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Exploring tissue architecture using spatial 
transcriptomics

Anjali Rao1,3, Dalia Barkley1,3, Gustavo S. França1 & Itai Yanai1,2 ✉

Deciphering the principles and mechanisms by which gene activity orchestrates 
complex cellular arrangements in multicellular organisms has far-reaching 
implications for research in the life sciences. Recent technological advances in 
next-generation sequencing- and imaging-based approaches have established the 
power of spatial transcriptomics to measure expression levels of all or most genes 
systematically throughout tissue space, and have been adopted to generate biological 
insights in neuroscience, development and plant biology as well as to investigate a 
range of disease contexts, including cancer. Similar to datasets made possible by 
genomic sequencing and population health surveys, the large-scale atlases generated 
by this technology lend themselves to exploratory data analysis for hypothesis 
generation. Here we review spatial transcriptomic technologies and describe the 
repertoire of operations available for paths of analysis of the resulting data. Spatial 
transcriptomics can also be deployed for hypothesis testing using experimental 
designs that compare time points or conditions—including genetic or environmental 
perturbations. Finally, spatial transcriptomic data are naturally amenable to 
integration with other data modalities, providing an expandable framework for 
insight into tissue organization.

Many of the notable discoveries in the life sciences followed from the 
recognition that cellular organization in tissues is intimately linked 
to biological function. In developmental biology, central topics such 
as symmetry-breaking between daughter cells and cell-fate decisions 
are based on spatial relationships between cells1. In clinical settings, 
histopathology is often used as a conclusive diagnostic tool, precisely 
because many diseases are characterized by abnormal spatial organiza-
tion within tissues2. Infectious and inflammatory processes can drasti-
cally change the cellular organization of tissues3. These discoveries 
were supported by methods in molecular biology—including in situ 
hybridization4 (ISH) and immunohistochemistry5—that provided the 
ability to visualize biological processes more directly by mapping DNA, 
RNA and protein within tissues. However, these methods limit analysis 
to at most a handful of genes or proteins at a time.

The ‘omics revolution has profoundly changed our ability to char-
acterize cells. Instead of a few RNA or protein markers, new methods 
assay the full genome, transcriptome or proteome in cells6–9. This has 
led to the discovery of novel cell types and cell states and has provided 
a more detailed understanding of biological processes in health and 
disease10–12. Until recently, however, these high-throughput tech-
niques could not be applied in situ, resulting in the loss of informa-
tion about spatial relationships among the catalogued populations 
of cells. To circumvent this limitation, early methods performed tran-
scriptomics on serial slices to reconstruct a spatial axis, such as serial 
microtomy sequencing (tomo-seq)13–16. Similarly, microdissection was 
used to manually isolate specific regions for single-cell RNA sequenc-
ing (scRNA-seq), thus providing spatially resolved information17–23. 

Nanostring GeoMX digital spatial profiling was developed to capture 
targeted transcripts in manually selected regions of interest24. To 
reconstruct spatial relationships between neighbouring cells, creative 
methods used partial tissue dissociation25, including ProximID26, cell 
sorting of physically interacting cells with single-cell RNA sequencing 
(PIC-seq)27 and sequencing of cell clumps (ClumpSeq)28. In another 
approach, targeted mapping of a subset of genes was used to infer cell 
locations in whole-transcriptome scRNA-seq data29–33.

While these approaches enabled the reconstruction of tissue organi-
zation, they also highlighted the need for spatially resolved methods 
that query the whole transcriptome. Over the past decade, technolo-
gies have emerged that bridge the gap between traditional approaches 
that retain spatial information (such as immunofluorescence or ISH) 
and new methodologies with the ability to concurrently query the 
entire transcriptome. The inception of this new approach of ‘spatial 
transcriptomics’ has facilitated novel discoveries in diverse fields, 
including neuroscience, development and cancer. Here we review 
common spatial transcriptomic technologies, discuss the principles 
of exploration of the data generated by these methods, examine the 
utility of spatial transcriptomics in different experimental designs, 
and highlight the promise of the technology for biological insights 
through integration with other modalities.

