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Deep learning has enabled the automation of complex medi-
cal image interpretation tasks, such as disease diagnosis, 
often matching or exceeding the performance of medical 

experts1–5. However, despite these meaningful improvements in 
diagnostic efficiency, automated deep learning models often require 
large labelled datasets during training6. These large-scale labelling 
efforts can be expensive and time consuming, often requiring exten-
sive domain knowledge or technical expertise to implement for a 
particular medical task7,8.

Several approaches such as model pre-training and self- 
supervision have been proposed to decrease model reliance on 
large labelled datasets9–12. Although self-supervised pre-training 
approaches have been shown to increase label efficiency across sev-
eral medical tasks, they still require a supervised fine-tuning step 
after pre-training that requires manually labelled data for the model 
to predict relevant pathologies13,14. As a result, these approaches are 
only able to predict diseases that were explicitly annotated in the 
dataset, and are unable to predict pathologies that were not explic-
itly annotated for training. Thus, for the model to predict a certain 
pathology with reasonable performance, it must be provided with 
a substantial number of expert-labelled training examples for that 
pathology during training. This process of obtaining high-quality 
annotations of certain pathologies is often costly and time consum-
ing, often resulting in large-scale inefficiencies in clinical artificial 
intelligence workflows.

In this Article, to address these limitations, we applied a 
machine-learning paradigm where a model can classify sam-
ples during test time that were not explicitly annotated dur-
ing training15,16. We present a zero-shot method using a fully 
self-supervised-learning procedure that does not require explicit 
manual or annotated labels for chest X-ray image interpretation to 
create a model with high performance for the multi-label classifica-
tion of chest X-ray images. The method, which we call CheXzero, 
uses contrastive learning, a type of self-supervised learning, with 
image–text pairs to learn a representation that enables zero-shot 
multi-label classification. The method can also be considered as a 

form of natural-language supervision or unsupervised learning15. In 
contrast to previous self-supervised approaches, the method does 
not require fine-tuning using labelled data. Hence, unlike previous 
self-supervised approaches, the method requires no labels except for 
testing, and is able to accurately identify pathologies that were not 
explicitly annotated. To develop the method, we leveraged the fact 
that radiology images are naturally labelled through corresponding 
clinical reports and that these reports can offer a natural source of 
supervision. We show that the performance of the self-supervised 
method is comparable to the performance of both expert radiolo-
gists and fully supervised methods on unseen pathologies in two 
independent test datasets collected from two different countries. 
We also show that the self-supervised method outperforms previous 
label-efficient approaches on chest X-ray pathology classification, 
suggesting that explicit labels are not required to perform well on 
medical-image-interpretation tasks when corresponding reports are 
available for training. Using chest X-rays as a driving example, the 
self-supervised method exemplifies the potential of deep-learning 
methods for learning a broad range of medical-image-interpretation 
tasks from large amounts of unlabelled data, thereby decreasing 
inefficiencies in medical machine-learning workflows that result 
from large-scale labelling efforts.

Results
We leverage zero-shot learning to classify pathologies in chest 
X-rays without training on explicit labels (Fig. 1). To do so, we took 
image–text pairs of chest X-rays and radiology reports, and the 
model learned to predict which chest X-ray corresponds to which 
radiology report. We trained the model with 377,110 pairs of a chest 
X-ray image and the corresponding raw radiology report from the 
MIMIC-CXR dataset17.

The performance of the self-supervised model is compa-
rable to that of three benchmark radiologists classifying the five 
CheXpert competition pathologies evaluated on the CheXpert test 
dataset. On the Matthews correlation coefficient (MCC) metric, 
there is no statistically significant difference (model − radiologist  
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performance = −0.005; 95% confidence interval (CI) −0.043, 0.034) 
between the performance of the model (0.523; 95% CI 0.486, 0.561) 
and that of the radiologists (0.530; 95% CI 0.499, 0.558) averaged 
over the pathologies. On individual pathologies, the model’s MCC 
performance is higher, but not statistically significantly, compared 
with radiologists on consolidation (0.018; 95% CI −0.090, 0.123), 
cardiomegaly (0.058; 95% CI −0.016, 0.133) and oedema (0.015; 
95% CI −0.070, 0.099). The model’s MCC performance is lower, 
but not statistically significantly, compared with radiologists on 
atelectasis (−0.078; 95% CI −0.154, 0.000) and pleural effusion 
(−0.040; 95% CI −0.096, 0.013). On the F1 metric, there is simi-
larly no statistically significant difference (model − radiologist per-
formance = −0.009; 95% CI −0.038, 0.018) between the mean F1 
performance of the model (0.606; 95% CI 0.571, 0.638) and that 
of the radiologists (0.619; 95% CI 0.585, 0.642) averaged over the 
pathologies. On individual pathologies, we find that the model F1 
performance is significantly higher than that of radiologists on car-
diomegaly (model − radiologist performance = 0.065; 95% CI 0.013, 
0.115). We find that the model’s F1 performance is significantly 
lower than that of radiologists on atelectasis (model − radiologist 
performance = −0.045; 95% CI −0.090, −0.001). There are no statis-
tically significant differences in F1 for consolidation (model − radi-
ologist performance = −0.050; 95% CI −0.146, 0.036), oedema 
(model − radiologist performance = 0.018; 95% CI −0.053, 0.086) 
and pleural effusion (model − radiologist performance = −0.034; 
95% CI −0.078, 0.008). Figure 2 shows the receiver operating 
characteristic (ROC) curve performance of the model and the 
radiologist operating points. Table 1 lists the mean performance 
of the radiologists and the model, and their associated difference  
with 95% CI.

