
ARTICLE OPEN

Direct identification of ALK and ROS1 fusions in non-small cell
lung cancer from hematoxylin and eosin-stained slides using
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Anaplastic lymphoma kinase (ALK) and ROS oncogene 1 (ROS1) gene fusions are well-established key players in non-small cell lung
cancer (NSCLC). Although their frequency is relatively low, their detection is important for patient care and guides therapeutic
decisions. The accepted methods used for their detection are immunohistochemistry (IHC) and fluorescence in situ hybridization
(FISH) assay, as well as DNA and RNA-based sequencing methodologies. These assays are expensive, time-consuming, and require
technical expertise and specialized equipment as well as biological specimens that are not always available. Here we present an
alternative detection method using a computer vision deep learning approach. An advanced convolutional neural network (CNN)
was used to generate classifier models to detect ALK and ROS1-fusions directly from scanned hematoxylin and eosin (H&E) whole
slide images prepared from NSCLC tumors of patients. A two-step training approach was applied, with an initial unsupervised
training step performed on a pan-cancer sample cohort followed by a semi-supervised fine-tuning step, which supported the
development of a classifier with performances equal to those accepted for diagnostic tests. Validation of the ALK/ROS1 classifier on
a cohort of 72 lung cancer cases who underwent ALK and ROS1-fusion testing at the pathology department at Sheba Medical
Center displayed sensitivities of 100% for both genes (six ALK-positive and two ROS1-positive cases) and specificities of 100% and
98.6% respectively for ALK and ROS1, with only one false-positive result for ROS1-alteration. These results demonstrate the potential
advantages that machine learning solutions may have in the molecular pathology domain, by allowing fast, standardized, accurate,
and robust biomarker detection overcoming many limitations encountered when using current techniques. The integration of such
novel solutions into the routine pathology workflow can support and improve the current clinical pipeline.
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INTRODUCTION
Lung cancer is the leading cause of cancer-related mortality and
accounts for ~1.76 million deaths per year worldwide. Non-small
cell lung cancer (NSCLC) comprises ~85% of all lung cancers and
typically presents at advanced stages. The introduction of
genotype-directed targeted therapies for NSCLC has transformed
the care of patients and dramatically improved survival1.
Several tyrosine kinase inhibitor (TKI) targeted therapies are

currently used for the treatment of lung cancer. The current
College of American Pathologist (CAP)/International Association
for the Study of Lung Cancer (IASLC)/Association for Molecular
Pathology (AMP) guidelines recommend screening advanced-
stage lung cancer patients for targetable alterations including
testing for EGFR, ALK, and ROS12. The National Cancer Center
Network (NCCN) guidelines go even further and recommend
broad molecular profiling using multiplex mutation screening
assays or next-generation sequencing (NGS)3.
Despite rapid progress in the field, many practical issues often

prevent or delay the initiation of targeted therapies. These
obstacles include insufficient tissue for testing, poor quality of

DNA or RNA, sequencing failure (3–10%)4,5, high cost, and high
turnaround times6. Effective approaches to reducing these barriers
are vitally needed to ensure patients’ access to available treatments.
Anaplastic lymphoma kinase (ALK) belongs to the insulin-like

tyrosine kinase (TK) receptor superfamily. Its rearrangements occur
in ~5% of NSCLC cases and are associated with younger age, no or
light smoking history, and characteristic histology such as signet-
ring cells and cribriform pattern7. ROS proto-oncogene 1 (ROS1)
gene belongs to the subfamily of TK insulin receptor genes. Its
rearrangements occur in ~1–2% of patients with NSCLC and are
also commonly found in younger patients, no or light smokers,
and are associated with histological features of adenocarcinoma
and similar characteristics to ALK-fusions such as signet-ring and
cribriform pattern8,9. While there are features associated with
these alterations, none are in high enough association nor specific
enough to be used as markers for fusions. Thus, all NSCLC patients
are currently tested using conventional laboratory tests such as
IHC, FISH and NGS as discussed in the manuscript. Both ALK and
ROS1 rearrangements result in fusion proteins with constitutive TK
activity. A variety of genes have been identified as their fusion
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partners, most frequently EML4 for ALK and CD74 for ROS110. ALK
fusions can effectively be blocked by TKIs, including alectinib,
lorlatinib, brigatinib, crizotinib, and ceritinib3. Since ALK and ROS1
are closely related kinases, many of these TKIs are also used for the
treatment of ROS1-positive NSCLC patients11.
The initial gold standard method for detecting ALK and ROS1