Spatial transcriptomics technologies
While key aspects of spatial transcriptomic technologies vary widely 
in terms of both the number of genes that can be probed and the size 
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of tissue that can be assayed (Box 1), the methods reviewed here focus 
on technologies that enable transcriptome-level measurements across 
a tissue region. Spatial transcriptomics technologies are primarily 
categorized34,35 as (1) next-generation sequencing (NGS)-based, encod-
ing positional information onto transcripts before next-generation 
sequencing; and (2) imaging-based approaches, comprising in situ 
sequencing (ISS)-based methods—in which transcripts are amplified 
and sequenced in the tissue—and ISH-based methods—in which imag-
ing probes are sequentially hybridized in the tissue36–40 (Fig. 1a–c). This 
classification is not always clear cut, and methods may incorporate 
elements from both categories. These diverse technologies can be seen 
as converging on a gene-expression matrix (Fig. 1d) that captures the 
transcriptome at every spot (that is, a pixel, a cell, or a group of cells).

Next-generation sequencing-based approaches
NGS-based approaches build on the conceptual innovations of 
scRNA-seq methodologies and are contingent on the addition of a 
spatial barcode before library preparation35 (Fig. 1a). In 2016, Stahl et al. 
reported the first NGS-based method for spatial transcriptomics that 
enabled the capture of whole transcriptomes from tissue sections41. 
The central innovation was the capture of poly-adenylated RNA on 
spatially barcoded microarray slides before reverse transcription, 
ensuring that each transcript could be mapped back to its original 
spot using the unique positional molecular barcode. With each slide 
consisting of just over 1,000 spots (100 μm spot diameter with 200 μm 
centre-to-centre distance), large tissue areas could be investigated in 
an unbiased manner without selecting a region or, importantly, a set 
of gene targets42,43. The method was first demonstrated on the mouse 
olfactory bulb41, and has since been used by several other groups44–48. 
Visium49, recently released by 10X Genomics, is an improved version 
of the technology with increased resolution (55 μm spot diameter with 
100 μm centre-to-centre distance) and sensitivity (more than 10,000 
transcripts per spot). This technology has been adopted in many dif-
ferent fields, including neuroscience50, cancer biology47,51 and devel-
opmental biology52.

Slide-seq, another NGS-based technology, uses randomly barcoded 
beads deposited onto a slide for mRNA capture53. The position of each 
random barcode is obtained by in situ indexing. This method has 
achieved high resolution (10 μm) and sensitivity (500 transcripts per 
bead)54. In parallel, high-definition spatial transcriptomics (HDST) also 
improved the resolution, by replacing the glass slide with beads depos-
ited in wells, similar to Slide-seq55. More recently, deterministic barcod-
ing in tissue for spatial ‘omics sequencing56 (DBiT-seq) has adopted 
microfluidics to apply poly-T barcodes to the tissue section, whereas 
spatio-temporal enhanced resolution ‘omics sequencing (Stereo-seq) 
uses randomly barcoded DNA nanoballs deposited in an array pattern 
to achieve nanoscale resolution57. Seq-scope has achieved subcellular 
resolution spatial barcoding and can be used to visualize nuclear and 
cytoplasmic transcripts58. An innovative approach was adopted in 
polony (or DNA cluster)-indexed library sequencing (PIXEL-seq), result-
ing in an increase in resolution of up to about 200-fold compared with 
existing methods59.

In all NGS-based methods, the spatially barcoded RNAs are collected 
and processed for sequencing. The barcode of each read is used to map 
the spatial position, while the rest of the sequencing read is mapped to 
the genome to identify the transcript of origin, collectively generating 
a gene-expression matrix.

Imaging-based approaches
Two main types of imaging-based approach to spatial transcriptomics 
have been introduced: ISS- and ISH-based methods. ISS-based methods 
directly read out the sequences of transcripts within the tissue. Specifi-
cally, the RNA is reverse transcribed, amplified by rolling circle ampli-
fication, and sequenced (Fig. 1b). Using targeted probes for the reverse 
transcription, followed by sequencing-by-ligation60, this method 

Box 1

Considerations for selecting a 
spatial transcriptomic method
Gene throughput
NGS-based methods are unbiased, as they capture all 
polyadenylated transcripts, and are therefore well suited for 
exploring a new system. By contrast, ISH- and most ISS-based 
methods (with the exception of FISSEQ70 and ExSeq69,70) are 
targeted and require a priori knowledge of the genes of interest. 
Nonetheless, the throughput of these methods has increased 
in recent years, reaching 10,000 genes169,173. Targeted spatial 
transcriptomic methods can also be used in conjunction with 
scRNA-seq, where genes of interest that have already been 
identified can then be located more precisely52,63. In addition, 
probes for non-polyadenylated transcripts can be designed to 
query for other RNAs such as mature microRNAs and tRNAs173.

