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Abstract

IMPORTANCE The recent successes of poly-ADP ribose polymerase (PARP) inhibitors and belzutifan
support germline genetic data as an exciting, accessible source for biomarkers in cancer treatment.
This study hypothesizes, however, that most oncology clinical trials using germline data largely
prioritize BRCA1/2 as biomarkers and PARP inhibitors as therapy.

OBJECTIVE To characterize past and ongoing oncology trials that use germline data.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cross-sectional study of oncology trials
used the Informa Trialtrove database to evaluate trial attributes. Trials using germline information
(including the terms germline, hereditary, or inherited in the title, treatment plan, interventions, end
points, objectives, results, or notes) and conducted globally between December 1, 1990, and April
4, 2022 (data freeze date), were included.

MAIN OUTCOMES AND MEASURES Trials by cancer type, phase, participants, sponsor type, end
points, outcomes, and locations were described. Associated biomarkers and mechanisms of action
for studied therapeutic interventions were counted. How germline data in trial inclusion and
exclusion criteria are associated with end points, outcomes, and enrollment were also examined.

RESULTS A total of 887 of 84 297 (1.1%) oncology clinical trials in the Trialtrove database that use
germline data were identified. Most trials were conducted in cancer types where PARP inhibitors are
already approved. A total of 74.8% (672) of trials were performed in the phase 2 setting or above.
Trials were primarily sponsored by industry (523 trials [59.0%]), academia (382 trials [43.1%]), and
the government (274 trials [30.9%]), where trials may have multiple sponsor types. Among 343 trials
using germline data with outcomes in Trialtrove, 180 (52.5%) reported meeting primary end points.
Although BRCA1/2 are the most frequent biomarkers seen (BRCA1, 224 trials [25.3%]; BRCA2, 228
trials [25.7%]), trials also examine pharmacogenomic variants and germline mediators of somatic
biomarkers. PARP inhibitors or immunotherapy were tested in 69.9% of trials; PARP inhibition was
the most frequently studied mechanism (367 trials [41.4%]). An overwhelming number of trials using
germline data were conducted in the US, Canada, and Europe vs other countries, mirroring disparities
in cancer genetics data. Germline data in inclusion and exclusion criteria are associated with altered
end point, outcomes, and enrollment compared with oncology trials with no germline data use.
Examples of inclusion and exclusion criteria regarding germline data that may unintentionally
exclude patients were identified.

CONCLUSIONS AND RELEVANCE These findings suggest that for germline biomarkers to gain
clinical relevance, trials must expand biomarkers, therapies, and populations under study.
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Introduction

The role of germline genetic data, defined here as inherited or hereditary variants, has changed
dramatically in oncology management. Classically, germline data determine the risk of developing
cancer associated with familial syndromes (eg, Lynch or Li-Fraumeni syndromes).1 Somatic genetic
data from tumor tissue provide biomarkers for treatment estimation and prognostication.2 However,
with the first US Food and Drug Administration approval of a poly-ADP ribose polymerase (PARP)
inhibitor for germline-variant BRCA-associated ovarian cancer in 2014 and the 2021 approval of
belzutifan for germline-variant VHL-associated kidney cancer, germline genetic data entered the
sphere of treatment-associated biomarkers.3,4 Sessions discussing germline variants as predictive
were held at the 2022 American Association of Cancer Research and American Society of Clinical
Oncology conferences.5,6

Given the rapid expansion in the clinical utility of germline data in medical oncology, we report
on the landscape of past and ongoing oncology trials using germline data. We hypothesized that,
given the success of PARP inhibitors, most trials would focus on variations in genes in the DNA
damage repair pathway (such as BRCA1, BRCA2, and PALB2) as therapeutic biomarkers, and
accordingly PARP inhibitors as therapy, rather than expanding to other hereditary cancer
syndrome genes.

To develop the first landscape of clinical oncology trials that use germline data and test this
hypothesis, we used the Informa Trialtrove database , an online repository of trials that includes
ClinicalTrials.gov among more than 58 000 sources.7,8 Our study describes these trials, the most
frequently studied germline genes and associated treatments, and considerations for future studies.

Methods

Trialtrove
This study did not undergo institutional review board review. Informed consent was not needed. This
is a secondary analysis of published reports with data at the trial level and so not is considered human
participants research in accordance with 45 CFR §46. The Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline for cross-sectional studies was
used to ensure accurate reporting.