The results show that the self-supervised model outperforms 
three previous label-efficient methods (MoCo-CXR, MedAug and 
ConVIRT) on the CheXpert dataset, using no explicit labels during 
training. MoCo-CXR and MedAug use self-supervision using only 
chest X-ray images. Specifically, MoCo-CXR modifies the contras-
tive learning framework Momentum Contrast (MoCo) for chest 
X-ray interpretation. MedAug builds on MoCo pre-training by 
using patient metadata to select positive chest X-ray image pairs for 
image–image contrastive pre-training. ConVIRT uses chest X-rays 
along with associated report data to conduct self-supervision. 
Specifically, ConVIRT jointly trains a ResNet-50 and a Transformer 
by leveraging randomly sampled text from paired chest X-ray and 
radiology-report data to learn visual representations. Unlike our 
approach, these previous works require a small fraction of labelled 

data to enable pathology classification. The self-supervised model’s 
mean area under the curve (AUC) of 0.889 outperforms ConVIRT 
trained on 1% of the labelled data (AUC 0.870), ConVIRT trained 
on 10% of the labelled data (AUC 0.881), ConVIRT trained on 
100% of the labelled data (AUC 0.881), MedAug trained on 1% 
of the labelled data (AUC 0.810), MoCo-CXR trained on 1% of 
the labelled data (AUC 0.802), MoCo-CXR trained on 10% of the 
labelled data (AUC 0.850) and MoCo-CXR trained on 100% of the 
labelled data (AUC 0.884) (Table 2). Additionally, on the task of 
classifying plural effusion, the self-supervised model’s mean AUC 
of 0.932 outperforms MoCo-CXR trained on 0.1% of the labelled 
data (AUC 0.813) and MoCo-CXR trained on 1% of the labelled 
data (AUC 0.885), MoCo-CXR trained on 10% of the labelled data 
(AUC 0.920) and MedAug trained on 1% of the labelled data (AUC 
0.906) (Table 3)13,18. However, the self-supervised model achieves 
these results without the use of any labels or fine-tuning, thus show-
ing the capability of the model on a zero-shot task.

The flexibility of zero-shot learning enables the self-supervised 
model to perform auxiliary tasks related to the content found in 
radiology reports. We applied the self-supervised model to tasks 
including differential diagnosis using the PadChest dataset, patient 
sex prediction and chest radiograph projection (anteroposterior 
versus posteroanterior) prediction19.

On the task of differential diagnosis on the PadChest dataset, we 
find that the model achieves an AUC of at least 0.900 on 6 findings 
and at least 0.700 on 38 findings out of 57 radiographic findings 
where n > 50 in the PadChest test dataset (n = 39,053). We obtain 
high performance on the CheXpert competition pathologies such as 
pleural effusion, oedema, atelectasis, consolidation and cardiomeg-
aly, with AUCs of 0.958 (95% CI 0.953, 0.963) for pleural effusion, 
0.961 (95% CI 0.946, 0.974) for oedema, 0.798 (95% CI 0.780, 0.817) 
for atelectasis, 0.871 (95% CI 0.851, 0.888) for consolidation and 
0.898 (95% CI 0.894, 0.903) for cardiomegaly (Fig. 3). Compared 
with the performance of the CheXNet model on the PadChest data-
set, we observe that the self-supervised model outperformed their 
approach on three out of the eight selected pathologies, atelectasis, 
consolidation and oedema, despite using 0% of the labels as com-
pared with 100% in the CheXNet study (Table 4)20,21.