Sequence information
In NGS-based and ISS-based methods, the cDNA sequence itself 
is a read out, enabling the detection of fusion transcripts174, splice 
isoforms58,175 and single-nucleotide variants and point mutations60. 
When integrated with the gene-expression matrix, these data can 
assist with reconstructing a time course, using RNA velocity54 or 
lineage tracing176.

Sensitivity
ISH-based methods are highly sensitive, recently reaching 80% 
detection efficiency relative to the gold-standard single-molecule 
fluorescence ISH (smFISH)173. The sensitivity of the NGS-based 
methods is significantly lower and remains inferior to scRNA-seq, 
but is rapidly improving to about 100 unique transcripts55,58,59,177  
per μm2. There is generally a trade-off between sensitivity and 
gene throughput, as seen in the higher sensitivity of targeted 
ISS-based methods64 relative to the unbiased methods70.

Resolution
The resolution of in situ methods is limited only by the optical 
diffraction limit and, with expansion microscopy, has reached80,173 
around 100 nm. These methods are therefore well-suited to 
questions concerning sub-cellular organization. NGS-based 
methods are limited by the diameters of spots, but their resolution 
has rapidly increased since the original method41, recently 
reaching58,59 approximately 1 μm.

Area size
The in situ methods can span a wide range of sizes, although there 
is a trade-off between tissue size and imaging time73. By contrast, 
the NGS-based methods are standardized, with arrays on the order 
of 10 mm2 (currently 6 mm2 for the commercially available 10X 
Genomics Visium49), which may be inappropriate for smaller or 
larger samples.

Feasibility
While these technologies are extremely powerful, there are 
obstacles to their widespread adoption, including access 
to single-molecule imaging for in situ methods, as well as 
manufacturing for the capture arrays of NGS-based methods. 
Commercialization has facilitated access in some cases, as seen 
with 10X Genomics Visium49.



Nature | Vol 596 | 12 August 2021 | 213

was implemented to study around 50 targeted genes in cancer60,61, 
tuberculosis62 and brain development63. Building on this approach, 
spatially resolved transcript amplicon readout mapping (STARMap) 
incorporated advances in hydrogel chemistry, improved padlock-probe 
and primer design and included an error-robust sequencing-by-ligation 
method, and was thus able to profile thousands of genes in the mouse 
cortex64. Other methods using sequencing-by-synthesis—for exam-
ple, barcode in situ targeted sequencing (BaristaSeq)65 and barcoded 
anatomy resolved by sequencing (Barseq)66—or sequencing by hybridi-
zation—for example, hybridization-based ISS (HybISS)67—have led to 
increased read lengths, enabling higher throughput and cellular bar-
coding. Furthermore, ISS has been combined with cDNA extraction for 
NGS68,69, highlighting the difficulty in classifying spatial transcriptomic 
methods as either NGS- or imaging-based. ISS also has the potential for 
untargeted profiling, as demonstrated by fluorescent ISS (FISSEQ)70. 
Although the untargeted amplification can lead to optical crowding 
and lower sensitivity, the recently developed expansion sequencing 
(ExSeq) has demonstrated that expansion microscopy can be used to 
perform untargeted ISS in tissues69.

ISH-based methods are the second category of imaging-based 
methods, and build on ISH technologies, whereby a target sequence 
is detected by hybridization of a complementary fluorescent probe 
(Fig. 1c). Initially limited in the number of distinguishable transcripts, 
innovations enabling the addition of sequential rounds of hybridiza-
tion and imaging71 combined with barcoding have enabled substantial 
multiplexing. In multiplexed error-robust fluorescence ISH (MERFISH), 
successive rounds of hybridizations are imaged to detect the pres-
ence or absence of fluorescently labelled probes. The serial images are 
then decoded, using the error-robust barcode associated with each 
transcript identity72–74. MERFISH has been used over a wide range of 
scales, from transcript location within individual cells75 to tissue-level 
spatial transcriptomics, such as on the hypothalamic preoptic region76. 
Another strategy to increase the number of distinguishable transcripts 
is the combination of colours into pseudocolors, as done in sequential 
fluorescence ISH (seqFISH)77,78. Similar to MERFISH, this method can 
be applied to investigate intracellular organization79 as well as to gen-
erate large maps—for example, of the hippocampus78. Both methods 
have improved considerably in the past few years, and are now able to 

detect around 10,000 genes at sub-cellular resolution75,80. Ongoing 
efforts in the community aim to improve the sensitivity and scale of 
these methods34,36,38.