rearrangements was fluorescence in situ hybridization (FISH).
Immunohistochemistry (IHC) was later added as an accepted
alternative to FISH for ALK and as a screening method for ROS1,
requiring subsequent confirmation of positive cases by another
molecular or cytogenetic method12,13. Additional methods for
identification of ALK and ROS1-rearrangements include reverse
transcription PCR (RT-PCR) and NGS14. Each of these methods has its
advantages and disadvantages, and the concordance between
them varies between 70.7–98% depending on the gene and the
assays used2,15. FISH, while still the gold standard, is expensive, time-
consuming, and requires technical expertise and specialized
equipment. Moreover, both false-negative and -positive cases of
ALK and ROS1- rearrangements have been documented16,17. The use
of IHC to detect ALK rearrangements has reported sensitivities and
specificities ranging from 95% to 100%2. However, several studies
have described discrepancies between FISH and IHC methods, with
<90% concordance for ALK and only 80% concordance reported for
ROS1 testing15,18. The challenges facing both NGS and RT-PCR
methodologies include a high technical failure rate (as much as
10–30% for NGS)19, partly due to the poor DNA/RNA quality in some
formalin-fixed paraffin-embedded (FFPE) samples, as well as other
limitations such as tissue scarcity and high cost, which hinder the
widespread clinical implementation of these methods.
Deep learning (DL) is a subset of Artificial intelligence (AI) that

uses machine learning (ML) algorithms in artificial neural networks
to detect complicated patterns in large datasets. Computer vision is
a field of AI that trains computers to interpret and understand the
visual world using digital images. DL has revolutionized computer
vision and has become a standard technique for image classification
and is increasingly used to improve clinical practice across the
medical imaging domain in a wide range of applications such as CT,
MRI and mammography20. The advances in digitalization of tissue
slides, alongside the evolving utilization of DL in the biomedical
field, together with the increasing demand for molecular profiling in
cancer, have led to the recognition of the potential for DL use in
cancer classification and prediction of biomarker status. Oncogenic
driver mutations are most probably reflected in an altered
morphological pattern of the cancer cells and/or tissue. While not
visible to the human eye, these changes can be detected by vision-
based algorithms and are distinctive to each specific alteration.
Indeed, there is an increasing number of publications describing the
application of DL in the detection of molecular changes in
histological slide images. Examples include, among others, predic-
tion of PD-L1 (n= 82 test cases)21, EGFR, KRAS, and TP53 (n= 59 test
cases)22 alterations in NSCLC, MSI in colorectal cancer (n= 479 test
cases)23, and ER/PR/HER2 status in breast cancer (n= 2611–2714
test cases)24. While these studies demonstrate the potential of AI in
the molecular diagnosis of cancer, the results are not yet robust
enough for the technique to replace the currently used genetic and
molecular tests. To prove the robustness of the method, further
studies should be performed on larger and more diverse clinical
cohorts in order to demonstrate comparable performance to the
standard of care.
Here we present the use of an AI-based solution to detect

genomic rearrangements in ALK and ROS1 from automatically
scanned hematoxylin and eosin (H&E) stained lung tumor slides.
Our work highlights the advantages of this AI solution, which
provides a rapid, cost-effective, and accurate testing alternative.
Integration of such solutions within the clinical practice can support
pathologist workflow and assist oncologists to tailor the best
treatment for optimal management of patient care, bridging the
current gap towards true implementation of precision medicine.

MATERIALS AND METHODS
Sample collection
Digitized images of H&E slides from advanced-stage NSCLC patients were
collected from the Pathology Department of Sheba Medical Center
(according to IRB 7451-20-SMC). All images were scanned at 40×
magnification using the Philips IntelliSite Ultra-Fast scanner (Philips Digital
Pathology Solutions, Best, Netherlands) and converted into TIFF format.

