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Bias reduction in representation 
of histopathology images using 
deep feature selection
Azam Asilian Bidgoli 1,2, Shahryar Rahnamayan 2,3*, Taher Dehkharghanian 4, Ali Grami 2 & 
H.R. Tizhoosh 5,6

Appearing traces of bias in deep networks is a serious reliability issue which can play a significant role 
in ethics and generalization related concerns. Recent studies report that the deep features extracted 
from the histopathology images of The Cancer Genome Atlas (TCGA), the largest publicly available 
archive, are surprisingly able to accurately classify the whole slide images (WSIs) based on their 
acquisition site while these features are extracted to primarily discriminate cancer types. This is clear 
evidence that the utilized Deep Neural Networks (DNNs) unexpectedly detect the specific patterns of 
the source site, i.e, the hospital of origin, rather than histomorphologic patterns, a biased behavior 
resulting in degraded trust and generalization. This observation motivated us to propose a method 
to alleviate the destructive impact of hospital bias through a novel feature selection process. To this 
effect, we have proposed an evolutionary strategy to select a small set of optimal features to not only 
accurately represent the histological patterns of tissue samples but also to eliminate the features 
contributing to internal bias toward the institution. The defined objective function for an optimal 
subset selection of features is to minimize the accuracy of the model to classify the source institutions 
which is basically defined as a bias indicator. By the conducted experiments, the selected features 
extracted by the state-of-the-art network trained on TCGA images (i.e., the KimiaNet), considerably 
decreased the institutional bias, while improving the quality of features to discriminate the cancer 
types. In addition, the selected features could significantly improve the results of external validation 
compared to the entire set of features which has been negatively affected by bias. The proposed 
scheme is a model-independent approach which can be employed when it is possible to define a bias 
indicator as a participating objective in a feature selection process; even with unknown bias sources.

Under a light microscope with various magnification settings, histopathology is the study of alterations in tis-
sue samples1. Histopathology examination is typically required when a definitive diagnosis is needed due to the 
invasive nature of biopsy techniques2. Additionally, pathology is used to diagnose a wide range of inflammatory 
conditions, infections, and metabolic and autoimmune illnesses3–6. A new avenue for the application of com-
puter vision techniques used in computer-aided diagnostic (CAD) systems has been created by the digitization 
of standard tissue glass slides into Whole Slide Images (WSIs)7. One of the prospective uses of computational 
pathology to aid pathologists is image search8–10. It provides search through a WSI database for images with 
equivalent histomorphological characteristics or a specific region of interest. End-users may discover their first 
diagnosis, acquire more about the patient’s prognosis, and ultimately arrive at the final diagnostic interpreta-
tion when integrating additional data using the information acquired from comparable instances. As a result, 
content-based image search can aid in the growth of precision medicine.

