder cancer (MIBC) 
(n = 61). Hazard ratio (HR) values were adjusted by cancer type.
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although on-treatment ctDNA clearance is an indicator of treatment 
response, completion of the full planned course of treatment based on 
established clinical practice irrespective of on-treatment ctDNA results 
is still recommended to minimize the chance of a future relapse (Fig. 2c).

Below, we discuss in depth four representative cancer types of differ-
ent disease biology—colorectal, breast, lung and bladder cancer—that 
demonstrate the clinical utility of ctDNA testing in disease manage-
ment. For each of these cancers, we present the data supporting the use 
of ctDNA testing for MRD detection. We describe the clinical accuracy 
of ctDNA tests in these settings, outline current management strategies 
and highlight ctDNA-based disease management options. Ongoing 
investigation of the utility of ctDNA testing in these and other cancer 
types are outlined in Table 2.

Colorectal cancer
Although the vast majority of patients with stage I and II colon cancer 
experience good outcomes after surgery alone, a minority of patients 
relapse. A small number of clinical prognostic factors exist that can 
aid in the identification of early-stage patients who can effectively 
benefit from adjuvant systemic therapy (that is, stage III or high-risk 
stage II), potentially leading to a reduction in recurrence risk64. It is 
also recognized that tumours with microsatellite instability (MSI-high 
tumours) do not benefit from standard adjuvant chemotherapy65. 
In the absence of these factors, a positive ctDNA test, found either 
postoperatively or during follow-up, may be used to identify patients 
at high risk of recurrence who would benefit from adjuvant chemo-
therapy. Although prospective data remains limited, recent results 
from DYNAMIC II found that ctDNA-guided adjuvant chemotherapy 
effectively reduced the number of stage II patients receiving chemo-
therapy compared with standard management, without compromising 
survival outcomes, even among patients with high-risk histologies66. 
More recently, results from the GALAXY cohort of the CIRCULATE study 
demonstrated that high-risk stage II patients with colorectal cancer who 
were ctDNA-positive at four weeks post-surgery could benefit from 
chemotherapy60. In addition, two studies aimed to further evaluate 
this concept prospectively—COBRA (NCT04068103) and CIRCULATE 
Germany (AIO-KRK-0217)—are underway67,68.

Patients with stage III colon cancer are recommended to receive adju-
vant chemotherapy, although more than 50% may be cured by surgery 
alone69. Patients in whom ctDNA is detected post-surgery (MRD time-
point) are likely to have recurrence, and evidence demonstrates that 
these patients should receive adjuvant chemotherapy. Although 20% 
of stage III patients treated with adjuvant chemotherapy have a recur-
rence of their cancer69, it is currently unknown whether the detection 
of ctDNA positivity after surgery should influence the chemotherapy 
regimen that is selected or if patients should receive subsequent therapy 
after the completion of SOC adjuvant treat ment. Of note, a large num-
ber of ongoing clinical studies in colorec tal cancer, including COBRA, 
CIRCULATE Japan (comprising GALAXY (UMIN000039205), ALTAIR 
(NCT04457297) and VEGA (jRCT1031200006)), CIRCULATE-US, DYNAMIC 
II (ACTRN12617001566325), DYNAMIC III (ACTRN12617001566325), 
PEGASUS (NCT04259944), TRACC Part C (NIHR128529) and NCT03803553  
are designed to use MRD detection by ctDNA to guide adjuvant treatment 
decisions16,70–72. Data from the GALAXY cohort from CIRCULATE Japan 
has provided validation for this hypothesis among patients with stage III 
colorectal cancer60. These studies use a variety of different assays, each of 
which has observational data suggesting that these markers are prognos-
tic, however, these ongoing studies will be key in determining how ctDNA 
fares as a predictive biomarker22.

