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Magnitude of effect and sample 
size justification in trials 
supporting anti‑cancer drug 
approval by the US Food and Drug 
Administration
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Approval of drugs is based on randomized trials observing statistically significant superiority of an 
experimental agent over a standard. Statistical significance results from a combination of effect size 
and sampling, with larger effect size more likely to translate to population effectiveness. We assess 
sample size justification in trials supporting cancer drug approvals. We identified US FDA anti‑cancer 
drug approvals for solid tumors from 2015 to 2019. We extracted data on study characteristics, 
statistical plan, accrual, and outcomes. Observed power (Pobs) was calculated based on completed 
study characteristics and observed hazard ratio  (HRobs). Studies were considered over‑sampled 
if Pobs > expected with  HRobs similar or worse than expected or if Pobs was similar to expected with 
 HRobs worse than expected. We explored associations with over‑sampling using logistic regression. 
Of 75 drug approvals (reporting 94 endpoints), 21% (20/94) were over‑sampled. Over‑sampling was 
associated with immunotherapy (OR: 5.5; p = 0.04) and associated quantitatively but not statistically 
with targeted therapy (OR: 3.0), open‑label trials (OR: 2.5), and melanoma (OR: 4.6) and lung cancer 
(OR: 2.17) relative to breast cancer. Most cancer drug approvals are supported by trials with justified 
sample sizes. Approximately 1 in 5 endpoints are over‑sampled; benefit observed may not translate to 
clinically meaningful real‑world outcomes.

Decisions on regulatory approval of drugs are based typically on randomized trials observing statistically sig-
nificant superiority of an experimental agent over an established standard. Recently, the American Statistical 
Association has highlighted the limitations of basing decisions on p-values emphasizing that statistical signifi-
cance can be the result of large effect size, high statistical power, or a combination of the  two1,2.

Randomized trials supporting drug approval have restrictive eligibility criteria which sub-optimally represent 
patients treated in routine clinical  practice3,4. This can lead to differences in outcomes between patients treated 
in trials and those treated in the real-world  setting5–7. Compared to clinical trials, some treatments delivered 
in the clinical setting result in less beneficial effect and greater  toxicity8–10. This scenario is referred to as the 
efficacy-effectiveness  gap11.

While regulatory approval is based predominantly on the observation of statistically significant results from 
adequately controlled studies, statistical significance does not always translate to clinical meaningfulness. Prior 
work on clinically meaningful benefit has defined this as a noticeable and/or valuable effect experienced by 
the  patient12. Clinically meaningful change has been defined for OS as a hazard ratio (HR) of 0.8 or lower; for 
intermediate endpoints, higher magnitudes of effect have been  suggested13. Assuming justified sample  size14, a 
clinical trial with an endpoint that is statistically significant due to a larger than expected effect size is more likely 
to translate to improved outcomes in  practice15. Conversely, an endpoint which maintains statistical significance 
despite an effect size that is lower than expected may be due to over-sampling and is less likely to translate to 
improved real-world outcomes.
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Over-sampling has been defined previously as intentionally sampling of typically under-represented groups 
to make up a larger proportion of a survey sample than they do in the  population16. This can improve external 
validity. Conversely, oncology drug trials have more restrictive eligibility criteria, so a smaller effect size may 
result in less clinically meaningful benefit in practice for the average  patient17. It is unknown if trials supporting 
approval of anti-cancer drugs are statistically significant due to a large magnitude of effect or over-sampling.

In this article, we assess clinical trial endpoints supporting recent cancer drug approvals, explore justifica-
tion for sample sizes, and estimate the proportion in which statistical significance may have resulted from over-
sampling. We hypothesized that most endpoints would have higher power than planned due to over-sampling, 
rather than due to increased magnitude of effect.

Methods
Data source and eligibility
We searched the US Food and Drug Administration (FDA) drug approvals  website18 to identify drug approvals 
for solid tumors (excluding lymphomas) from January 1, 2015 to December 31, 2019. We excluded hematologic 
malignancies, as is the standard for oncology studies, due to differences in treatment goals and in commonly 
used trial endpoints. There were no restrictions to type of anti-neoplastic agent. This study was exempt from 
institutional review board approval since it comprised exclusively of the use of publicly available data.