WSIs are generally gigapixel images (e.g., 100 k × 100 k pixels) in which a set of much smaller tiles/patches 
should be extracted to represent each WSI11. Then features, as the representatives of histopathological patterns 
of images should be extracted. Analogous to other computer vision fields, histopathology has also been heavily 
influenced by the emergence of Convolutional Neural Networks (CNNs) which have become an integral part of 
digital pathology12. Nowadays, many researchers prefer to use pre-trained CNNs for feature extraction9,10,13. The 
quality of features plays a crucial rule in the performance of a digital pathology tasks such as image search and 
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classification. In the medical domain, in order to evaluate the generalization capability of any model, including 
a trained deep model, “external validation” is conducted, in which the model is tested on a set of unseen data. 
The necessity of external validation in medical image analysis is widely accepted as the accuracy of the model is 
significantly degraded in many reported cases14. One of the possible reasons of this crucial validation process is 
the potential existence of bias in medical images. Avoiding biased data and biased training are crucial challenges 
in AI15,16. Many machine learning methods are unsuccessful on unseen data from similar domains while they 
achieve highly promising results on training or test sets within the same domain. Additionally, the decisions of 
an AI algorithm should not reflect discriminatory behavior toward certain groups or populations17; various types 
of bias can negatively affect a data-driven model simultaneously18. In a recent study, Howard et al.19 reported 
that the distribution of clinical information in the TCGA data, such as survival and gene expression patterns, 
remarkably differs among samples provided by various clinics and laboratories. They showed that some models 
detect source sites instead of predicting prognosis or mutation states; which is neither expected nor desired. 
Many works have been conducted to eliminate these site-specific signatures to enhance the reliability of histologic 
image analysis, some through correcting the differences in slide staining between institutions20. Some research 
works tried to utilize the methods proposed by Reinhard et al. and Macenko21,22 to decrease color variation across 
images. Additionally, other works23,24 utilized color augmentation, where the color channels are altered at random 
during training to prevent a model from learning stain characteristics of a specific site. Most research works on 
stain-normalization and augmentation techniques have focused on model performance in validation sets, rather 
than elimination of the site-specific signature that may lead to a biased model25,26. In addition, bias may exist in 
any type of medical images. DeGrave et al.27 showed that the trained models on radiographic images are more 
likely to learn medically irrelevant shortcuts, usually attributable to bias in data acquisition, instead of the actual 
underlying pathology related information. In28, the authors revealed that an approach may be subject to bias if 
the feature extractor is trained on specific institution datasets and potential hidden biases are not accounted for. 
Factors such as scanner configuration and noise, stain variation and artifacts, and source site patient demograph-
ics are more likely potential reasons for the observed biases28. The bias detection and recognition would be more 
challenging when we are faced with multiple types of biases simultaneously. In order to overcome bias in DNNs, 
some works29 tried to find the relationship between the attributes existing in an image to discover those that 
cannot be well learned by CNN. Authors proposed a method to discover potentially biased representations hid-
den in a pre-trained CNN. In addition, a representation-based bias may be removed by resampling technique30. 
The proposed method looks for a set of weights at the example level that penalizes samples that are simple for a 
classifier created using a given feature representation. This is accomplished by learning an independent linear 
classifier and employing a DNN as a feature extractor for the desired representation. Then, minimizing the 
difference between this classifier’s loss on the reweighted dataset and the uncertainty of the ground truth class 
labels is equivalent to the minimizing bias.

In a recent study28, the existence of bias in histopathology images of The Cancer Genome Atlas (TCGA)31 was 
investigated. It was established that the deep features extracted from the images are able to accurately distinguish 
the WSIs based on their acquisition site. Therefore, samples provided by each institution apparently have similar 
clinical characteristics possibly stemming from various factors, such as digital scanner configuration and noise, 
tissue stain variation and artifacts, and source site patient demographics. This reveals that DNNs are perhaps 
unexpectedly detecting the specific irrelevant patterns of source site rather than histomorphologic patterns which 
results in failure against an external validation. Surprisingly, the bias issue with features is regardless of whether 
a pre-trained DNN such as DenseNet32 is utilized as the feature extractor or a state-of-the-art DNN trained on 
cancer subtypes such as KimiaNet33. In other words, even if a DNN is not specifically trained on histopathology 
images, it is able to discriminate the sources of the samples. This is likely because the utilized data for extract-
ing the features is still bias-contaminated. Therefore, in addition to the challenge of biased training, apparently 
there exist some tissue source-site specific patterns in TCGA images (originating from many hospitals) which 
can be even reflected in features extracted by pre-trained networks. That is possibly related to the non-optimal 
design of the DNNs structure which leading to extracted non-optimal set of features34. Consequently, it seems 
that DNNs have a tendency to learn irrelevant shortcuts patterns related to data acquisition sites, rather than 
the actual underlying morphological information28.