Data in Trialtrove are presented in a more structured format compared with ClinicalTrials.gov,
facilitating searches using formal language methods.9,10 Each trial in Trialtrove contains more than 75
fields of data. Structured columns make it possible to categorize data from identified trials using
automated computational methods. As Trialtrove access requires a paid license,11,12 we can only
report summary information.

Search Strategy
In this retrospective cross-sectional study, we retrieved all oncology trials (84 297 trials) included in
Trialtrove with a data freeze date of April 4, 2022. We searched 9 columns for these trials using a
Python script (see eMethods in the Supplement). We defined oncology trials as using germline
information if the terms germline, hereditary, or inherited were present in the searched columns.

Trial Analysis
To characterize the portfolio of germline clinical trials, we used as input the subset of trials (887 trials)
found by the search strategy detailed in eMethods in the Supplement. Pathways included are from
the Gene Ontology: Biological Process set.13

To determine risk of inadvertent recruitment exclusion associated with inclusion and exclusion
criteria, we applied the Python method re.search() to the inclusion criteria and exclusion criteria
free-text fields in Trialtrove for the 887 trials. In addition to the prior search terms, we searched
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variant, mutation, allele, and pathogenic in the inclusion and exclusion fields. Inclusion and exclusion
criteria were then reviewed manually and duplicates removed for the resulting subset (322 trials).

Statistical Analysis
Descriptive analyses of the data were conducted. We performed Cochran-Mantel-Haenszel tests
stratified by trial phase to compare categories of primary end points and outcomes between trials
that used germline data as part of eligibility criteria and oncology clinical trials with no germline data
use (nongermline). Trialtrove reports accrual percentage for each trial. We tabulated the frequency
of trials with various ranges of accrual percentages (ie, 0% to 10% accrual, 10% to 20% accrual, …,
and �100%) in each group and applied a Pearson χ2 test to compare accrual rates. P < .05 was
considered significant in 2-sided tests. Tables and figures were generated using R statistical software
version 4.1.2 (R Project for Statistical Computing) except for Figure 3, which was generated in Tableau
version 2021.4.3.14

Results

Attributes of Clinical Trials Involving Germline Data
Of 84 297 oncology trials included in Trialtrove as of April 4, 2022, 887 (1.1%) included the search
terms germline, inherited, or hereditary as part of the fields listed in eMethods in the Supplement
(Figure 1 and Table). Although trials occur in at least 42 cancer types (additional, rarer subtypes
consolidated under other), most trials include cancer types already FDA-approved for PARP
inhibitors, with 259 trials (29.2%) in breast cancer; 168 trials (18.9%) in ovarian, primary peritoneal,
and fallopian tube cancer; 107 trials (12.1%) in prostate cancer; and 78 trials (8.8%) in pancreatic
cancer. Otherwise, the most frequent cancer types include colorectal (112 trials [12.6%]), non–small
cell lung (99 trials [11.2%]), and other solid tumors (87 trials [9.8%]) (Figure 1A and eTable 1 in the
Supplement). Percentages add to more than 100 because some trials evaluate multiple cancer types.
Most of the 887 trials (651 [73.4%]) include patients with metastatic disease.

Most trials (672 [75.8%]) were phase 2 or above (Table and Figure 1B). More than half of trials
(523 [59.0%]) were sponsored by industry, 382 (43.1%) by academia, and 274 (30.9%) by
government (Table). A total of 343 trials (38.7%) have outcome data reported in Trialtrove
(eMethods in the Supplement). All but 3 trials had information in either trial outcomes or trial status
(Table and Figure 1B); 180 trials (52.5%) were designated as having a positive outcome in Trialtrove
(either completed, positive outcome or primary end point[s] met, or completed, early positive
outcome) (eMethods in the Supplement). Of these 180 trials, 141 (78.3%) were phase 2 or above
(Figure 1B). Reasons that trials were terminated included poor enrollment, lack of efficacy, business
decisions, and safety and adverse effects. One trial (not shown in Figure 1B) was terminated due to
lack of funding.

Germline Data Biomarkers Used in Clinical Trials Involving Germline Data
The most common biomarkers studied in clinical trials involving germline data are shown in Figure 2A
(eTable 2 in the Supplement). The most frequent genes were BRCA2 (228 trials [25.7%]) and BRCA1
(224 trials [25.3%]). Biomarkers were most frequently involved in DNA repair, with the most
non-BRCA biomarkers being homologous recombination deficiency, measured through any method
(80 trials [9.0%]), PALB2 (59 trials [6.7%]), and ATM (55 trials [6.2%]). After DNA repair, biomarkers
were most frequently associated with pharmacogenetic pathways.