We included prospective, randomized trials (of any phase) with a primary outcome of disease or recurrence-
free survival, progression-free survival (PFS), metastasis-free survival, or overall survival (OS). Eligible studies 
needed to include data detailing the statistical plan (in the manuscript or supplementary appendices), including 
the targeted/expected effect size (referred to as expected henceforth), accrual time, duration of follow-up, type I 
error (alpha) and expected power. Corresponding authors were contacted when data were not available. Studies 
were excluded if they were non-inferiority trials or if FDA approval was withdrawn since the initial approval.

Data extraction
One author (MBN) retrieved the relevant manuscripts and supplementary appendices of the report of trials 
supporting each drug approval. Data extraction and calculations were performed by two authors (MBN and 
BEW). Discrepancies were resolved by consensus and/or with the involvement of a third author (EA). The fol-
lowing data were extracted for the intent-to-treat analysis for each study endpoint: type of malignancy, drug 
type, primary outcome(s) and secondary outcome (if it was OS), blinding versus open-label, alpha, number of 
patients in the experimental arm, number of patients who withdrew consent or were lost-to follow-up, expected 
HR in the statistical plan, observed HR, median duration of time-to-event in the control arm (for outcome of 
interest), accrual start and end dates, data cut-off date, ratio of control to experimental group, and expected 
power defined by the study’s statistical plan.

Drug types were categorized as chemotherapeutic agents, hormonal therapy, immunotherapy, other monoclo-
nal antibodies, PARP-inhibitors, and targeted small molecules. Immunotherapy was grouped separately (despite it 
being a monoclonal antibody) because it has a unique mechanism of action, eliciting the host’s immune response 
rather than an oncogenic target as is the case with most other monoclonal antibodies. Similarly, we grouped 
PARP-inhibitors separately given their target is typically a germline rather than a somatic alteration. This unique 
mechanism of action, multiple drugs in class and overall good tolerability in contrast to other small molecules 
used in oncology warrant assessment in a single subgroup. The expected HR (HRexp) and expected power (Pexp) 
was also extracted for each endpoint. A separate author (CMV) extracted and calculated the American Society 
of Clinical Oncology Value Framework (ASCO-VF) version 2 scores. The ASCO-VF is a tool designed to identify 
drugs of substantial value considering both efficacy and safety/tolerability with scores of 45 or more defined as 
clinical  value19,20. Scores were calculated with and without correction for toxicity, safety, or quality of life.

The total accrual time (in months) was calculated as {(accrual end – accrual start) / 30.4375} and follow-
up time after end of recruitment “F” (in months) was calculated as {(data cut off time – accrual end month) / 
30.4375}. Both were rounded to the nearest half-integer. If data cut-off was not available, it was calculated by 
taking the mid-point of accrual time and adding the reported median follow-up. If the median number of months 
of the outcome of interest was not available, it was calculated using the following formula: t  loge(1/2)/loge(p) 
where p is the probability that a control subject survives until time t. Additional methods and assumptions are 
reported in Supplementary Table 1.

Data synthesis and statistical analysis
In order to explore justification for sample size and potential for over-sampling, first, we estimated the observed 
power (Pobs) of each endpoint. This was done by inputting the following variables into the Power and Sample Size 
calculator (version 3.0, January 2009)21: number of patients in experimental arm, HRexp, observed HR (HRobs), 
median duration of time-to-event in the control arm (for outcome of interest), accrual start and end dates, data 
cut-off date, ratio of control to experimental group, and Pexp. Pobs was calculated for each trial’s primary endpoint 
(and secondary endpoint if it was OS). The absolute difference between observed and expected power was cal-
culated (ΔPO-E = Pobs−Pexp).