For both ISS- and ISH-based methods, the image is processed to 
generate the gene-expression matrix. To obtain a cell-level matrix, 
the image is segmented, either manually on small areas or system-
atically using a computational approach. Watershed algorithms use 
DAPI-stained nuclei as seeds and identify cell borders as regions with 
low RNA density81. Although these may not correspond to true physi-
cal boundaries, but rather to the limit between cells, they accomplish 
the task of assigning each mRNA to a cell. Alternatively, the data 
analysis can begin at the level of individual pixels and incorporate the 
gene-expression data to delineate cells82–84.

Insights into development, physiology and disease
As spatial transcriptomic technologies provide an unbiased picture of 
spatial composition, they have been used to generate tissue atlases, 
which provide a valuable resource as reference maps. The use of spa-
tial transcriptomics to generate spatial atlases of the nervous system 
is of particular note: spatial transcriptomics-based approaches have 
established detailed maps of the entire mouse brain50, or of specific 
regions such as visual cortex64, primary motor cortex85, middle tem-
poral gyrus67, hypothalamic pre-optic region76, hippocampus69,78 and 
cerebellum86. Maynard et al. identified spatial patterns of known 
schizophrenia- and autism-related genes in their analysis of the dorso-
lateral prefrontal cortex, which led to proposed mechanisms of genetic 
susceptibility to schizophrenia87.

In developmental biology, time-resolved spatial transcriptomics 
atlases have been useful to elucidate the spatial dynamics of heart 
development52, spermatogenesis88 and intestinal development89. Simi-
larly, a comprehensive study of the human endometrium during the 
proliferative and secretory phases of the menstrual cycle identified a 
role for WNT and Notch signalling in regulating differentiation towards 
ciliated or secretory epithelial cells90. These atlases have been the focus 
of coordinated community efforts to serve as effective resources for 
the research community, and are supported by the Human Cell Atlas 
project91 and the Allen Institute for Brain Science92.
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Beyond normal development and physiology, spatial transcriptom-

ics is well positioned to study tissue disorganization in disease. Most 
prominently, spatial transcriptomics has enabled the identification of 
the mechanisms at play in cancer, where the tissue structure underly-
ing normal physiological function is altered44,51,93–96. With the increas-
ing recognition of the importance of the tumour microenvironment, 
spatial transcriptomics has been used to address its relationship to 
cancer cells adopting different states45,46,69,95. In particular, spatial 
transcriptomics enables the study of the molecular features across 
the boundaries between cancer and normal tissue. For example, an 
immunomodulatory cancer cell state was revealed in skin squamous 
cell carcinoma47. Spatial transcriptomics has also provided insights into 
the mechanisms of tissue dysregulation in neurodegenerative disorders 
including Alzheimer’s disease97,98 and amyotrophic lateral sclerosis99, 
infectious and inflammatory processes such as leprosy100, influenza101 
and sepsis102, and rheumatological diseases including rheumatoid 
arthritis and spondyloarthritis103,104.

Exploratory data analysis
Spatial transcriptomic technologies result in a gene-expression matrix, 
which can be analysed both to test existing hypotheses and to generate 
new observations through exploratory analysis. Given the complex-
ity and high dimensionality of a spatial transcriptomic dataset, novel 
insights can arise from adopting a mindset open to finding unexpected 
relationships by data analysis. In this exploratory mode of data analy-
sis—championed by John Tukey105—the result of one analysis guides the 
choice of the next, analogous to the way in which the result of a bench 
experiment guides the design of the next experiment. This is not to 
say that prior knowledge and hypotheses are ignored—rather that they 
are used to interpret results and direct the analyses. Thus, there is no 
predefined protocol in exploratory data analysis and no set pipeline 
for how to study a spatial transcriptomic dataset. Instead, there is a 
particular logic for how the data can be examined and a recognition 
of possible outcomes with each analysis106,107.