Among the top 10 biomarkers used in trials, we identified 2 genes typically associated with
somatic cancer features. ERBB2 can be used as a biomarker for ERBB2-targeted treatments and was
evaluated in 44 trials (5.0%). EGFR can serve as a biomarker for some EGFR-directed therapies and
was associated with 40 trials (4.5%). Trials studying ERBB2 and EGFR most often sought germline
modifiers of therapeutic response; 5 trials examined germline variants in EGFR.
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Figure 1. Cancer Types, Designs, and Outcomes of Oncology Clinical Trials Using Germline Data
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Figure 2B shows the most common biomarkers and positive or negative trial outcomes in
Trialtrove. Biomarkers associated with the DNA damage repair pathway demonstrated a higher
frequency of positive outcomes than other pathways.

Therapies Studied in Clinical Trials Using Germline Data
Among the 887 trials in Trialtrove, 885 were listed with a primary therapy or combination of
therapies by mechanism of action (eTable 3 in the Supplement). PARP inhibition (367 trials [41.4%]),

Table. Descriptive Characteristics of Oncology Clinical Trials That Use
Germline Dataa

Characteristic
Trials, No. (%)
(N = 887)

Cancer stages of patients

Early stage (neoadjuvant or adjuvant) 162 (18.3)

Stage

I 112 (12.6)

II 178 (20.1)

III 462 (52.1)

IV, advanced, or metastatic 651 (73.4)

Trial phase

1 114 (12.9)

1/2 101 (11.4)

2 389 (43.7)

2/3 15 (1.7)

3 197 (22.2)

4 35 (4.0)

Other 36 (4.1)

Sponsor type

Academic 382 (43.1)

Cooperative group 241 (27.2)

Miscellaneous 10 (1.1)

Industry 523 (59.0)

Not for profit 47 (5.3)

Government 274 (30.9)

Trial status

Planned 16 (1.8)

Open 174 (19.6)

Completed

Positive outcome or primary end point(s) met 180 (20.3)

Outcome NOS 262 (29.5)

Negative outcome or primary end point(s) not met 75 (8.5)

Closed, outcome NOS 75 (8.5)

Terminated

Business decisions 15 (1.7)

Lack of efficacy 19 (2.1)

Multiple reasons 20 (2.3)

Reason NOS 14 (1.6)

Poor enrollment 28 (3.2)

Safety or adverse effects 5 (0.6)

Lack of funding 1 (0.1)

No data 3 (0.3)

Abbreviation: NOS, not otherwise specified.
a Each of the 887 trials may include multiple categories of stages or sponsors.

However, each trial has exactly 1 phase category, with trials considered to be
combination studies denoted as such.
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angiogenesis inhibitors (331 trials [37.3%]), and immunotherapy (253 trials [28.5%]) were the most
frequently tested therapies. Overall, PARP inhibitors or immunotherapy were tested in 69.9% of
trials. Combinations involving PARP inhibitors were described as the primary intervention in 108
trials, vs 52 trials for angiogenesis inhibitors, and 42 trials for immunotherapy. These findings are
consistent with approvals of PARP inhibitor therapy for patients with germline BRCA1/2 variations.
Olaparib, a PARP inhibitor, combined with bevacizumab, an angiogenesis inhibitor via VEGF, is a
therapeutic approach in ovarian cancer. Immunotherapy is approved for patients with microsatellite
instability potentially arising from germline variations in MLH1, MSH2, MSH6, and PMS2.

Countries Where Clinical Trials Using Germline Data Are Conducted
Because trials have inconsistent reporting regarding race, and almost no trials collect sufficient
genomic data for ancestry, we examined countries in which these trials were being performed,
obtaining the distribution visualized in Figure 3. Most studies are being conducted in the US (569
trials [64.2%]). Beyond the US and Canada, the top 10 countries performing clinical trials involving
germline data are in Europe. South Korea (90 trials [10.2%]) and China (74 trials [8.3%]) were the
best represented Asian countries, Brazil was the best represented South American country (53 trials

Figure 2. Biomarkers Included in Oncology Clinical Trials Using Germline Data
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[6.0%]), and South Africa the best represented African country (30 trials [3.4%]). As trials may be
conducted in multiple countries, percentages add to more than 100.