Definitions
By convention, we defined equivalent power using a 5% spread (i.e. Pexp was considered similar to Pobs if it was 
within ± 2.5%) and under-powered endpoints as ΔPO-E < 2.5%. Similarly, HRobs was considered similar to HRexp 
if the absolute difference between the two was within 0.025. We defined study endpoints as over-sampled if a) 
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 Pobs was larger than  Pexp and HRobs had a similar or worse magnitude of effect than HRexp or b) if the endpoint 
was similarly powered but HRobs was worse than HRexp.

In order to explore the validity of our definition of oversampling, we performed a post-hoc analysis exploring 
the association between this definition and ASCO-VF scores. We used the tool initially in an unadjusted manner 
and subsequently without correction for toxicity, safety, or quality of life.

Sensitivity analyses
Given there is no definition for over-sampling in the literature, a series of post-hoc sensitivity analyses were per-
formed. This included defining equivalent power using a 10% spread (i.e. Pexp considered similar to Pobs if within 
a difference of ± 5%) and equivalence between HRobs and HRexp if the absolute difference was within 0.01 or 0.05. 
Additional post-hoc sensitivity analyses included excluding studies where follow-up time after end of accrual was 
0, was estimated (resulting in a value of zero or greater than zero), both together, and excluding endpoints where 
median outcome of interest was calculated rather than extracted. Finally, we performed a sensitivity analysis 
using only one end-point per trial to avoid colinear data. We utilized a hierarchy preferring primary to secondary 
endpoints and in trials with co-primary endpoints selecting OS over intermediate endpoints.

Associations between any over-sampled endpoint and study characteristics were explored using logistic 
regression. The regression was repeated for any sensitivity analysis where the proportion of over-sampled trials 
differed from the primary analysis by more than 5% and using only one endpoint per trial. Statistical significance 
was defined as p < 0.05. No corrections were applied for multiple significance testing. The Burnand criteria for 
quantitative  significance22 were used to evaluate the magnitude of effect of associations irrespective of statistical 
significance in the context of low power.

Results
The search identified 118 unique drug approvals, of which 75 (70 phase 3; 5 phase 2) met our inclusion criteria 
(Fig. 1). Reasons for exclusions were single arm studies, drug taken off the market due to lack of efficacy in a 
post-marketing trial (olaratumab for soft-tissue sarcoma), and data unavailable despite contact with study authors 
(olaparib maintenance in relapsed BRCA1/2-mutated ovarian cancer). Among the 75 included drug approvals, 
4 were based on two separate manuscripts, and 15 had a co-primary endpoint (or a secondary endpoint of OS). 
Consequently, the analysis cohort comprised a total of 94 trial endpoints for which observed power could be 
calculated. An overview of trial (n = 75) and endpoint (n = 94) characteristics is found in Table 1.

For 11 endpoints (10 trials), follow-up time after end of accrual (“F”) was either estimated or was ≤ 0 by 
design. For 5 endpoints (10 trials), data-cut off was estimated and resulted in F > 0. For 4 endpoints (3 trials),  
reported data cut-off was either before or on the date of end-accrual. One trial did not provide data-cut-off or 
a median follow-up time and in one trial the estimated follow-up time resulted in data cut-off occurring before 
end of accrual (presumably due to non-linear accrual). For all these trials, F was defined as zero. The median 
endpoint time for the outcome of interest in the control group was not reported for 9 trials (10 end points ) as 
the median was not reached.

Among the 94 analyzable endpoints, 3 trial endpoints (3%) were well-powered, 19 (20%) were under-powered, 
and 72 (77%) had  Pobs larger that  Pexp. Statistical metrics of these study endpoints studies are shown in Table 2. 
A histogram of ΔPO-E is provided in Supplementary Fig. 1 and of difference in HR in Supplementary Fig. 2. In 
the sensitivity analysis using the 10% spread, 19 (20%) endpoints were categorized as well-powered, 17 (18%) 
under-powered, and 58 (62%) had  Pobs larger that  Pexp.