Breast cancer
ctDNA-based MRD detection can have an important role in disease 
management of breast cancer, as up to 30% of women with breast cancer 
relapse and die after treatment with curative intent, despite present-
ing with imaging indicating no evidence of disease73. For early-stage 
breast cancer, the current SOC is surgery, often followed by adjuvant 
therapy74. Post-surgical ctDNA positivity is prognostic of relapse19,43,45. 
Longitudinal monitoring of ctDNA subsequent to surgery may there-
fore inform choices regarding escalation of treatment (for example, 
adding chemotherapy to hormone-based therapy) by providing an 
early indication of active micrometastatic disease relative to SOC  
monitoring19,75,76 (that is, imaging, monitoring with tumour markers 
and multigene assays). We therefore recommended that patients 
with detected ctDNA be classified as clinically high risk, and providers 
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models of longitudinal ctDNA testing results are depicted for critical clinical 
settings. a, The probability of residual disease detection and eventual 
treatment-response monitoring. A patient who is identified as ctDNA-positive 
at diagnosis undergoes surgery with curative intent. The probability of 
detecting a residual disease (MRD) may be affected by tumour biology and 
increased cfDNA levels immediately after surgery—among other factors—and 
thus the result is subject to probabilistic sampling. As ctDNA levels increase, 
the probability of ctDNA detection increases and becomes suitable for 
treatment-response monitoring. b, Serial testing improves the sensitivity of 

the ctDNA test. Serial testing for ctDNA is recommended to avoid any false- 
negative or false-positive results, and thus improves the overall sensitivity of 
the assay in detecting disease recurrence. c, Dynamic changes in ctDNA 
following treatment. A patient who tests positive for ctDNA is recommended to 
be on adjuvant chemotherapy. Continued elevation in ctDNA is suggestive of 
primary resistance to therapy. A decline in ctDNA level followed by clearance is 
indicative of a successful therapeutic response. At this point, it is recommended 
that the patient complete the course of treatment to achieve remission, as 
cessation of therapy may lead to disease recurrence.
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should consider giving treatments that are accordingly indicated by 
the US Food and Drug Administration and clinical practice guidelines. 
For patients who test ctDNA-negative, especially serially, we recom-
mend classification as lower risk with consideration for less inten-
sive treatments, and in certain cases, observation and monitoring 
alone77,78. Ongoing clinical studies to assess MRD to guide treatment 
decisions16 include studies focused on early-stage oestrogen receptor 
(ER)-positive breast cancer (LEADER (NCT03285412)), ER-positive/
HER2-negative stage II/III breast cancer (DARE (NCT04567420)), 
early-stage triple-negative breast cancer (c-TRAK-TN (NCT03145961)) 
and metastatic breast cancer (PERSEVERE (NCT04849364)).

Lung cancer
Although patients most commonly present with advanced disease, 
patients with early-stage disease can be treated with curative intent 
and subsequently monitored for recurrence. In these cases, ctDNA 
results could facilitate the selection of adjuvant or targeted therapy, 
or could be used for ongoing surveillance following treatment24,55. The 
presence of ctDNA has been shown to be prognostic in non-metastatic 
NSCLC, which was treated with curative intent (LUCID24 (NCT04153526), 
IMpower01079 (NCT02486718) and NCT0275983580). There are cur-
rently ongoing clinical trials assessing whether ctDNA is prognostic 
of outcomes in EGFR tyrosine kinase inhibitor therapies (MELROSE81 
(NCT03865511)).

Bladder cancer
Patients with early-stage non-muscle invasive bladder cancer may be 
simply treated with transurethral resection with fulguration82,83. A posi-
tive ctDNA test following transurethral resection may identify patients 
who require more aggressive treatment along the lines of recommenda-
tions for MIBC, including neoadjuvant chemotherapy (NAC) followed 
by radical cystectomy. Similarly, a positive ctDNA test following NAC 
and radical cystectomy in patients with MIBC may indicate the need for 
additional therapy. Data from the IMvigor010 trial (NCT02450331) sug-
gest that patients who test positive for ctDNA post-surgery may benefit 
from adjuvant atezolizumab84. Currently, there are some clinical studies 
exploring the utility of ctDNA at the MRD timepoint in guiding adjuvant 
therapy, in metastatic bladder cancer (TOMBOLA (NCT04138628)) and 
MIBC16 (IMvigor011 (NCT04660344)).