Association of Germline Inclusion and/or Exclusion Criteria vs No Germline Data Use
With Trial Attributes
Our search identified 322 of 887 trials (36.3%) that included germline information in inclusion and/or
exclusion criteria. We compared primary end points, recruitment, and outcomes in Trialtrove
between these 322 trials and the 83 410 oncology trials that did not use any germline information
(nongermline). Trial end points and outcomes showed significant association with eligibility criteria.
Germline trials used survival-based end points less frequently than nongermline trials (eFigure 1 in
the Supplement). Germline trials also had a higher relative distribution of completed positive studies
and open studies (eFigure 2 in the Supplement). Eligibility criteria had a significant association with
accrual rate, with a higher proportion of germline trials reporting greater than 100% anticipated
accrual compared with nongermline trials (eFigure 3 in the Supplement).

Germline variants from underrepresented populations were more frequently categorized by the
2015 American College of Medical Genetics criteria as variants of uncertain significance, (VUS) in
accordance with limited data.15 Patients may therefore be excluded if inclusion and exclusion criteria
require pathogenic germline variants not directly related to a population being studied or mechanism
of action. We sought to determine whether any germline variation requirements may result in
inadvertent recruitment exclusions.

Trials were considered at risk for potential recruitment exclusion if (1) inclusion criteria specified
ancestry-specific or population-specific variants without focusing on those populations, or (2) if
germline variant pathogenicity or likely pathogenicity was required for an interventional study for
patients with cancer without additional routes for trial inclusion (investigator review, clinical criteria
for syndromes, family history review, and so forth). The latter standard was not applied to studies
that sought unaffected carriers of pathogenic or likely pathogenic germline variants for screening or
prevention.

Three trials16-18 explicitly mentioned ancestry-specific inclusion criteria not related to their
research questions. Each trial specified that patients of Ashkenazi Jewish ancestry with personal
history of breast cancer or family history of cancer were eligible given possible germline BRCA-variant
status, but none of these trials stipulated that such patients would undergo any risk evaluation or
germline testing to confirm variation status before participation. No trials in our search listed specific
founder variations as part of inclusion criteria. Of note, 1 trial19 stated, “It is expected that BRCA

Figure 3. Distribution of Oncology Clinical Trials Using Germline Data by Country
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testing will be covered as medically necessary by the patient’s insurance carrier.” This specific
criterion is associated with disparities in genetic testing.20,21 Fifty-three trials (14.7%) required
pathogenic germline variations without providing additional routes for patients to be considered
eligible for study.

Discussion

To our knowledge, this cross-sectional study is the first to describe the landscape of oncology trials
using germline data. Consistent with our hypothesis, most trials currently using germline data
prioritize BRCA 1/2 and explore additional indications for PARP inhibitors (such as earlier-stage
disease) in cancer types where PARP inhibitors already work.

We used Trialtrove for this project. This database not only expands on data available from
ClinicalTrials.gov, but also provides annotation and data curation to facilitate computationally driven
search strategies. As of July 2022, we found only 1 other oncology trial landscape project that used
Trialtrove, a review of neoadjuvant and adjuvant immunotherapy clinical trials.12 Although our initial
search was similar to that of Wu et al,12 our downstream assessment included biomarkers and
inclusion and exclusion criteria, as well as treatments under study.

We observe a 52.5% trial success rate among the trials in our study with reported outcomes. In
a landmark 2015 study by Wong et al22 using Trialtrove data, phase 2 and above oncology trials were
estimated to have success rates of 32.7% (95% CI, 31.5%-33.9%) from phase 2 to phase 3 and 35.5%
(95% CI, 32.8%-38.2%) from phase 3 to approval. Although the advent of immunotherapy would
likely increase estimated success rates from Wong et al,22 the researchers reported that study
biomarkers improved likelihood of trial success.

Our excitement at this comparison, though, remains tempered by the oncology field’s
persistent focus on BRCA1/2 and PARP inhibitors, which likely exacerbates selection bias. We observe
reduced use of survival end points among trials that use germline eligibility criteria compared with
nongermline trials and, accordingly, higher relative frequencies of trials reaching positive outcomes
compared with the broader community of oncology studies. These findings mirror FDA approvals
over the past decade, with many approvals for additional indications in cancer types and treatments
that already have approvals.23 The funding pattern is also consistent with the broader oncology trial
community, with more than half of trials in the germline space receiving industry sponsorship and the
remainder sponsored by academic, government, and cooperative group settings.24 Microsatellite
instability status, often reflective of variations in high-penetrance Lynch syndrome genes (MSH2,
MSH6, MLH1, and PMS2), estimates immunotherapy response.25,26 Yet any given mismatch repair
gene was a biomarker in fewer than 20 studies, compared with more than 200 trials each for
BRCA1/2. To expand the potential benefits of germline data in oncology across more patients, trials
must expand beyond the well-trodden BRCA-PARP space.