Analysing spatial transcriptomic data often requires the exclusion 
of low-quality data and initial transformations on the gene-expression 
matrix to increase the signal-to-noise ratio, which can be performed 
using analysis packages such as Giotto108, Seurat109,110, STutility111 and 
stLearn112. The total number of transcripts detected in a spot provides a 
first indication of the technical and biological attributes of the data. A 
relatively low number of transcripts per spot may indicate a technical 
artefact, such as insufficient permeabilization in certain regions, or a 
difference in cell density in the case of NGS-based methods. Alterna-
tively, variation can arise from biological sources, such as differences 
in transcriptional activity between cell types or the presence of dying 
or necrotic cells, and this signal may confound downstream analyses. 
Smoothing algorithms can be applied to the data to increase sensitiv-
ity and to remove unwanted sources of technical and biological vari-
ation. Based on the premise that information can be shared between 
neighbouring spots, averaging gene expression between physically 
adjacent spots in a moving window along the spatial coordinates can 
reduce noise47. To compare the expression of a gene across spots, tran-
scriptomes are often normalized by dividing by the total number of 
transcripts (transcripts per million (TPM)) or using regularized nega-
tive binomial regression113. Similarly, comparisons across genes are 
aided by scaling the data to have the same mean and variance across 
spots (z-score).

The normalized gene-expression matrix provides the basis for initial 
observations at the level of individual genes or spots (Fig. 1). Reveal-
ing structure in the data such as cell-type properties or coherent gene 
modules requires further processing of the matrix. We distinguish five 
classes of operation that have been used to study spatial transcriptomic 
data, although more operations will undoubtedly be devised (Fig. 2a). 
While applying any one operation to the data may not immediately lead 

to insight, using the operators serially based on the interpretation of 
the results at each stage can generate a path to a result (Fig. 2b).

Cluster
The clustering operation reveals structure in the data, which, at its most 
basic defines sets of spots with similar transcriptomes, or orthogo-
nally, identifies genes with similar expression patterns across the spots. 
Similarity between spots can be calculated directly between transcrip-
tomes using correlation or Euclidean distance, or after dimensionality 
reduction such as principal component analysis (PCA), t-distributed 
stochastic neighbour embedding (t-SNE)114 and uniform manifold 
approximation and projection (UMAP)115. These similarities are then 
used to cluster spots—for example, using k-means, Louvain or hierar-
chical clustering116. These clusters may correspond to distinct regions 
or cell types in the tissue of study, which can then be annotated (see 
‘Characterize’). In a study on gingivitis, spots clustered according to 
whether they were epithelial, connective or inflammatory117. Clustering 
methods were also used to describe the tissue composition on sections 
of the plant A. thaliana, revealing four groups of spots corresponding 
to stem, meristematic area, flower reproductive organs, and sepals 
and petals118.

Gene clustering, using the same approach, can identify co-expressed 
gene modules corresponding to a cell type or cell state108. In spatial 
transcriptomic data from the cerebellum, for example, clustering of 
genes identified two modules of spatially correlated genes in Purkinje 
cells53. Methods to cluster genes and spots simultaneously have also 
been used, including non-negative matrix factorization119,120 or factor 
analysis93, where the gene-expression matrix is factorized to reveal the 
underlying structure in spot clusters and gene modules. In prostate 
tumour samples, this revealed sets of spots and genes corresponding to 
cancer, stroma and inflammation93. Clustering methods such as Bayes-
Space121, that focus on the specific features of spatial transcriptomics 
are currently being developed.

Select
Typical spatial transcriptomic datasets contain more biological infor-
mation than can be meaningfully interpreted by any single analysis. 
Therefore, it is usually appropriate to select a region of interest, for 
example a specific layer in the brain53,54, or the interface between 
tumour and microenvironment85,122. Orthogonally, the analysis may 
be focused on context-specific genes, either chosen a priori from bio-
logical knowledge—most notably in imaging-based methods that do 
not yet cover the whole transcriptome—or chosen from the dataset 
itself, for example by identifying highly variable genes. Gene-selection 
methods abound, and those tailored to spatial transcriptomic data 
attempt to identify genes with high variance and whose expression is 
not random across the tissue. Genes can be scored according to their 
spatial autocorrelation (using Moran’s I or Geary’s C)123, neighbour 
enrichment (for example, in BinSpect)108 or entropy (for example, in 
Haystack)124. Trendsceek125 uses a marked point processes approach126 
and is able to identify hotspots, streaks and gradients of expression. 
SpatialDE decomposes a given gene’s expression variability into spatial 
and non-spatial components using Gaussian process regression127, and 
a similar approach was extended upon in SPARK128. Cancer-specific 
metabolic vulnerabilities were characterized by identifying spatially 
variable genes in prostate cancer using this approach94.