In order to tackle these bias issues, three categories of solutions can be imagined. Since the bias originates 
from the institutions that contributed WSIs to the dataset, the issues such as variation in tissue processing, tis-
sue stain protocols, stain quality, color intensity, scanning hardware platforms, and imaging protocols should 
be considered for filtering the bias; This, however, does not seem to be an easy task to enforce standardization 
guidines for general bias filtering, at least in foreseeable future. Alternatively, the training methods could prob-
ably be modified to avoid incorporating of hospital-identifying factors into images and consequently to improve 
the generalization of the model35–37. However, this cannot be an efficient solution for pre-trained networks or for 
DNNs which have been already trained on biased data. There are many DNNs that are presently being used for 
different applications despite of considering the effects of biased data and/or biased training33,38.

Motivated by the above considerations, elimination of biased features from the extracted original features 
can be an efficient and applicable approach as a post-processing solution for downstream tasks. In other words, 
the features that encompass the knowledge about the source institution can be removed so that the remaining 
features discriminate the cancer types through relevant information of histopathologic patterns rather than 
hospital-identifying visual clues. In this direction, we propose a feature selection framework to select a set of 
optimal features among the output of a feature extractor. An optimal set of features are those that discriminate 
the cancer types accurately but do not distinguish the images based on their acquisition source, i.e., the hospi-
tal. In fact, during the feature selection, we will explicitly enforce removal of the “bias-contaminated” features.

In this work, we propose three vital objectives for feature selection as an optimization problem. Similar to all 
feature selection processes in machine learning, the main goal is to remove redundant and irrelevant features to 
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achieve more accurate image analysis results. Thus, the first objective is defined as the maximization of accuracy 
of image search. But in addition to the performance of image search, it is desirable to reduce the bias toward 
source site in optimal feature set. Hence, the accuracy of classification on institute labels is assumed to reflect 
the bias and consequently is considered as the second objective to be minimized; in fact, the minimization of 
this objective will manage to remove the bias-contaminated features as much as possible by considering the 
trade-off between the two objectives.

Finally, shortening the feature vector representing a WSI enables us to sample more tissue patches for each 
WSI as digital pathology tasks such as image search can be sophisticated with current techniques. Accordingly, A 
small representative code will be essential for both greatly speeding up image retrieval and utilising less memory. 
The main contribution of this paper is to design a framework to alleviate the bias as a post-processing technique. 
To the best of our knowledge, this is the first time that a proposed framework can effectively address the bias 
issue for pre-trained networks. We tailor the evolutionary algorithms for this purpose. The innovation of this 
study is not only in designing such a framework but also in proposing three objective functions to formulate 
the bias in medical images. The discovery of bias formulated by the capability of institution classification using 
histopathological features and proposing a solution to address it are pivotal for the research and pathologist 
community. The proposed framework can be utilized as a complementary approach with other bias control 
methods which work toward cleaning data or reducing bias during training phase; it is model-independent 
(pre-trained or newly trained ones) and can be utilized when defining a bias indicator is possible with no need 
to know about the source of the bias.

Briefly, the proposed feature selection can be modeled as a multi-objective optimization with three major objec-
tives. We tailored an evolutionary feature selection algorithm to select the best subset of features to increase the 
generalization performance of a compact representative code for histopathology images by reducing the internal 
bias and increasing the accuracy of image search simultaneously.

Results
A summary of dataset.  We utilized TCGA repository which consists of 32,072 WSIs for 32 primary diag-
noses. The labeling of these images is at the WSI level (i.e., no pixel-level delineations) and includes information 
such as ‘morphology’, ‘primary diagnosis’ and ‘tissue or organ of origin’.