In 3 endpoints, the statistical plan did not provide HRexp, therefore assessment of over-sampling was based 
on 91 endpoints (Table 3). Of all trial endpoints, 19 (21%) were considered over-sampled. Among evaluable 
endpoints with  Pobs larger that  Pexp (n = 69), 17 (25%) were over-sampled. Results of sensitivity analyses are 
shown in supplementary table 2A–F. Between 16 and 29% of end-points were over-sampled across six analyses 
resulting in an average of 20% over-sampled end-points. Results of sensitivity analyses excluding end-points 
where data points were estimated were unchanged (supplementary table 3A–D). In the sensitivity analysis with 
one end-point per trial, 18% of end-points are over-sampled (supplementary table 4).

In the unadjusted analyses, there was no difference in ASCO-VF scores between trials defined as oversampled 
and those that were not (mean 44.4 vs. 45.8, p = 0.40). However, when ASCO-VF was not adjusted for safety/
tolerability, there appeared to be a modest difference in scores which approached, but did not meet statistical 
significance (mean 43.1 versus 47.9, p = 0.13). This suggests that trials defined as oversampled may be less likely 
to meet thresholds for substantial clinical value.

Over-sampling was both statistically and quantitatively associated with immunotherapy (OR: 5.5, p = 0.04) 
while quantitative, but not statistical associations were observed for targeted therapy relative to other types of 
therapy (OR: 3.0, p = 0.2), open-label trials compared to double-blind trials (OR: 2.5, p = 0.08), and melanoma 
(OR: 4.6, p = 0.11) and lung (OR: 2.17, p = 0.39) cancers relative to breast cancer. There were no associations with 
year of approval, type of endpoint, or the number of patients lost to follow-up or who withdrew consent (Table 4). 
The repeated regressions for the sensitivity analyses are shown in Supplementary Tables 5A–C. For analyses in 
which fewer studies were categorized as over-sampled, quantitative significance was attenuated modestly but 
retained similar quantitative associations and the association with immunotherapy lost statistical significance. In 
the sensitivity analysis with more end-points categorized as over-sampled, the associations with open-label trials 
(OR: 3.22, p = 0.02) and melanoma relative to breast cancer (OR: 9.1, p = 0.02) became statistically significant.
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Discussion
In this study, we explored whether sample size calculations of trials supporting cancer drug approval were justi-
fied. Results showed that for most drug approvals in solid tumors, statistical significance of the primary endpoint 
resulted primarily due to better than anticipated effect size. This is a reassuring result as it is likely that in the set-
ting of statistical significance and large effect size, efficacy observed in clinical trials may translate to effectiveness 
in the real-world setting. Clinicians can be assured that many of the oncologic treatments studied in these trials 
will benefit their patients. A drug with robust efficacy should maintain an effect size and statistical significance 
even in the face of clinical trial participants who are more heterogeneous. This is relevant to future trial design 
as clinicians, researchers, and trialists may feel confident decreasing barriers to trial entry; this would improve 
trial access and enrollment for more diverse populations and also allow for more generalizable trial  data23.

Another promising finding is that sufficient data were reported in the included studies to allow reproduction 
of sample size calculation for all but 3 endpoints. This suggests that the quality of reporting and justification of 
sample size is consistent with CONSORT  guidelines24 and has improved for the recent oncology trials reported 
in this study compared to a report from 2015 suggesting that only 28% of trials provided all of the required 
parameters for a sample size  calculation25.

Importantly, in approximately 20% of all endpoints supporting cancer drug approval, there was an effect 
size similar or of lesser magnitude than expected. Statistically significant results of these studies are likely due 
to over-sampling. This could occur directly by recruitment of more patients than required to show statistical 
significance or (intentionally or unintentionally) manipulating other variables in the sample size calculation, 
such as extending the follow-up time or increasing alpha or beta (as described below). This suggests that sample 
size calculations in these studies were not justified. This finding deserves attention as it could impede the transla-
tion of clinical trial results to the real world. In these circumstances, the benefit-risk ratio of certain drugs may 
become  unfavourable9,26.