Score
While the genes and spots are the primary data observations of spa-
tial transcriptomics, the underlying biology means that genes are 
co-expressed as modules, and that spot transcriptomes reflect a 
finite set of cell types and states. This is the premise of the scoring 
function, which is used to summarize a cluster of similar spots as a 
single gene-expression profile, or—orthogonally—a coherent set of 
genes as a single pattern. Summarizing the data in this way can identify 
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functional properties—for example, a stress-response state or infiltrat-
ing macrophages that are spatially organized within a tumour—which 
might not be detectable when analysing spots or genes individually. 
Scoring can be done simply by averaging the values of the set, or by 
scoring the expression relative to a null model as implemented in the 
Seurat workflow110. In the brain, for example, Moffitt et al. generated 
average cell-type expression profiles to compare spatial transcriptom-
ics and scRNA-seq clusters76. In melanoma, spots were scored according 

to their expression of previously established gene sets corresponding 
to cancer cell states45 or to Gene Ontology terms122.

Characterize
The objects identified by operations on spatial transcriptomic data—
clusters of spots and sets of genes—must be characterized for biological 
understanding and interpretation. Integration with other data sources 
and with other prior knowledge are essential to achieve this. A cluster 
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of spots may be characterized manually when it matches a histologi-
cal region, as was done in MERFISH to annotate individual cell types in 
the brain76, and in pancreatic cancer samples to annotate normal and 
malignant regions of the tumour46. A cluster may also be annotated 
indirectly by identifying a set of marker genes and characterizing those. 
Specifically, a gene set can be characterized by quantifying its overlap 
with an annotated gene set. This is the basis of the multimodal inter-
section analysis46 (MIA) and of gene-set enrichment analysis129 (GSEA), 
which queries for enrichment with functional groups obtained from 
Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Hallmark and other databases129–131.

Because NGS-based spatial transcriptomics is not at single-cell reso-
lution, much attention has been given to the problem of inferring the 
cell-type composition of each spot (deconvolution), which is an impor-
tant step in building detailed organ atlases52,90. Most methods achieve 
this by integrating single-cell data, generated either from the same sam-
ple (paired) or from a similar sample or database (unpaired). This inte-
gration helps to overcome the limitations of scRNA-seq—which lacks 
spatial information—and NGS-based spatial transcriptomics—which is 
not at single-cell resolution. By performing non-negative least squares 
(NNLS) linear regression on the spatial transcriptomic data using the 
NMF factors derived from single-cell data, cell-type composition of 
spots can be inferred, as implemented in SPOTlight132 and NMFreg53. 
Methods tailored to cell-type decomposition of spatial transcriptomic 
data have been devised, including probability-based methods133–137, 
graph-based methods138, and deep learning methods139,140. In Stereo-
scope133, the cell-type parameters are assigned by maximum-likelihood 
estimation on the single cell and are used to estimate the cell-type 
composition of each spot. Cell2location134 additionally attempts to 
infer the absolute number of cells per spot. Deconvoluting spatial tran-
scriptomics data through graph-based artificial intelligence (DSTG)138 
uses single-cell data to construct pseudospots, and then links real and 
pseudospots in a graph of nearest neighbours. The spatial dampened 
weighted least-squares (spatialDWLS) method borrows from method-
ologies previously used for bulk RNA-seq deconvolution and applies 
cell-type enrichment followed by a dampened weighted least-squares 
method to determine spot composition141.

Spatial transcriptomics methods with sub-cellular resolution face the 
inverse problem of grouping spots into organelles or cells. Seq-scope 
uses transcript annotations as spliced, unspliced or mitochondrial 
to identify the cytoplasm, nucleus and mitochondria within cells58. 
Recent approaches have been developed that use the local density of 
each RNA species to assign a cell type to each spot82,83. Probabilistic cell 
typing by ISS (pciSeq) is able to identify cell types more efficiently in 
larger tissue areas23,84. Fluorescence ISH–iterative cell-type assignment 
(FICT) integrates expression and neighbourhood information to assign 
cell types142. In the case of imaging-based methods, each DAPI-stained 
nucleus can be classified as a cell type according to its distance from 
marker-gene RNAs84.