In addition to the ensembled self-supervised model, we trained a 
single model using full radiology reports instead of only the impres-
sions section in order to evaluate zero-shot performance on auxil-
iary tasks such as the prediction of sex. The model trained with full 
radiology reports achieved an AUC of 0.936 (95% CI 0.910, 0.959) 
on sex prediction using the prompts ‘the patient’s sex is male’ and 
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Fig. 1 | The self-supervised model classifies pathologies without training on any labelled samples. a, Training pipeline. The model learns features from 
raw radiology reports, which act as a natural source of supervision. b, Prediction of pathologies in a chest X-ray image. For each pathology, we generated a 
positive and negative prompt (such as ‘consolidation’ versus ‘no consolidation’). By comparing the model output for the positive and negative prompts, the 
self-supervised method computes a probability score for the pathology, and this can be used to classify its presence in the chest X-ray image.
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‘the patient’s sex is female’. Additionally, the model achieved an AUC 
of 0.799 (95% CI 0.7595, 0.835) on the task of predicting whether 
a chest X-ray is anteroposterior or posteroanterior. To make these 
predictions on an auxiliary task, the model requires only the 
development of prompts to use for the task; no training or labels  
are needed.

discussion
The purpose of this work was to develop and demonstrate perfor-
mance of a zero-shot classification method for medical imaging 
without training on any explicit manual or annotated labels. The 
results show that, with no explicit labels, the zero-shot method is 
comparable to the performance of both expert radiologists and fully 
supervised methods on pathologies that were not explicitly labelled 
during training. Specifically, the self-supervised method achieved 
an AUC −0.042 points below that of the highest-performing fully 

supervised model on the CheXpert competition. We also show 
that the performance of the self-supervised model is comparable 
to that of radiologists, as there is no statistically significant differ-
ence between the performance of the model and the performance of 
the radiologists on the average MCC and F1 over the five CheXpert 
competition pathologies. We also show that the self-supervised 
model outperforms previous label-efficient approaches on chest 
X-ray pathology classification, suggesting that explicit labels are 
not required to perform well on medical-image-interpretation tasks 
when corresponding reports are available for training. We achieved 
these results using a deep-learning model that learns chest X-ray 
image features using corresponding clinically available radiology 
reports as a natural signal. In addition, we show that ensembling 
over the top-ten highest-performing model checkpoints on the vali-
dation dataset can improve the performance of the model (Table 5). 
We externally validated the self-supervised model, trained on the 
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Fig. 2 | Comparisons of mCC and F1 scores and of RoC curves, for the self-supervised model and board-certified radiologists. a, F1 scores of the 
self-supervised model as compared with three board-certified radiologists on the CheXpert test dataset for the five CheXpert competition conditions. 
The model’s F1 score is significantly higher than that of radiologists on pleural effusion, significantly lower on atelectasis and not statistically significantly 
different on cardiomegaly, consolidation and oedema. b, Comparison of the MCC of the self-supervised model against three board-certified radiologists on 
the CheXpert test dataset. The MCC of the model is not significantly different than that of radiologists on all five pathologies. a,b, Green plots indicate the 
performance of the three board-certified radiologists while blue plots indicate the performance of the self-supervised model. c, Comparison of the ROC 
curve of the self-supervised model to benchmark radiologists against the test-set ground truth. The model outperforms the radiologists when the ROC 
curve lies above the radiologists’ operating points. The dotted lines on the ROC curves represent the baseline performance of a classifier that is no better 
than random guessing.
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MIMIC-CXR dataset, on two independent datasets, the CheXpert 
test dataset and the human-annotated subset of the PadChest 
dataset.

Previous efforts for learning with small amounts of labelled data 
have shown meaningful improvements in performance using fewer 
labels, but still require the availability of some annotations that may 

not be trivial to obtain. For instance, recent work has achieved a 
mean AUC of 0.870 on the CheXpert test dataset using only 1% 
of the labelled data14. However, labelling 1% of a large dataset 
can still be expensive. For example, 1% of the labelled data in the 
ChestX-ray14, PadChest and CheXpert datasets amounts to 1,000 
labels, 1,609 labels and 2,243 labels, respectively8,19. Additionally, 
these methods can only predict pathologies that were labelled dur-
ing training, thereby restricting their applicability to other chest 
pathologies or classification tasks. Therefore, previous label-efficient 
learning methods may not be as potent in settings where access to 
a diverse set of high-quality annotations is limited. In contrast, the 
self-supervised method that we report in this work achieves a mean 
AUC of 0.889 on the CheXpert test dataset without requiring any 
explicit annotations (Tables 1 and 2). Recent work has leveraged 
radiology reports for zero-shot chest X-ray classification; however, 
it is applicable only to chest X-ray images with only one pathology, 
limiting the practicality of the method since multiple pathologies 
are often present in real-world settings22. Additionally, recent work 
has shown that a zero-shot learning approach can predict unseen 
chest X-ray pathologies, but the method still requires explicit labels 

Table 1 | Performance of the self-supervised model, CheXzero, on the five CheXpert competition pathologies in the CheXpert 
dataset, compared with the performance of three board-certified radiologists

Average Atelectasis Cardiomegaly Consolidation oedema Pleural effusion

AuC

CheXzero 0.889 0.816 (0.777, 
0.852)

0.906 (0.876, 
0.930)

0.892 (0.823, 
0.947)

0.897 (0.864, 
0.928)

0.932 (0.906, 
0.955)

mCC

Radiologists (mean) 0.530 (0.499, 
0.558)