While we could not evaluate the reason for over-sampling, we did observe that retention of high observed 
statistical power despite smaller than anticipated effect size was associated with immunotherapy, targeted therapy, 

118 Drug approvals for solid tumours 
between Jan 1 2015 and Dec 31 2019 

75 unique drug approvals   

Exclusions: 
33 single arms studies 
6 outcome was response rate 
2 non-inferiority studies 
1 approval withdrawn  
1 insufficient data 
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on 2 separate 
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Figure 1.  Trial Selection.
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melanoma, lung cancer and was more common in open-label studies. The association with targeted therapy is 
concerning as these drugs have been associated with a high prevalence of grade 3 toxicity in registration  trials27,28 
and often require dose adjustments in response to toxicity especially in the real-world  setting29. Drugs studied 
in open label trials have been shown to provide a lower magnitude of benefit than those evaluated in blinded 
 studies30. Taken together, the combination of over-sampling, lower magnitude of effect and higher toxicity is 
concerning as this may also impact negatively on the efficacy-effectiveness gap.

When planning and conducting a trial, oversampling may occur unintentionally and/or may have adequate 
justification. Prediction of expected outcomes and rate of events in clinical trials is challenging especially if there 
are few informative data from earlier phase trials. While it has been suggested previously that stronger evidence 
of biologic effect should be required before a new drug enters phase III  testing31, this can result in delays to 
getting a drug to market. Due to the cost, resources, and time taken to run a clinical trial, clinical trialists likely 
prioritize preventing a type 2 error (under-powering) than type 1 error (albeit typically set conventionally). This 
can result in the observed findings of over-sampling described in this article. Opportunities that could mitigate 
the consequences of over-sampling include reporting of observed power in trial reports to allow all stakeholders 

Table 1.  Characteristics of FDA Drug Approvals between 2015 and 2019. *Immunotherapy plus small 
molecule or antibody–drug conjugate.

Approval characteristic

Number (%)

(n = 75)

Study phase

 Phase 2 5 (6.7)

 Phase 3 70 (93.3)

Year of drug approval

 2015 15 (20)

 2016 8 (10.7)

 2017 16 (21.3)

 2018 19 (25.3)

 2019 17 (22.7)

Type of cancer

 Lung 18 (24)

 Breast 14 (18.7)

 Melanoma 9 (12)

 Renal cell carcinoma 8 (10.7)

 Prostate 6 (8)

 Ovary/primary peritoneal 5 (6.7)

 Hepatocellular carcinoma 3 (4)

 Upper GI and pancreas 3 (4)

 Colorectal 2 (2.7)

 Sarcoma 2 (2.7)

 Head and neck 2 (2.7)

 Thyroid 1 (1.3)

 Neuroendocrine 1 (1.3)

 Bladder 1 (1.3)

Type of drug

 Targeted small molecules 27 (36.0)

 Immunotherapy 23 (30.7)

 Hormonal therapy agents 6 (8.0)

 PARP-inhibitors 6 (8.0)

 Monoclonal antibodies 5 (6.7)

 Chemotherapeutic agents 5 (6.6)

 Combination therapy* 3 (4.0)

Endpoint characteristic

Mean ± SD (range)

(n = 94)

Alpha
0.049 ± 0.05

(0.001–0.4)

Expected power
87.4% ± 7.58

(40–99%)

Observed power
91.6 ± 0.16

(18.5–100%)
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to decide whether observed benefit is meaningful irrespective of statistical significance. Additionally, regula-
tors could approve drugs supported by over-sampled trials with the condition that post-marketing real-world 
studies confirm the benefit observed in the registration trial. The results of such post-marketing studies could 
also provide a better estimate of effectiveness and toxicity both for clinical decision-making and for informing 
health technology  assessments9.

The power of a trial describes the avoidance of a false negative result. By convention, investigators and stat-
isticians consider a trial to be adequately powered if it has at least an 80% chance of detecting a significant effect 
when it truly exists. It is important to note that this value is arbitrary. In our study, we investigated observed 
power relative to the power defined by the statistical plan, which could have been set below, at, or above 80%. 
The numerical value of the power is an important consideration when judging whether trial results are clinically 
meaningful or not and should be  justified32,33. For example, if a cheap and simple intervention provides benefit, 
one could justify an increase in power of a planned  study34. For a treatment with substantial cost or unfavorable 
safety and tolerability metrics it may not desirable to power a trial in order to identify a small magnitude of 
 effect35.