Data
A total of 234 NSCLC cases tested for ALK and ROS1 rearrangements at
Sheba Medical Center between 2012–2021 were selected for the study.
These were randomly divided into training (N= 162) and validation
(N= 72) sets. ALK and ROS1 status was determined based on IHC, FISH, or
NGS. Approximately 80% of patients in the validation set were tested by at
least two testing methods (Supplementary Table S1). The training set
included H&E scanned images as well as ALK and ROS1 status annotations,
while the validation set included images only.

Fixation and H&E staining
Tissues were processed according to standard pathological procedures.
Tissues were fixed in buffered formalin, embedded in paraffin, and
sectioned using a microtome. Sections were then placed on histologic
slides and stained using H&E.

ALK (D5F3) and ROS1 immunostaining
For the immunohistochemical studies, 4μm wide sections were prepared
from FFPE blocks and positive control was added at the edge of the slides.
IHC staining was performed using ALK (clone D5F3, V790-4794, Ventana
Medical Systems Inc., Oro Valley, AZ, Oro Valley, AZ, USA) and ROS1 (1:50;
3287S, Cell Signaling, Danvers, MA, USA) antibodies with the OptiView
Amplification Kit (Ventana Medical Systems Inc.) in conjunction with the
OptiView detection kit (Ventana Medical Systems Inc.) on a Benchmark
Ultra staining module (Ventana Medical Systems Inc.). All cases were tested
by a single and dedicated thoracic pathologist. As indicated by the
International Association for the Study of Lung Cancer (IASLC) intensity
scoring was as follows: strong staining (3+) is clearly visible using 2× or 4×
objective lens, moderate staining (2+) requires a 10× or 20× objective lens
and weak (1+) cannot be seen until a 40× objective is used. Cases with a
diffuse staining and (3+) score were interpreted as positive.

ALK and ROS1 molecular analysis
For ALK and ROS1 fusion analysis, DNA and RNA were extracted from paraffin-
embedded sections using the KingFisher kit according to the manufacturer’s
instructions. The concentration of extracted DNA and RNA was measured
using NanoDrop 2000c Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) following DNA measurement using a Qubit Fluorometer
(Thermo Fisher Scientific) and brought to a concentration of 25 ng/μl.
cDNA was synthesized from RNA using the Ion AmpliSeq™ HiFi Mix

(Thermo Fisher Scientific). Sequencing was performed on the Ion Torrent
System (Thermo Fisher Scientific).

FISH analysis
ALK and ROS1 rearrangement detection was performed using Vysis LSI ALK
(2p23) Dual Color Break Apart Rearrangement FISH Probe (Abbott
Molecular, Abbott Park, IL, USA) and Zytolight SPEC ROS1 Dual color
Breakpart Probe (ZytoVision GmbH, Bremerhaven, Germany). Assays were
performed as described previously25.

Algorithm development and validation
To achieve high model accuracies, the development of the DL model was
performed in two steps: (1) unsupervised learning training to produce
initial weights for the neural network architecture; and (2) algorithm fine-
tuning using semi-supervised learning. Following model generation, a
retrospective blinded validation was performed (Fig. 1).

Unsupervised learning training. 21,299 H&E-stained, FFPE pan-cancer,
untagged whole slide images (WSI) were used from Imagene-AI LTD.’s
internal database. All slides were de-identified and scanned at 40×
magnification (0.23–0.27 μm per pixel resolution). No additional data was
linked to the images. Data augmentation was applied to images using
image pre-processing algorithms and generative adversarial networks
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(GANs). For this step, convolutional neural network (CNN) training was
performed with an average of 87,000 image tiles (1536 × 1536 pixel) per
WSI extracted using an on-the-fly image tile selection method (imple-
mented to achieve random sampling of regions without the need for a
priori creation of patches) fed through the network.