Relate
Given its systematic nature, spatial transcriptomics is well suited to 
identifying similarities, differences and relationships between popu-
lations of genes and tissue regions. Clusters of spots can be related by 
querying for expressed genes, spatial overlap, or developmental or 
functional relationships. For example, Stickels et al.54 identified genes 
that are differentially expressed between the proximal neuropil and the 
soma within the hippocampus using the different spots as replicates. 
Creative ways to relate the transcriptomes of clusters of spots have been 
devised using methods that were originally developed for scRNA-seq. 
RNA velocity143 makes use of the unspliced transcripts to infer how spots 
are related to each other in time, and was applied in the cortex to map 
the dynamics of neural development54. RNA-seq-based copy-number 
variation inference identifies chromosomal aneuploidies, which can 
be used to distinguish malignant spots from non-malignant spots and 

to identify distinct subclones144,145. When two sets of spots are spatially 
adjacent, potential modes of interaction146 between the cells can be 
proposed by examining their paired receptors and ligands108 using 
known databases such as CellPhoneDB47,90,147 or NicheNet148.

Hypothesis generation and testing
Spatial transcriptomics atlases of healthy or diseased tissues naturally 
lend themselves to unbiased exploration and hypothesis generation52,90. 
Even those spatial transcriptomic datasets designed to study a specific 
biological process, such as time-course studies or perturbation experi-
ments, can be explored to reveal unexpected changes and formulate 
new hypotheses98 (Fig. 3). Thousands of spots or genes can be studied 
together, thereby exploiting the high dimensionality of the dataset to 
yield robust biological inferences. These observations—the presence 
of a cell type, a pattern of gene expression or the co-localization of two 
cell states—may lead to a novel testable hypothesis. They should also 
be validated independently, for example, by immunofluorescence46 
or ISH76 (Fig. 3a).

Alternatively, spatial transcriptomic data can be incorporated into 
classical hypothesis-driven experimental design, whereby a sufficiently 
powered experiment is used to test a well-defined prediction. Indeed, 
as spatial transcriptomic technology becomes more accessible, it is 
poised for use as a routine assay, on par with flow cytometry or RNA 
sequencing. Guided by experimental design, spatial transcriptomics 
can corroborate or falsify a hypothesis when used as a readout in a 
perturbation or time-course experiment. Each sample can be summa-
rized by an individual data point, to be compared across replicates and 
conditions, necessitating that data be collected in sufficient numbers 
to ensure statistical rigour and power. Studies may incorporate spatial 
transcriptomics on several sections from the same sample to account 
for technical variability, or multiple biological replicates per condi-
tion. The hypothesis can be further tested in model systems, in vitro 
or in vivo, or with clinical data (Fig. 3b).

Integration with other modalities
As the resolution and sensitivity of spatial transcriptomic technolo-
gies improve, integration with other data modalities can provide 
an opportunity for better tissue characterization. While currently 
often underutilized, the tissue image itself can be used to extract 
high-resolution information, especially when combined with the 
vast knowledge acquired by the field of histopathology to manually 
identify and annotate regions2. In particular, morphological fea-
tures detected in the tissue, such as cell shape or nucleus size, can 
be directly incorporated in the analysis. In stLearn, spots with similar 
features are identified and spatial smoothing is improved by averag-
ing across spots that are not only physically close but also similar in 
composition112. Another study improved the resolution of spatial tran-
scriptomics gene-expression data by fusing it with high-resolution 
histology image data149. Deep learning has also been used to predict 
cell-type annotations from gene expression and histology, outper-
forming annotations predicted from either modality alone150–152. With 
the increase in transcriptomic data available for training, machine 
learning algorithms have also been used to predict gene expression 
from histopathology images153,154. Rather than relying on pre-defined 
morphological features, these algorithms improve their performance 
by decomposing the full image into ‘tiles’. Integration of spatial tran-
scriptomics with such machine learning approaches may improve 
the interpretability of histopathology and its use in clinical decision 
making to guide treatment and inform prognosis.

At subcellular resolution, the spatial organization of chromatin may 
provide clues into the regulation of gene expression in various contexts. 
DNA seqFISH integrated with RNA seqFISH and multiplexed immuno-
fluorescence revealed that active gene loci are located on the surface of 
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nuclear bodies and zone interfaces in embryonic stem cells155. Integrat-
ing spatial transcriptomic datasets with high-throughput imaging of 
the genome in situ and the spatial distribution of histone marks within 
a tissue will be extremely valuable156–158. Recently, spatial mapping of 
genome organization with concurrent DNA sequencing within intact 
tissue has been made feasible159. This suggests that the goal of combin-
ing spatial genome sequencing with in situ transcriptomic profiling 
may be within reach, deepening our understanding of how genome 
organization and function are encoded158.