Although it can be justifiable not to follow convention, we report a few observations which deviate consider-
ably from usual standards. One trial endpoint had a Pexp of 40%, although this was a secondary  endpoint36. In 
another, Pexp changed from 90 to 95% after initiation of accrual without a clear  explanation37. Of all end-points, 
14% had a Pexp of 95% or greater. These endpoints may or may not have met our definitions for over-sampling 
but setting power at this level will result in some over-sampling. Similarly, 4  endpoints38–41 had an alpha > 0.05 
(0.2, 0.24, 0.3, and 0.4). There was no clear justification for this, although all studies were phase 2 and/or in rare 
disease sites. Finally, some drugs were approved for sub-groups which were not part of the study’s statistical plan 
(for example, drug approved regardless of a marker status, but the statistical plan powered for the biomarker-
specified subgroup). Greater transparency about the data supporting these statistical plans would be welcome.

This study has limitations. First, there is no established definition of over-sampling, so we determined a defini-
tion based on prior literature and available data. We explored the validity of our definition by exploring associa-
tions with the ASCO-VF. Several sensitivity analyses confirmed our estimated was accurate; however, given the 
novelty of this estimate, there is no way to assess how it compares to non-oncology trials. Similarly, the concept 
of “observed power” is debated in the literature, with some suggesting this is a function of p-value. We chose to 
use this as we required a measure that could compare observed results to the original statistical plan. Second, we 

Table 2.  Metrics for Evaluable Study Endpoints. *3 studies the expected HR was not available and therefore 
observed power could not be calculated.

Pobs larger that  Pexp (n = 72) Under-powered Endpoints (n = 19)
Well-powered Endpoints 
(± 2.5%) (n = 3)

Expected power (%) 87.3 ± 7.75 86.4 ± 6.6 96 ± 4.3

Observed power (%) 98.2 ± 3.5 65.6 ± 19.7 96.5 ± 5

ΔPO-E n (%)

 < − 2.5% 19 (20%)

 − 2.5 to + 2.5% 3 (3%)

 2.51–5% 14 (15%)

 5.1–10% 39 (42%)

 10.1–20% 16 (17%)

  > 20% 3 (3%)

Expected HR (n = 91)* 0.667 ± 0.07 (n = 69) 0.69 ± 0.08 0.66 ± 0.06

Observed HR 0.54 ± 0.13 0.76 ± 0.6 0.71 ± 0.09

Alpha 0.053 ± 0.06 0.038 ± 0.019 0.019 ± 0.026

Sample size – experimental arm 362.8 ± 225 414.7 ± 497.5 475 ± 145

Median outcome time in control arm (months) 14.8 ± 24.6 30.9 ± 79.4 10 ± 2.8

Table 3.  Observed Power and Assessment of Over-sampling (n = 91). Over-sampled endpoints are highlighted 
in bold. Study endpoints were considered to be over-sampled if the endpoint had  Pobs larger that  Pexp and 
HRobs similar or worse magnitude of effect than HRexp OR if the endpoint was well-powered and HRobs worse 
magnitude of effect than HRexp. Nineteen endpoints were considered oversampled (19/91, 20%).

{Pobs >  (Pexp + 2.5%)}
(n = 69)

Well-powered
(n = 3)

Under-powered 
{Pobs <  (Pexp—2.5%)}
(n = 19)

HRobs better magnitude of effect than HRexp (n = 54) 52 1 1

HRobs similar magnitude of effect as HRexp (n = 15) 12 0 3

HRobs worse magnitude of effect than HRexp (n = 22) 5 2 15



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:459  | https://doi.org/10.1038/s41598-023-50694-0