0.548 (0.496, 
0.606)

0.566 (0.511, 
0.620)

0.359 (0.262, 
0.444)

0.507 (0.431, 
0.57)

0.548 (0.496, 
0.606)

CheXzero 0.523 (0.486, 
0.561)

0.468 (0.396, 
0.541)

0.625 (0.553, 0.7) 0.374 (0.29, 0.458) 0.520 (0.424, 
0.616)

0.628 (0.558, 
0.696)

Difference 
(CheXzero − radiologist)

−0.005 (−0.043, 
0.034)

−0.078 (−0.154, 
0.000)

0.058 (−0.016, 
0.133)

0.018 (−0.090, 
0.123)

0.015 (−0.070, 
0.099)

−0.04 (−0.096, 
0.013)

F1

Radiologists (mean) 0.619 (0.585, 
0.642)

0.692 (0.646, 
0.731)

0.678 (0.634, 
0.718)

0.385 (0.28, 0.485 0.583 (0.511, 
0.645)

0.737 (0.689, 
0.783)

CheXzero 0.606 (0.571, 
0.638)

0.646 (0.593, 
0.700)

0.743 (0.685, 
0.793)

0.333 (0.239, 
0.424)

0.602 (0.517, 
0.678)

0.704 (0.634, 
0.764)

Difference 
(CheXzero − radiologist)

−0.009 (−0.038, 
0.018)

−0.045 (−0.090, 
−0.001)

0.065 (0.013, 0.115) −0.05 (−0.146, 
0.036)

0.018 (–0.053, 
0.086

−0.034 (−0.078, 
0.008)

There is no statistically significant difference between the mean performance of the model and that of the radiologists averaged over the pathologies for MCC and F1. Numbers within parentheses indicate 
95% CI.

Table 2 | Comparison of the self-supervised method, CheXzero, 
with supervised and self-supervised baseline models on the 
CheXpert test dataset

model mean AuC

Supervised DAM 0.931

DenseNet-121 0.902

Self-supervised GLoRIAa 0.534

ConVIRT- ResNet-50—1% 0.870

ConVIRT- ResNet-50—10% 0.881

ConVIRT-ResNet-50—100% 0.881

ConVIRT-ViT—1%b 0.725

ConVIRT-ViT—10%b 0.809

ConVIRT-ViT—100%b 0.856

MedAug—1% 0.810

MoCo-CXR—1% 0.802

MoCo-CXR—10% 0.850

MoCo-CXR—100% 0.884

CheXzero—0% 0.889

Percentages refer to percentage of labels used in the training data. The self-supervised method 
is only −0.042 points below the highest-performing fully supervised model on the CheXpert 
competition, Deep AUC Maximization (DAM)31, and outperforms the self-supervised baselines 
ConVIRT, MedAug46 and MoCo-CXR18. The mean is over the five selected clinically relevant 
pathologies in the CheXpert dataset. aGLoRIA results were obtained by loading the pre-trained 
GLoRIA model and performing zero-shot evaluation on the full multi-label CheXpert test dataset. 
bConVIRT-ViT results were obtained by replacing the ResNet-50 architecture with a Vision 
Transformer before applying ConVIRT.

Table 3 | Comparison of the self-supervised ensemble method, 
CheXzero, with self-supervised baseline models on the 
CheXpert dataset for the pathology pleural effusion

model Label fraction mean AuC

MoCo-CXR 0.1% 0.813 (0.779, 0.842)

MoCo-CXR 1% 0.885 (0.856, 0.909)

MoCo-CXR 10% 0.920 (0.896, 0.941)

MoCo-CXR 100% 0.953 (0.935, 0.969)

MedAug 1% 0.906 (0.891, 0.921)

CheXzero 0% 0.932 (0.906, 0.955)

The percentages refer to the percentage of labels used in the training data. The self-supervised 
ensemble model outperforms all self-supervised baseline models that use 10% or less of the data. 
Numbers within parentheses indicate 95% CI.
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during training23. Our model does not require labels for any pathol-
ogy since we do not have to distinguish between ‘seen’ and ‘unseen’ 
classes during training.

To increase the number of labelled datasets and to reduce the 
effort required for manual annotations by domain experts, recent 
works have designed automatic labellers that can extract explicit 
labels from unstructured text reports. However, the develop-
ment time of automatic labelling systems such as the NIH labeller 
and CheXpert are high, each requiring either extensive domain 
knowledge or technical expertise to implement7,24. This burden is 
not limited to chest X-rays; previous works have developed label-
ling methods for several forms of unstructured clinical text such 
as cancer-pathology reports and electronic health records25–27. In 
contrast, our method is able to classify pathologies without requir-
ing the domain-specific development of an automatic labeller. The 
self-supervised method has the potential to alleviate the label-
ling bottleneck in the machine-learning pipeline for a range of 
medical-imaging tasks by leveraging easily accessible unstructured 
text data without domain-specific pre-processing efforts17. As a 

result, the self-supervised method opens promising avenues for 
approaches and applications in the medical-imaging domain, where 
narrative reports that describe imaging findings are common.