Augmenting gene-expression data with a complementary modality 
such as protein co-detection can also shed light onto processes that 
are not captured by spatial transcriptomics, such as post-translational 
modification and sub-cellular localization of proteins and their dys-
regulation in disease. Targeted protein co-detection can be performed 

alongside spatial transcriptomics using immunostaining on the same 
tissue section, as enabled by Visium49. A novel imaging cytometry-based 
approach has also been used to simultaneously detect transcripts 
and proteins in breast cancer tissue samples160.DBiT-seq enables the 
co-mapping of mRNA and proteins in the tissue using antibody-derived 
DNA tags, as is done in cellular indexing of transcriptomes and epitopes 
by sequencing (CITE-seq)161. High-throughput spatial methods for 
protein detection such as multiplexed ion beam imaging (MIBI), 
co-detection by indexing (CODEX), tissue cyclic immunofluorescence 
(t-cyCIF) and automated mass spectrometry provide an unparalleled 
snapshot of the proteome within the tissue section162–167. Technological 
advances that allow the integration of these high-throughput proteom-
ics methods with spatial transcriptomics will greatly improve our ability 
to study tissue complexity.
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Fig. 3 | Hypothesis generation and testing using spatial transcriptomics. a, 
Spatial transcriptomics (ST) can be used for hypothesis generation in various 
experimental contexts. Examples of spatial transcriptomic datasets include 
normal tissue (ST atlas), a developmental or disease time course, and 
perturbation experiments (genetic, drug or infection). Following data 

collection, exploratory data analysis may generate observations—requiring 
validation—that lead to a hypothesis. b, Spatial transcriptomics for hypothesis 
testing. A well-powered experimental design that uses spatial transcriptomics 
can test formulated hypotheses. These can be further tested using clinical 
data, in vivo or in vitro models.
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Outlook
The spatial transcriptomics field is growing at an exponential pace, 
with daily releases of technologies and datasets. The challenges faced 
by current spatial transcriptomic methods—including the limits to 
resolution and sensitivity, as well as throughput and accessibility—are 
being rapidly overcome. Spatial transcriptomics methods are being 
made compatible with paraffin-embedded tissues, opening the door 
to retrospective analyses of samples collected over decades in bioba
nks49,70,168,169. With future innovations, it may be possible to systemati-
cally assay larger tissue areas for the reconstruction of 3D organ- or 
organism-level atlases, and to visualize transcriptome-wide changes 
in gene expression as they unfold over time. In addition to overcoming 
these technological challenges, future work will require the develop-
ment of new computational tools and creative analytical thinking. 
Together, these will enable data exploration to identify spatial pat-
terns—a central feature of spatial transcriptomic datasets—and reveal 
insights into the underlying biology.

As we speculate about the future milestones in the field, the Human 
Genome Project may serve as a useful parallel. The initial draft of the 
human genome was published in 2001170,171 and provided a reference for 
studying the sources and consequences of genetic variation. However, 
the function and regulation of the different regions of the genome 
are still under active investigation. In spatial transcriptomics, future 
projects may similarly benefit from a reference from which to study 
distinct conditions. However, mapping the expression level of every 
gene in space will be only the first step towards elucidating organizing 
principles of tissue biology. It is the coupling of these high-resolution 
cellular atlases with hypothesis-free inquiries that will enable new 
insights and reveal the salient features of tissue architecture in physi-
ology and disease.

A key challenge for the field will be to iteratively build a model of 
how multicellular spatial patterns emerge from cell-level properties. 
Independent of spatial transcriptomic technologies, implementing 
a simple principle—that each cell is overall most similar to its neigh-
bours—was sufficient to recover complex spatial patterns in the 
Drosophila embryo172. Building on this idea, the exploration of spatial 
transcriptomic datasets will enable us to uncover the fundamental 
principles that guide our modelling of tissue-level spatial organization 
and will facilitate the study of the mechanistic basis of these patterns 
and their consequences. These deeper biological insights will extend 
the level of understanding from simple tissues to more complex struc-
tures, including developing organisms and diseased tissues, bringing 
us closer to conquering the spatial frontier.
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