www.nature.com/scientificreports/

assessed trials which were randomized, superiority trials. Some cancer drugs are approved on the basis of single 
arm studies or subgroup  analyses30. While it is possible to calculate observed power for single arm studies, this 
power is related to precision of measurement rather than comparative efficacy. This is a different outcome than 
the objective of this study which focused on comparative time-to-event outcomes. Third, some of our defini-
tions of equivalent power and effect size were arbitrary. However, sensitivity analyses did not suggest that this 
impacted on estimates of over-sampling or associations therewith. Fourth, we could not determine the specific 
causes of over-sampling, and there could have been reasons beyond the control of the trialists for this. Fifth, we 
were limited in evaluating associations with over-sampling due to the heterogeneous nature of the dataset, low 
power, and potential for autocorrelation. It is important to specifically note that there were insufficient studies 
to be able to fit a multivariable model adequately and therefore the primary analysis violates the assumption 
of independent variables. Autocorrelation could have occurred with two endpoints from a similar trial and/or 
other variables (such as immunotherapy use correlating with year and disease site). Despite these limitations, we 
showed that approximately 1 in 5 endpoints leading to FDA approvals of cancer drugs are over-sampled, which 
could limit real-world effectiveness.

In conclusion, most cancer drug approvals have robust sample size justification and are supported by studies 
in which statistical significance is driven by a greater than anticipated effect size. This is an encouraging result for 
both clinicians and patients. Approximately 1 in 5 endpoints supporting drug approval are likely over-sampled. 
In this setting, benefit observed in RCTs may not translate to the real-world setting. Real-world effectiveness 
studies should be prioritized for these scenarios.

Data availability
The food and drug administration (FDA) has a public database for all drug approvals. This study used the list 
of specific oncology (cancer) / hematologic malignancies approval notifications available from this website: 
https:// www. fda. gov/ drugs/ resou rces- infor mation- appro ved- drugs/ oncol ogy- cancer- hemat ologic- malig nanci 
es- appro val- notifi cati ons.

Received: 28 March 2023; Accepted: 22 December 2023

Table 4.  Sampling characteristics of Over- and Under-sampled Endpoints (n = 91). *P for trend.

Over-sampled studies (n = 19)
Not over-sampled
(n = 72) OR P

Expected power % (mean ± SD) 88.6 ± 5.6 86.9 ± 8.1 1.03 (0.96–1.13) 0.37

Alpha % (mean ± SD) 4.6 ± 5.1 5.1 ± 5.7 0.98 (0.88–1.09) 0.73

Sample size – exp arm (mean ±  SD) 347.6 ± 300.5 384.6 ± 301 0.99 (0.997–1.001) 0.63

m1 control (months) 18.3 ± 41.8 18.1 ± 42.6 1.00 (0.98–1.01) 0.99

Study year 0.86 (0.61–1.21) 0.40*

 2015, n (%) 7 (36.8%) 12 (16.7%)

 2016, n (%) 1 (5.3%) 9 (12.5%)

 2017, n (%) 4 (21.1%) 13 (18.1%)

 2018, n (%) 0 24 (33.3%)

 2019, n (%) 7 (36.8%) 14 (19.4%)

Type of therapy*

 Other, n (%) 2 (10.5%) 24 (33.3%) 1

 Targeted therapy, n (%) 6 (31.6%) 24 (33.3%) 3 (0.55–16.4) 0.2

 Immunotherapy, n (%) 11 (57.9%) 24 (33.3%) 5.5 (1.1–27.4) 0.04

Type of endpoint

 Other, n (%) 10 (52.6%) 48 (66.7%) 1

 OS, n (%) 9 (47.4%) 24 (33.3%) 1.82 (0.65—5.0) 0.26

Disease site

Breast, n (%) 2 (10.5%) 13 (18.1%) 1

 Lung, n (%) 6 (31.6%) 18 (25%) 2.17 (0.37–12.5) 0.39

 Melanoma, n (%) 5 (26.3%) 7 (9.7%) 4.6 (0.71–30.4) 0.11

 Other, n (%) 6 (31.6%) 34 (47.2%) 1.14 (0.2–6.42) 0.88

Blinding

 Double blind, n (%) 7 (36.8%) 43 (59.7%) 1

 Open label, n (%) 12 (63.2%) 29 (40.3%) 2.56 (0.89–7.14) 0.08

Loss to follow-up or withdrawal (mean ±  SD) (n = 70)

24.05 ±  16.93 24.9 ±  33.9 0.99 (0.98–1.01) 0.91

https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
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