Algorithm fine-tuning. 162 H&E WSI cases of NSCLC biopsies were
retrieved from Sheba Medical Center’s archives and scanned at 40×
magnification (0.25 μm per pixel resolution) using a Philips Ultra-Fast
Scanner (Philips Digital Pathology Solutions). The training set included 15
ALK- and 7 ROS1-positive cases identified by gold standard testing (IHC,
FISH and/or NGS). Data augmentation was applied on images using image
pre-processing algorithms and GANs. To create the ALK/ROS1 classifier
algorithm, fine-tuning of the initial neural network algorithm developed in
the previous step was conducted using semi-supervised learning and a
five-fold cross-validation scheme. First, DL algorithms were trained to
detect regions of interest (ROIs) in the WSIs (Supplementary Fig. S1). Next,
model training was conducted on image tiles (384 × 384 pixels) extracted
from the ROI. For image tile extraction an on-the-fly image tile sampling
method was used, with an average of 1 M tiles per WSI generated and used
for the training. In a few instances, when a couple of slides from the same
cases were available, the first serial slide was used. Retrospectively, we
tested all the consecutive slides, with 100% concordance.

Algorithm validation. For the evaluation of the ALK/ROS1 classifier algorithm
accuracy, NSCLC biopsies processed at Sheba Medical Center were used. A
cohort of 72 de-identified WSI retrieved from Sheba Medical Center’s archives
was used as a double-blinded set. The algorithm status predictions were
compared to the ground truth diagnosis, and specificity and sensitivity were
calculated to assess the AI-based model’s performance.

Inference of molecular status
Images were uploaded into the AI solution powered by Imagene-AI LTD. in
a local station as de-identified H&E scanned images, without additional
clinical information.
A categorical prediction was made by the ALK/ROS1 classifier model.

RESULTS
ALK and ROS1 detection by conventional methods
In this study, we compared the performance of ALK and ROS1
conventional testing methods to that of the AI solution. IHC, FISH
and NGS were used as gold standard methods for the analysis of
these genes’ rearrangements. In total, 53 of the 72 cases in our
cohort were subjected to NGS testing, 14 underwent FISH testing
for ALK, and 7 for ROS1 (Supplementary Table S1). ALK IHC was
performed on 70 cases and ROS1 IHC on 65 cases. Six out of 72
cases were detected as ALK-positive and two out of 68 cases as
ROS1-positive. Five of the six ALK-positive cases were detected as
positive by FISH, with one confirmed by NGS. The sixth case was
identified by a combination of IHC and NGS. The two ROS1-
positive cases were detected by FISH analysis.

Validation of the ALK/ROS1 classifier
The ALK/ROS1 classifier algorithm was developed as described in
the methods. Briefly, models were developed and fine-tuned on a
training set which included H&E scanned images together with
ALK and ROS1 status annotations only. To validate the model, a
retrospective cohort of 72 samples was tested with the AI solution
using de-identified images data only (a representative heatmap of
a patch for each alteration is presented in Supplementary Fig. S2).
We then compared the results of the algorithm predictions with
the results of the conventional methods described above. The
model correctly inferred the status of all cases except for a single
ROS1 false positive. This sample was analyzed by all traditional
methods (IHC, FISH, and NGS), which did not identify any ROS1
alteration. Altogether, the model achieved a sensitivity of 100% for
both genes and specificity of 100% and 98.57% for ALK and ROS1
respectively (Table 1). The negative predictive value (NPV) for ALK
and ROS1 was 1, and the positive predictive value (PPV) was 1 for
ALK-fusion and 0.505 for ROS1-fusion.

Fig. 1 AI algorithm development and validation. A A two-step approach was used to generate an ALK/ROS1 classifier; first, initial weights
were generated from WSIs from Imagene-AI’s internal database, using an unsupervised learning algorithm. This was followed by a fine-tuning
step performed using a semi-supervised algorithm, specifically for the tested biomarkers. B A retrospective set of de-identified scanned H&E
images of 72 NSCLC samples were collected and analyzed by the ALK/ROS1 classifier. Results of the AI solution and the routine practice (IHC,
NGS, and/or FISH) were compared for performance assessment. FFPE Formalin-Fixed Paraffin-Embedded, WSI whole image slide.
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Traditionally, AI model performance is measured using AUC (Area
Under the ROC Curve) values. However, here we chose to evaluate
our model’s performance using the same characteristics as those
employed to evaluate the assays used in clinical practice. The clinical
performance of such assays (e.g., sequencing, IHC and FISH) is
described by their sensitivity, specificity, and concordance with the
current gold-standard tests. We thus reported the results accord-
ingly; however, in accordance with the high performances, the AUC
values were high as well, 1 for ALK-fusion and 0.986 for ROS1-fusion.
Of note, approximately 7% of samples analyzed by IHC (N= 9)

were reported as “equivocal” and four samples tested by NGS
failed (7.3%) due to technical issues such as poor DNA/RNA quality
and insufficient diagnostic material. For diagnosis, these samples
required additional testing with an alternative method. In contrast,
all the tested samples in the cohort (including the aforementioned
samples) were successfully analyzed by the AI pipeline.