One notable finding is the ability of the self-supervised method 
to predict differential diagnoses and radiographic findings with 
high accuracy on a dataset that was collected in a country different 
from that of the training dataset19. This ability to generalize to data-
sets from vastly different distributions has been one of the primary 
challenges for the deployment of medical artificial intelligence28,29. 
Despite the challenges of generalization described in previous 
works, the self-supervised method achieves an AUC of at least 0.900 
on 6 radiographic findings and at least 0.700 on 38 findings out of 
57 radiographic findings where n > 50 in the PadChest test dataset 
(n = 39,053) (Fig. 3). We speculate that the self-supervised model 
can generalize better because of its ability to leverage unstructured 
text data, which contains more diverse radiographic information 
that could be applicable to other datasets. Additionally, we note that 
we might expect improved performance if we used alternative labels 
instead of the raw clinical findings in PadChest. Ultimately, the 
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Fig. 3 | Performance on unseen radiographic findings in the PadChest dataset. Mean AUC and 95% CI are shown for each radiographic finding (n > 50) 
labelled as high importance by an expert radiologist. We externally validated the model’s ability to generalize to different data distributions by evaluating 
model performance on the human-annotated subset of the PadChest dataset (n = 39,053 chest X-rays). No labelled samples were seen during training 
for any of the radiographic findings in this dataset. The self-supervised method achieves an AUC of at least 0.900 on 6 findings and at least 0.700 on 38 
findings out of 57 radiographic findings where n > 50 in the PadChest test dataset (n = 39,053).

Table 4 | Comparison of AuC against application of CheXNet47 with the PadChest dataset

Atelectasis Cardiomegaly Consolidation oedema Lesion Pneumonia Pneumothorax No 
finding

CheXNet—100% 0.794 0.908 0.840 0.939 0.707 0.806 0.873 0.871

CheXzero—0% 0.798 0.898 0.871 0.961 0.651 0.789 0.766 0.755

The pathologies selected are the pathologies reported in CheXNet47. The self-supervised method that is trained on a dataset from a country different from PadChest outperforms CheXNet, a fully 
supervised model trained on PadChest, on three out of eight pathologies reported in CheXNet: atelectasis, consolidation and oedema. Numbers within parentheses indicate 95% CI.
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results demonstrate that the self-supervised method can generalize 
well on a different data distribution without having seen any explic-
itly labelled pathologies from PadChest during training30.

Biases may have affected the training of the self-supervised 
method. For example, if a pathology is never mentioned in the 
reports, then the method cannot be expected to predict that pathol-
ogy with high accuracy during zero-shot evaluation. Furthermore, 
the model’s ability to predict a pathology may depend on the termi-
nology used in the training reports. For instance, if several reports 
describe a condition such as atelectasis, but do not explicitly use the 
term, then the method may not perform well when queried with 
the phrase ‘has atelectasis’31. Thus, the method’s ability to predict 
pathologies is limited to scenarios mentioned in the text reports, 
and may perform less well when there are a variety of ways to 
describe the same pathology. To address these potential biases, we 
provide the model with hundreds of thousands of image–text pair 
samples (n = 377,110) during training, encompassing a wide vari-
ety of writing styles and descriptions of pathologies17. By validating 
the method on the CheXpert and PadChest datasets, which were 
collected at different hospitals from the one used in the training of 
the model, we show that site-specific biases are not inhibiting the 
method’s ability to predict clinically relevant pathologies with high 
accuracy.

This work has a few limitations. First, the self-supervised 
method still requires repeatedly querying performance on a 
labelled validation set for hyperparameter selection and to deter-
mine condition-specific probability thresholds when calculating 
MCC and F1 statistics. Second, the self-supervised method is cur-
rently limited to classifying image data; however, medical datas-
ets often combine different imaging modalities, can incorporate 
non-imaging data from electronic health records or other sources, 
or can be a time series. For instance, magnetic resonance imaging 
and computed tomography produce three-dimensional data that 
have been used to train other machine-learning pipelines32–34. On 
the same note, it would be of interest to apply the method to other 
tasks in which medical data are paired with some form of unstruc-
tured text. For instance, the self-supervised method could leverage 
the availability of pathology reports that describe diagnoses such 
as cancer present in histopathology scans26,35,36. Lastly, future work 
should develop approaches to scale this method to larger image 
sizes to better classify smaller pathologies37–45.