Management of ctDNA-negative patients
In the adjuvant setting, patients who remain or become ctDNA-negative 
while on treatment, have been observed to have a significantly improved 
prognosis60. However, ctDNA negativity does not preclude recurrence. 
How risk of relapse is estimated depends on the cancer type. Longitu-
dinal testing with serial negative ctDNA results suggests a lower risk of 
recurrence than single-timepoint testing. However, the MRD timepoint 
appears to be a key indicator of disease outcome, but patients with 
longitudinal assessment who remain serially ctDNA-negative appear 
to have the best outcomes. Detecting recurrent disease in areas with 
low shedding and less communication with the bloodstream, such as 
the central nervous system85, peritoneal cavity86,87 and the lung87,88 can 
be challenging. Measuring ctDNA in samples other than blood, such 
as urine, saliva or cerebrospinal fluid, have demonstrated promising 
results as a prognostic biomarker for monitoring disease progression33. 
Particularly for brain cancers, where biopsies represent a very invasive 
and high-risk procedure and there is heavy reliance on imaging for 
surveillance, ctDNA from cerebrospinal fluid represents a promising, 
less invasive approach.

Recent studies have shown a reduced absolute benefit of adjuvant 
therapy for ctDNA-negative patients, mainly as a result of their reduced 
risk of recurrence. However, whether the relative risk of adjuvant ther-
apy is also reduced or absent compared with ctDNA-negative patients 
treated with surgery alone is currently being studied. Early data for 

MIBC (IMvigor010) and colorectal cancer (IDEA-FRANCE) suggest that 
patients who test ctDNA-negative may not derive as much benefit from 
adjuvant therapy as those who are found to be ctDNA-positive84,89. A 
similar trend was observed in patients with resected NSCLC receiv-
ing NAC90. However, an investigation in a larger cohort is needed to 
validate these findings.

Application of ctDNA negativity could potentially guide de-escalation 
and/or omission of therapy in patients who are borderline candidates 
for systemic therapy owing to other moderate risk factors. In such 
cases, it would be reasonable to consider the ctDNA-negative status 
among other patient factors in determining the use and duration of 
adjuvant systemic therapy.

As described previously for non-metastatic colorectal cancer, several 
clinical studies are using ctDNA-guided approaches as rationale for 
de-escalation of adjuvant therapy for ctDNA-negative patients. When 
and how this may influence the administration of adjuvant therapy 
is of great interest and is currently being studied in the VEGA trial, 
enroling ctDNA-negative patients with stage I–IV colorectal cancer, 
with the goal of comparing surveillance alone to SOC adjuvant therapy70  
(3 months of CAPOX).

Treatment-response monitoring
ctDNA testing is a powerful tool in the treatment-response monitor-
ing setting. Below, we describe what is currently known about ctDNA 
monitoring in the neoadjuvant and adjuvant settings, specifically in 
the context of immunotherapy.

Neoadjuvant treatment monitoring
NAC is used for many neoplastic diseases, including breast cancer, 
rectal cancer and MIBC. Clinical and pathological response to NAC 
provides important prognostic information.

In breast cancer and MIBC, the prognostic role of NAC is to downstage 
the tumour, ideally achieving a pathological complete response91–93 
(pCR). A growing number of studies have demonstrated the ability of 
ctDNA to assist in early response assessment following NAC. In breast 
cancer, several studies have concluded that ctDNA testing during 
or after NAC is predictive of pCR and/or patient survival outcomes, 
including for early-stage disease94,95 and stage II/III disease96, as well as 
in triple-negative breast cancer97,98. Several studies have also demon-
strated the prognostic value of ctDNA testing during NAC in MIBC84,99. 
In patients enroled in ABACUS, a prospective phase 2 study examining 
the benefit of neoadjuvant atezolizumab before cystectomy found that 
longitudinal ctDNA testing results accurately predicted response to the 
therapy, including pCR and major pathological response84. Ongoing 
clinical studies aimed at exploring the clinical utility of ctDNA in the 
neoadjuvant setting include I-SPY-2 (NCT01042379) for breast cancer, 
and the PRE-PREVENCYS trial (NL8678) for MIBC100.

Given that ctDNA dynamics provide an early indication of response 
to NAC, it is recommended that providers consider this information to 
optimize patient outcomes. For example, in cases where patients are 
treated with NAC that can have long-term and cumulative effect on 
survivorship, such as anthracyclines in breast cancer101, ctDNA clear-
ance can provide a rationale for early cessation of therapy. Conversely, 
early identification of non-responders may enable a timely switch to 
more effective therapies. This is a novel extrapolation from what is done 
with interval imaging restaging. In addition, the prognosis of cases with 
residual disease can further be refined by differentiating cases in which 
ctDNA persists from those in which clearance is achieved. Furthermore, 
in MIBC, excellent response to NAC can provide a rationale for avoid-
ance of cystectomy and urinary diversion102.