Method comparison
To examine the performance of the traditional methods and the AI
solution, we compared the outcomes of the various methods.
When comparing the conventional methods, two samples had
conflicting results, negative by IHC and positive by FISH analysis.
These cases were given an official result of ALK-positive according
to the FISH analysis, which was in concordance with the ALK/ROS1
classifier calling.
Comparison of the AI solution with the routine methods

identified only a single case with conflicting results. In this case,
IHC, FISH, and NGS analysis did not detect any rearrangement,
while the ALK/ROS1 classifier reported this case as ROS1-positive.

DISCUSSION
In this study, we used an AI-based solution to detect ALK and ROS1
fusions in NSCLC cancer patients. To the best of our knowledge,
this is the first study that has successfully applied an AI-solution on
clinical samples to identify ALK and ROS1 rearrangements directly
from H&E pathological WSI of lung cancer patients. Despite the
low frequency of alterations in these oncogenes (5 and 1–2% of
NSCLC cases for ALK and ROS1, respectively), their detection is of
high importance, as it determines clinical treatment11. Both IHC
and FISH were initially used to detect these rearrangements.
However, advances in technologies in parallel with the continued
increase in the number of actionable biomarkers, have led to the
incorporation of NGS panels in clinical diagnostics. Unfortunately,
all these assays have limitations, and testing rates are variable in
the clinical practice, with cost, quality standards, and access being
substantial barriers6,19. Furthermore, the current ASCO/CAP/IASLC/
AMP guidelines’ recommendations refer to a turnaround time of
ten working days between sample receipt and reporting of the
molecular test26, yet in practice most institutes have a much
longer turnaround time of several weeks from the pathology
review to the final molecular report27.
One of the major challenges in lung cancer screening is the limited

amount of patient specimens. In 10–20% of cases tissue is insufficient
for comprehensive sequencing or analysis by alternative methods28.
This will most probably be less of a challenge to AI classifiers, as
reflected in this study, where, unlike conventional methods, all the

samples in the cohort received a biomarker status calling. The
median number of patches per slide that went through the AI
analysis was 266 (ranged: 4–7055) per case. The ability to infer
biomarker status from as little as four patches per slide is of major
importance in this context and implies that AI-based solutions may
be less sensitive to limiting amounts of biopsied tissues.
Routine molecular testing in lung cancer presents several

challenges, some of which we faced in our cohort. The first, is the
commonly encountered technical failure of NGS reactions. In our
validation set, 5.5% of samples that underwent sequencing failed.
Secondly, IHC screening can sometimes have ambiguous results.
Approximately 7% of our validation set was “equivocal” in the
initial IHC screening, requiring additional tests. Thirdly, the use of
multiple tests (FISH, NGS, and IHC) may sometimes result in
conflicting interpretations. Indeed, relatively high levels of
discordance between tests have been reported2,15,18. In our
validation set, six of the eight positive cases were tested by at least
two methods. Of these, two cases had conflicting results (negative
in IHC and positive in the FISH assay). Two additional cases were
equivocal in IHC and positive according to the FISH analysis (one
for ALK and one for ROS1). The remaining two cases showed
concordance between methods, representing only a third of the
positive cases. This issue is of major importance, especially in
positive cases, where identification of ALK or ROS1 fusions dictates
targeted treatment regimens.
Of the 140 tests performed using the AI solution (72 for ALK and

68 for ROS1), only a single case showed discordance with the final
pathology report, demonstrating high accuracy of the AI solution.
Further testing will be required to ascertain the robustness of this
assay, and to see whether it will maintain its accuracy in real-world
scenarios with larger datasets and when implemented in
additional clinical settings and medical centers. Nonetheless, the
diagnostic accuracy of the AI solution presented here, which was
at least comparable if not even higher than that of the gold-
standard tests, suggests that AI-based molecular diagnostic
solutions may be appropriate as clinical diagnostic tools in the
near future.
The technology used here examined the existence of ALK or