In summary, we have designed a self-supervised method using 
contrastive learning that detects the presence of multiple patholo-
gies in chest X-ray images. The self-supervised method builds on 
the use of image–text pairings of chest X-rays and radiology reports 
in ConVIRT, as well as on the multi-class zero-shot classification 
of natural images in Contrastive Language-Image Pre-training 
(CLIP) to enable the application of zero-shot approaches to 
medical-image interpretation. The self-supervised method matches 

radiologist-level performance on a chest X-ray classification task 
for multiple pathologies that the model was not explicitly trained 
to classify (Fig. 2 and Table 1). The results highlight the potential 
of deep-learning models to leverage large amounts of unlabelled 
data for a broad range of medical-image-interpretation tasks, 
and thereby may reduce the reliance on labelled datasets and 
decrease clinical-workflow inefficiencies resulting from large-scale  
labelling efforts.

methods
Datasets. Training. The self-supervised method was trained on the MIMIC-CXR 
dataset, a publicly available dataset of chest radiographs with radiology text 
reports. The MIMIC-CXR dataset contains 377,110 images corresponding to 
227,835 radiographic studies17. For instances where a radiographic study contains 
more than one chest X-ray image, the chest X-ray that is in anteroposterior/
posteroanterior view was chosen to be included as part of training. Each 
radiographic study comes with a corresponding free-text radiology report, a 
summarization written by radiologists regarding their findings. Each full radiology 
report consists of multiple sections: examination, indication, impression, findings, 
technique and comparison. CheXpert is a public dataset for chest radiograph 
interpretation, consisting of 224,316 chest X-rays of 65,240 patients from Stanford 
Hospital8. The dataset is labelled for the presence of 14 different conditions: 
atelectasis, cardiomegaly, consolidation, oedema, enlarged cardiomediastinum, 
fracture, lung lesion, lung opacity, no finding, pleural effusion, pleural other, 
pneumonia, pneumothorax and support devices. These labels are obtained from 
the agreement of five board-certified radiologists. Additionally, the dataset consists 
of free-text radiology reports that are associated with each chest X-ray image. The 
CheXpert validation dataset is utilized for tuning-condition-specific probability 
thresholds to obtain predictions from the self-supervised model’s probabilities 
for the five CheXpert competition conditions of a given chest X-ray image We 
conduct this analysis by running inference with the self-supervised model to 
obtain probability values of each condition being present for all chest X-ray images. 
Condition-specific probability thresholds are then determined by choosing the 
probability values that result in the best MCC for each condition on the CheXpert 
validation dataset. The CheXpert validation dataset has no overlap with the 
CheXpert test dataset used for evaluation.

Evaluation. The self-supervised method was evaluated on two external datasets: 
the CheXpert test dataset and PadChest. The CheXpert test dataset is a collection 
of chest X-rays that are commonly used to evaluate the performance of models on 
chest X-ray interpretation tasks14,31. We evaluate the model on the entire CheXpert 
test dataset, consisting of 500 chest X-ray images labelled for the presence of 
14 different conditions8. The CheXpert test dataset is utilized to calculate both 
the self-supervised model’s area under the receiver operating characteristic 
(AUROC) and MCC metrics for each of the five CheXpert competition conditions. 
Additionally, the test set contains predictions from three board-certified 
radiologists on full-resolution images with which we compare the performance  
of the model.

The PadChest dataset is a public dataset that contains 160,868 chest X-ray 
images labelled with 174 different radiographic findings, 19 differential diagnoses19. 
Twenty-seven per cent of the labels come from board-certified radiologists, and 
the rest were obtained by using a recurrent neural network with attention trained 
on the radiology reports. For evaluation purposes, only 39,053 examples from the 
dataset were utilized, each of which was annotated by board-certified radiologists. 
These examples were then used to calculate the self-supervised model’s AUROC 
for each of the different conditions described above.

Pre-processing. Each of the 377,110 chest X-rays in the MIMIC-CXR dataset 
were re-sized to 224 × 224 and zero padded before training. Each image was then 
normalized using a sample mean and standard deviation of the training dataset.

Text from radiology reports were tokenized using the byte pair encoding 
procedure with a vocabulary size of 49,408. For text that exceeds the maximum 
token sequence length of the given architecture, we truncated the text embedding 
to the first ‘context length tokens – 2’. The remaining two tokens were saved for 
the [SOS] and [EOS] tokens at the beginning and end of the text embedding, 
respectively.

Architecture. The uninitialized architectures consist of a Vision Transformer, 
ViT-B/32, for the image encoder, and a Transformer for the text encoder. We use 
a pre-trained Vision Transformer that accepts images of resolution 224 × 224. The 
text encoder Transformer has a base size of 63 million parameters, 12 layers and a 
width of 512 with 8 attention heads. The Transformer operates on lower-byte pair 
encoding representation of text and uses text embeddings with a maximum token 
length of 77. We use the same initialization scheme used in CLIP15.