Similar strategies are currently under investigation in the neoadju-
vant setting for locally advanced rectal cancer. The SOC paradigm has 
largely shifted in support of total NAC with chemoradiotherapy and 
systemic chemotherapy prior to surgical resection. If NAC is found to be 
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effective, consideration can be given to non-operative management103. 
ctDNA monitoring in the neoadjuvant setting can help in prediction 
of complete clinical response prior to surgery and be prognostic of 
survival outcomes. This may enable ctDNA to guide the need for subse-
quent therapy, wherein ctDNA negativity may suggest watchful waiting, 
and persistent ctDNA may indicate a need for surgery103–106. However, 
additional prospective studies and clinical trials are needed to better 
define the utility of ctDNA in this space, especially given the limitations 
of ctDNA in defining the status of local disease.

Immunotherapy
Immune checkpoint blockade (ICB) therapy designed to target PD-1, 
PD-L1 and CTLA-4 have shown to improve survival in multiple cancers 
including NSCLC, melanoma, head and neck squamous cell carcinoma, 
renal cell carcinoma and urothelial carcinoma107. Although only a minor-
ity of cancer patients (less than 20%) respond to ICB, durable clini-
cal benefit has been observed in patients who do respond17. Atypical 
responses such as pseudoprogression and hyperprogression can also 
occur, which can make it difficult to achieve or confirm therapeutic 
efficacy107–109.

There is a growing body of evidence indicating that ctDNA measure-
ment may help in the interpretation of clinical response for patients 
receiving ICB therapy. Bratman et al. demonstrated that changes in 
ctDNA level measured at baseline and shortly after commencement of 
treatment are predictive of response to treatment in advanced-stage 
patients receiving ICB therapy. In the same study, ctDNA clearance was 
also associated with outcome, with 12 patients with metastatic disease 
who cleared ctDNA during treatment being alive at the end of the study, 
with a median follow-up time of 25 months. By contrast, patients whose 
ctDNA increased or remained stable had median overall survivals of 13 
and 23 months, respectively17.

Pseudoprogression
Pseudoprogression refers to an initial radiographic increase in size of 
the primary tumour, followed by radiographically apparent tumour 
regression107. The phenomenon is defined as tumour’s response to treat-
ment after initial increase in volume, due to the infiltration of tumoral 
tissue by immune cells. It has been observed to occur in approximately 
10% of solid tumours treated with ICB107. Pseudoprogression is prob-
lematic for clinicians to determine whether a change in treatment is 
warranted or whether the patient is responding and needs additional 
therapy with the same regimen.

Currently, the distinction between pseudo- and true progression 
is defined by immunotherapy RECIST (iRECIST) guidelines110, where 
immune unconfirmed progressive disease of >20% in the sum of the 
diameter of the lesions is followed up at least 4 weeks later by imag-
ing, to confirm progressive disease107. Importantly, ctDNA has been 
shown to identify pseudoprogression accurately and in real time at 
the molecular level, without the need for a 4-to-8-week follow-up 
period. Wherein, an unconfirmed radiological progression may be 
accompanied by a decrease in ctDNA level, resulting in eventual ctDNA 
clearance. However, current data on the clinical utility of ctDNA in 
this setting has been limited to a handful of smaller retrospective  
cohorts17,111.

Timely distinction of pseudoprogression from true progression may 
help avoid both premature discontinuation of an effective therapy 
(for pseudoprogressors) and avoid exposing patients to prolonged, 
ineffective or costly treatments (for true progressors). Furthermore, 
in cases of true progression, ctDNA status can provide rationale for 
switching to an alternative therapy more quickly.

Hyperprogression
Recent studies have reported hyperprogressive disease in 4–29% of 
patients with solid tumours who receive ICB therapy, which may be asso-
ciated with a shorter overall survival following progressive disease112. 

Key criteria for hyperprogression include time to treatment failure of 
less than two months, with a two-fold or greater increase in disease 
progression and at least a doubling of the patient’s tumour burden 
compared with pre-baseline imaging113. It is anticipated that large, rapid 
increases in ctDNA could potentially identify hyperprogression. There 
are, however, little data relating ctDNA dynamics to hyperprogression 
in the immunotherapy setting112. Future studies that include adequate 
numbers of patients who experience hyperprogression are needed to 
establish whether ctDNA can effectively distinguish hyperprogession 
from other forms of progression and the potential utility for patient 
management in the immunotherapy setting.