Exciting steps toward broadening germline data use appear across a few domains.
Pharmacogenomics was the most frequently studied pathway beyond DNA damage repair. Genes
associated with pharmacogenomics are not typically included on hereditary cancer panels.
Increasing data on variant penetrance, decreasing cost of testing, and inclusion of pharmacogenomic
testing in guidelines (as with UGT1A1 variants) offer practical reasons that pharmacogenomics can
and should expand germline relevance in cancer care.27 The significant association with increased
patient accrual we observed among trials that use germline eligibility criteria is encouraging for the
prospect of expanding germline-associated studies. We also identified clinical trials designed to
provide frameworks for studying germline modifiers of somatic biomarkers and treatment response
(such as for ERBB2 or EGFR) or identifying germline variants of known somatic biomarkers (as with
EGFR). These trials and these patients will provide critical future ground for exploring how germline
data influences cancer development and how somatic tumor data can guide future hereditary
syndrome understanding.28
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Our results validate and echo concerns about representation and bias in clinical trials,
particularly regarding genetics. Oncology clinical trials using and collecting germline data have been
conducted overwhelmingly in the US and Europe, reflecting existing global trends in oncology
trials.29 In germline genetics, such trial patterns maintain existing global clinical trial and care access
disparities and perpetuate existing disparities in genetics data availability across populations.30-33

Although our study found that such trials report higher-than-anticipated accrual rates, these rates do
not necessarily translate to more diverse patient recruitment. Approximately 2% of patients in the
US and European OlympiAD and OlympiA studies34,35 of Olaparib in metastatic and adjuvant breast
cancer were self-reported Black race, compared with 13% of the US population. The FDA’s recent
Race and Ethnicity Diversity Plans for trial development, as well as the National Cancer Institute’s
Center for Global Health, established in the past decade, are initial steps to reverse these trends.36,37

The intersection of clinical trials and germline genetics underlay our interest in ascertaining to
what extent inclusion and exclusion criteria may inadvertently exclude patients and contribute to re-
search biases.38-40 Four trials did so overtly; 316-18 mentioned Ashkenazi Jewish patients but conflated
indications for germline testing and indications for cancer treatment, while 119 stated that participating
patients were assumed to have insurance coverage for genetic testing. Fifty-three trials required patho-
genic germline variants without additional routes for trial inclusion, increasing the potential challenge
for patients of color whose variants are more frequently classified as VUS due to lack of data.

A few strategies may counteract the biases we identified. At a minimum, ancestry-specific
recruitment to clinical trials should be part of inclusion and exclusion criteria only when a study goal
includes learning more about the relevant population or group. Although we would never advocate
for enrolling all patients with germline VUSs in research studies without context, some clinical trials in
our study highlighted alternative approaches. For instance, NCT0460336541 specified inclusion
allowance for “[VUS] in patients with strong personal or family history where the clinician makes a
presumed clinical diagnosis.” NCT0328684242 stated that “Mutations that are not clearly pathogenic
may be assessed by a committee of genetic specialists to adjudicate if the patient is eligible.”

Limitations
Our study has limitations aligned with Trialtrove data. Full Trialtrove data are available only via paid
license. If fields in Trialtrove were insufficiently or inaccurately populated, we were not able to
include those data in this work. We did not analyze distribution of individual-level race and ethnicity
within trials, for instance. Trialtrove personnel were informed of errors we found to improve future
annotation. Relative paucity of known outcome data, for example, is an overlapping weakness in
both Trialtrove and ClinicialTrials.gov. We also did not have individual-level data, such as response
rates, for meta-analyses of these trials.

There are 2 potential sources of error in our algorithm as related to Trialtrove. The Trialtrove
curation method for adding genes to the Oncology Biomarker field for a trial is purely syntactic.
However, Trialtrove curators may not capture biomarkers relevant to germline studies (if described
generally as pharmacogenetic modifiers). This would result in undercounting we are not able to
address. We may have also erroneously judged that a trial used germline data related to a biomarker
when it did not. To limit overcounting, we manually reviewed and verified each trial for each
biomarker associated with least 5 trials overall in eTable 2 in the Supplement.

Conclusions

In the past decade, oncologists have dramatically advanced their clinical use of genetic data.
Successes of targeted therapies developed from hereditary cancer genetics set the stage for future
opportunities. This summary of clinical trials leveraging germline data provides an impetus for
investigators and drug developers to think beyond BRCA 1/2 and PARP inhibitors, to explore other
targets from hereditary cancer syndromes, and to be more thoughtful about trial recruitment in
the process.
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