Implementation of the method. Model pre-training. The self-supervised model 
consists of an image and text encoder that we jointly train on the MIMIC-CXR 

Table 5 | impact of ensembling on performance

mean 
AuC

mean F1 mean mCC

Radiologists (mean) N/A 0.619 0.530

Best single model 0.878 0.563 (0.527, 
0.598)

0.473 (0.434, 
0.510)

Ensemble model 0.889 0.606 (0.571, 
0.638)

0.523 (0.486, 
0.561)

Comparison between the ensemble over top-ten model checkpoints and the single best model on 
the CheXpert validation dataset. The results were averaged across the five CheXpert competition 
pathologies. Numbers within parentheses indicate 95% CI. *The Mean AUC of radiologists is not 
available (N/A) because the binary radiologist predictions are represented by a single point on the 
receiver operating curve; therefore an area cannot be computed.
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training dataset17. We utilize the impressions section of each text report, since it 
contains a concise summary of the entire report. We contrast this with a previous 
self-supervised method, ConVIRT, which selects a random sentence from the 
full-length radiology report for each image14. Although their proposed method 
could extract some signal, a random text input selection allows for unnecessary 
stochasticity that could lead to inconsistencies in training. To address this, we 
consistently select the text from the impressions section.

Training. We initialized the self-supervised model using the ViT-B/32and 
Transformer architectures with pre-trained weights from OpenAI’s CLIP model15. 
When training on the impressions section, we keep the maximum context length of 
77 tokens as given in the CLIP architecture. We demonstrated that we can leverage 
the pre-trained weights from the CLIP architecture learned from natural images to 
train a zero-shot model with a domain-specific medical task.

To prepare the data for training, all images from the MIMIC-CXR dataset 
are stored in a single HDF5 file. We performed a hyperparameter sweep over 
the batch size and the learning rate using the CheXpert validation dataset. We 
compute the validation mean AUC over the five CheXpert competition pathologies 
after every 1,000 batches are trained, and save the model checkpoint if the model 
outperforms the last best model during training. The validation mean AUCs of 
these checkpoints are used to select models for ensembling. The best model uses 
stochastic gradient descent for optimization with a learning rate of 0.0001 and 
momentum of 0.9. The best model has a batch size of 64 and is trained for four 
epochs. We train the model by maximizing the cosine similarity between image 
and text embeddings of all valid image–report pairs in the batch while minimizing 
the cosine similarity between the embeddings of incorrect pairings in the batch. 
The method’s training procedure closely follows the implementation of CLIP15.

Softmax evaluation technique for multi-label classification. To evaluate the zero-shot 
performance of the model on the multi-label classification task, we used a positive–
negative softmax evaluation procedure on each of the diseases. In contrast to CLIP, 
the proposed procedure allows us to normalize with respect to the negated version 
of the same disease classification instead of naively normalizing across the diseases 
to obtain probabilities from the logits15. The latter approach is less reasonable in 
this context since a single image may have multiple associated labels.

We define the procedure as follows. First, we compute logits with positive 
prompts (such as atelectasis) and negative prompts (that is, no atelectasis). Then, 
we compute the softmax between the positive and negative logits. Lastly, we keep 
the softmax probabilities of the positive logits as the probability that the disease is 
present in the chest X-ray.

Ensembling. We ensemble the top-ten model checkpoints sorted by mean AUC over 
the five CheXpert pathologies on the validation dataset. The probability outputs of 
the ensemble are computed by taking the average of the probability outputs of each 
model. The probabilities are averaged after softmax evaluation. These probabilities 
are then used for model evaluation through AUC and for prediction tasks using 
condition thresholds generated from the validation dataset.

Knowledge-distillation procedure. To allow for the use of the CLIP pre-trained 
model on full radiology reports to evaluate zero-shot performance on auxiliary 
tasks such as sex prediction, we use a knowledge-distillation procedure. This 
procedure is required as the pre-trained text encoder from the CLIP model has a 
context length of only 77 tokens, which is not long enough for an entire radiology 
report. We use the pre-trained model to train a model with a context length of 
512, long enough to encompass 98% of radiology reports. In this method, the text 
encoder of the best-performing model trained only on impressions is used as a 
teacher for the text encoder of a student model. To train the student, we compute 
the mean squared error between the logits of the two encoders, then backpropagate 
across the student architecture. Once the student text encoder is trained, we replace 
the uninitialized image encoder in the student model with the image encoder 
of the teacher model. Then, the student model is contrastively trained on the 
MIMIC-CXR chest X-ray and full-text report pairs.

Prompt-engineering methods. We run experiments using the labels present in the 
test set as the prompts and creating the prompts of ‘<label>’ and ‘no <label>’ as 
the positive and negative prompts for the softmax evaluation procedure.