Exceptional responders
Patients with unusually favourable responses to a specific treatment 
protocol are defined as exceptional responders114. Rapid clearance of 
ctDNA is known to be associated with exceptional treatment response17. 
Identification of exceptional responders may aid in determining 
treatment duration, allowing for earlier discontinuation, and sparing 
patients from treatment-associated toxicities and costs. Prospective 
studies and clinical trials evaluating the implications of longitudinal 
changes of ctDNA are needed to validate the benefits of discontinuing 
treatment in exceptional responders defined by ctDNA.

Immune-related adverse events
While ICBs are designed to activate immune responses against tumour 
cells, they can also induce immune responses against other tissues, 
organs, and systems, leading to undesirable symptoms in patients115. 
When IRAEs occur, ctDNA monitoring may assist in determining 
whether immunotherapy should continue. Cessation of immuno-
therapy, regardless of disease grade, could potentially spare patients 
from IRAEs and reduce costs for patients and the healthcare system. We 
therefore recommend continuation of ctDNA monitoring along with 
SOC monitoring after discontinuation of immunotherapy, to determine 
whether and when, alternative therapy should be pursued. Importantly, 
the role of ctDNA in this space remains to be investigated in detail. One 
study found that specific ctDNA-detected alterations in CEBPA, FGFR4, 
MET and KMT2B were associated with a greater likelihood of IRAEs116.

Outlook
Over the past decade, our understanding of the potential clinical utility 
of ctDNA testing in patients with solid tumours has increased substan-
tially. Although this information applies to a broad variety of cancer 
types, this Perspective summarizes the current knowledge of how to 
best utilize ctDNA testing, highlighting specific applications to colo-
rectal, breast, lung and bladder cancers, as well as ICB-treated solid 
tumours. Numerous assays for ctDNA are available or in development; 
it is crucial to understand and recognize the strengths and limitations 
of a particular platform when interpreting the clinical effects of add-
ing ctDNA to the current SOC treatment. We have highlighted some of 
the key data that are available and described how to interpret ctDNA 
results and to best proceed according to the current knowledge prior 
to treatment (baseline measurement), after definitive therapy or sur-
gery with curative intent (the MRD timepoint), during the surveillance 
period, and during active treatment in the neoadjuvant, adjuvant and 
ICB settings.

Although evidence of clinical utility is still emerging, early results 
from largely observational studies demonstrate that ctDNA is a highly 
significant prognostic factor compared with other established clinico-
pathological risk factors. Thus, ctDNA testing may add to the overall 
patient assessments for risk stratification, wherein postoperative 
ctDNA-positive status indicates a higher risk of recurrence. Imple-
mentation of ctDNA testing can inform prognosis and assist in deter-
mining the level of treatment that may be needed to clear existing 
disease, prevent relapse and improve chances of long-term survival.  
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A potential development from ctDNA-guided decision making is 
the mitigation of unnecessary treatment and the accompanying 
side-effects and financial burden to patients, or targeted second-line 
therapy decisions if first-line therapy does not halt disease progres-
sion117,118. Although a number of post hoc analyses, clinical experiences 
and case series have been published to date, prospective studies to 
define the utility of ctDNA testing in clinical practice are still needed. 
We recommend that ongoing and future trials aiming to examine 
novel therapy approaches consider utilizing ctDNA testing in their 
study design, to enable stratification to identify those patients who 
are most likely to benefit from the studied therapeutic intervention. 
Ultimately, as the specific indications, ctDNA platforms, treatment 
decision points and therapy implications are refined and validated, it 
is likely that ctDNA will be incorporated into many aspects of clinical 
practice. Prospective studies with well-established clinical end points 
will determine whether ctDNA can supplement or even replace current 
standard clinical metrics.

Data availability
All data generated or analysed during this study are included in this 
Perspective. Informed consent was obtained as part of the ordering 
assay. This study was approved by the corresponding Ethical and Inde-
pendent Review Services (protocol no. 20-049-ALL) and was conducted 
in accordance with the Declaration of Helsinki. Further enquiries can 
be directed to the corresponding author.
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