ROS1 fusions in NSCLC, irrespective of their partnering genes. This
is in contrast to NGS for example, which can capture the identity
of the fusion partner as well. Current targeted treatments for ALK
and ROS1 rearrangement disregard the partnering genes’ identity
and there is limited information regarding any difference in
response between them7. Thus, we generated a model that
detects ALK and ROS1 fusions, regardless of their precise partner.
However, each partner can result in a fusion product with slightly
different expression and/or activity. Such differences might be
identifiable by AI models if deemed to be required, but this will
necessitate a significantly larger dataset.
Integration of an AI solution within routine clinical pathological

workflow holds great advantages. Figure 2 illustrates the
integration of the AI solution directly after the scanning of the
H&E slide enabling the biomarker status calling within minutes.
The suggested workflow can expedite the time that elapses
between biopsy and commencing targeted therapy by assisting
pathologists in flagging samples that potentially carry alterations
in real-time to prioritize their examination. Moreover, after

Table 1. Summary of ALK/ROS1 classifier results.

Conventional methods AI-based model

N # Positive # Negative TP TN FP FN Sensitivity Specificity Concordance

ALK 72 6 66 6 66 0 0 100% 100% 100%

ROS1 68 2 66 2 65 1 0 100% 98.48% 98.53%

TP true positive, TN true negative, FP false positive, FN false negative.
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completion of the conventional testing, samples that have
discordance in their biomarker status between the routine tests
and the AI solution can undergo additional confirmational tests
before reporting back to the patient. Hence, the AI solution can
improve biomarker detection accuracy and assist or even change
patients’ testing prioritization.
Applying AI in clinical diagnosis can offer standardization and

reproducibility, compared to current assays that suffer from
subjectivity and wide variation between different labs and kits.
Integration of AI medical software can also expand the availability of
biomarker analysis in oncology as they do not require the expertise
and specialized equipment that traditional assays demand, while
preserving clinical standards of test accuracy. However, as opposed
to molecular and biochemical assays that measure specific and
known parameters, the outcome of the AI solution inference is
based upon factors that are complex, obscure and undefinable. As
technology progresses and the use in clinical practice is extended,
new features will need to be developed to elucidate the
morphological patterns used by the algorithm for analysis.
Advances in oncology and the gradual adoption of digitization

of WSIs have paved the way for the incorporation of AI tools in
digital pathology. This approach can improve our ability to tackle
complex processes involved in cancer development. The concept
of inferring molecular alterations directly from the morphometric
phenotypes of tissue specimens presents a significant advantage
compared to other analytical tools. This highlights a major
advantage of AI-based methodology, such as the convolutional
neural network (CNN) used here, which learns to identify patterns
associated with the inferred alteration without the need for any
prior annotations (such as histopathological features). By identify-
ing different alterations that affect the cells and/or tissue
morphology, DL algorithms can predict which tumors carry
clinically significant changes without requiring a priori knowledge

regarding the nature of the alteration (i.e., fusion partner,
breakpoints, etc.). This can be applied to a wide range of
biomarkers associated with different conditions such as mutations,
protein expression, signatures, additional structural variants
and more.
The molecular and IHC methods described in this study to

diagnose ALK and ROS1 alterations are used in most countries for
advanced cases only. Among other reasons, cost and the overload
of molecular exams since their introduction to oncology
contribute to the limited number of patient samples ultimately
sent for testing. Those eligible for molecular testing often wait
several, excruciating weeks for results, time that can be crucial in
advanced cancer stages. An AI-based solution such as that
validated in this study, is a fast application, requiring no additional
tissue, and can be widely implemented potentially for all newly
diagnosed NSCLC patients regardless of stage. Furthermore,
automatization of such analysis can reduce potential human and
technical errors. Moreover, utilizing a single histological slide
image for assessment of multiple biomarkers can align with the
increasing decline in bio-specimen availability for molecular
testing. Broad implementation can be relatively easily applied
and while this may pose new clinical dilemmas, it should
ultimately result in benefit for the patients.
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