Statistical analysis. AUROC. We collect AUROC results from both the CheXpert 
test dataset (500 samples) as well as PadChest dataset (39,053 samples) using the 
self-supervised model’s predictions. The AUROC and MCC results of the five 
clinically relevant pathologies on the CheXpert test dataset are presented in Table 
1. Table 2 consists of the mean AUROC of these five pathologies on the CheXpert 
test dataset along with self-supervised and supervised comparisons. The DAM 
supervised method is included as a comparison and currently is state-of-the-art on 
the CheXpert dataset. An additional supervised baseline, DenseNet121, trained on 
the CheXpert dataset is included as a comparison since DenseNet121 is commonly 
used in self-supervised approaches. Current top-performing label-efficient 
approaches, ConVIRT, MedAug and MoCo-CXR, are included as self-supervised 
comparisons.

MCC and F1 score. To obtain the MCC, we first run inference on the CheXpert 
test set using our softmax evaluation technique to obtain probability values for the 
14 different conditions on each of the 500 chest X-ray images. The probabilities 
are then transformed into positive/negative predictions using the probability 
thresholds computed by optimizing MCC over the validation dataset. Then, the 
condition-based MCC scores are calculated using these predictions. We similarly 
compute the F1 score, but using the same thresholds as used for computing  
the MCC.

Confidence intervals. We use the non-parametric bootstrap to generate 
confidence intervals: random samples of size n (equal to the size of the original 
dataset) are repeatedly sampled 1,000 times from the original dataset with 
replacement. We then estimate the AUROC, F1 and MCC metrics (or their 
difference for two the methods) using each bootstrap sample. We derive 
confidence intervals from the relative frequency distribution of the estimates over 
the re-samples, using the interval between the 100 × (α/2) and 100 × (1 − α/2) 
percentiles; we pick α = 0.05.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The main data (CheXpert data) supporting the results of this study are available at 
https://aimi.stanford.edu/chexpert-chest-x-rays. MIMIC-CXR data are available at 
https://physionet.org/content/mimic-cxr/2.0.0 for users with credentialed access. 
PadChest data are available at https://bimcv.cipf.es/bimcv-projects/padchest. 
Source data are provided with this paper.

Code availability
The code used to train and evaluate CheXzero is available on GitHub at https://
github.com/rajpurkarlab/CheXzero.
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Data collection No software was used to collect the data.

Data analysis The code used to train and evaluate CheXzero is available on GitHub at https://github.com/rajpurkarlab/CheXzero. We developed custom 
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Reporting on sex and gender The datasets used in this study have sex distributions publicly reported, with the exception of the CheXpert test dataset, 
which has been hidden for the purposes of official evaluation on the CheXpert leaderboard. We do not report results 
stratified by sex; however, the design of the study does explore the ability of the method to predict sex from chest X-rays in 
the PadChest dataset. We report that, for the final labelled PadChest dataset, 80,923 images correspond to women and 
79,923 images to men.

Population characteristics The CheXpert dataset consists of chest radiographic examinations from Stanford Hospital, performed between October 2002 
and July 2017 in both inpatient and outpatient centers. Population-level characteristics are unavailable for the CheXpert test 
dataset, as they are used for official evaluation on the CheXpert leaderboard. 
 
The MIMIC-CXR and PadChest are datasets available in the public domain. 
 
MIMIC-CXR is a large dataset involving 65,379 patients imaged at the Beth Israel Deaconess Medical Center Emergency 
Department during 2011–2016. A total of 377,110 images are available, and are paired with corresponding free-text 
radiology reports. Each imaging study may contain a frontal and a lateral view. 
 
The PadChest dataset contains chest X-rays that were interpreted by 18 radiologists at the Hospital Universitario de San Juan, 
Alicante, Spain, from January 2009 to December 2017. The dataset contains 109,931 image studies and 168,861 images. 
PadChest also contains 206,222 study reports. The PadChest study reports that the patients’ ages range from 0 to 105 years, 
with a mean of 58.5 years and a median of 62 years. The distribution of the number of images by age is skewed towards 
older ages, with a long tail for ages under 40. The median birth year of the population was 1953 (birth years ranged from 
1904 to 2017), with a standard deviation of 20 years.  
 
Additional dataset characteristics of the MIMIC-CXR and PadChest datasets are detailed in, respectively, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC6908718 and https://arxiv.org/abs/1901.07441. 

Recruitment No participants were recruited for this retrospective study.

Ethics oversight The study used data collected retrospectively. Approval of a study protocol was not needed.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used 377,110  chest X-ray images corresponding to 227,835 radiographic studies for model training. For the test set, we used the full 
CheXpert test dataset, consisting of 500 chest X-ray images labelled for the presence of 14 different conditions. Furthermore, we evaluated 
the model on 39,053 examples from the PadChest dataset, each of which were annotated by board-certified radiologists. We report results on 
diagnoses where n > 50.

Data exclusions No data were excluded. 

Replication The code and data used to train and evaluate CheXzero, which are publicly available (as detailed in the Data-availability and Code-availability 
statements), can be used to replicate the findings.

Randomization We didn't require randomization, as no human-subject evaluation was performed. 

Blinding Blinding wasn't relevant to the study, as no human-subject evaluation was performed. 
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