Based on a previous study39,40, in which a deep network called “KimiaNet” has been trained for the purpose 
of histopathology feature extraction, only the permanent section (i.e., formal fixed, paraffin embedded tissue) 
diagnostic slides from the TCGA repository were used (i.e., frozen tissues sections were excluded due to their 
low quality). Cases with no diagnostic, morphological or magnification information reported in addition to the 
ones scanned at a magnification lower than 20× were also removed. Another step of the data cleaning was group-
ing the slides by the combination of their ‘morphology’, ‘primary diagnosis’ and ‘tissue or organ of origin’ and 
removing the ones with less than 20 instances, so each group has at least 2 slides available for the test set. This 
resulted in removing 2 of the 32 primary diagnoses, which are UCEC (Uterine Corpus Endometrial Carcinoma) 
and DLBCL (Diffuse Large B-cell Lymphoma).

According to41, images of TCGA are categorized into 12 tumor sites. These categories include: endocrine, 
hematopoietic, pulmonary, breast, brain, gastrointestinal tract, melanocytes, gynecological, prostate/testis, liver/
pancreaticobiliary, urinary tract, and mesenchymal. Each tumor site except mesenchymal, hematopoietic, and 
breast, consists of more than one primary diagnosis which enables classification task. Table 1 represents the 
number of samples and defined identity (ID) for each primary diagnosis.

Deep features and WSI indexing.  For the specific purposes of this work, we extracted two sets of features 
from the patches of the whole dataset, using “KimiaNet”40 as a network specifically trained on histopathology 
images and “DenseNet-121”32 as a pre-trained network. DenseNet-121 is a compact architecture with almost 7M 
parameters. The network is trained by 1.2 million natural images from ImageNet42. The architecture of KimiaNet 
is the same as DenseNet-121 but re-trained from scratch on TCGA histopathology images. The features are 
extracted from the last pooling layer.

On high-cellularity patches of TCGA images, KimiaNet is trained using soft labels. For the training, valida-
tion, and test datasets, respectively, the authors split the patches into 7126, 741, and 744 diagnostic WSIs during 
pre-processing processes. In order to extract the features based on the 30 primary diagnoses, the network is 
trained using a set of patches. As a consequence, a WSI is characterized by 135 feature vectors, each in size of 
1024. The mean of feature vectors (MFV) over all patches is utilised as a useful representation in order to reduce 
the amount of data needed for WSI representation. In this manner, a WSI is represented by the mean of feature 
vectors that only have 1024 values before to the feature selection. Because KimiaNet was trained on high cellularity 
patches, which impose homogeneity, MFV is relevant in our application.

In order to distinguish the primary diagnosis throughout the full dataset, as was already indicated, feature 
vectors are extracted (i.e., discrimination of 32 cancer types). However, the primary objective of an image 
retrieval system is to identify the images from a particular category of tumour type that are most similar to a 
given query image.

Bias reduction in representation of WSIs.  There exists significant bias toward the source institutions 
in extracted features by deep networks. This implies that DNNs may have learned to distinguish image source 
institutions as a form of biased shortcut to classify cancer types. If we assume that the features comprise of both 
relevant histologicall information and irrelevant non-morphologic tissue source site patterns, then, an optimal 
feature selection may be a logical approach to eliminate the biased features. Therefore, the proposed method 
aims to decrease the undesirable bias by selecting the optimal features set which distinguish the cancer types 



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19994  | https://doi.org/10.1038/s41598-022-24317-z

www.nature.com/scientificreports/

independently from institutes. Accordingly, our solution builds upon the concept of a post-processing phase of 
learning regardless of the type of data-driven feature extractor. Figure 1 illustrates the overall structure of the 
process proposed to generate a set of features to alleviate bias effects in histopathology image search.

As mentioned previously, the features are extracted from the images of TCGA repository which includes 12 
tumor type categories each of which encompasses several primary diagnoses (tumor subtypes) resulting in 32 
primary diagnoses in overall. For each tumor type, an optimal set of relevant features are selected among all 
extracted features to accurately classify the primary diagnosis related to corresponding tumor type. By this way, 
the multi-objective optimizer tries to eliminate all redundant, irrelevant, and biased features which is tailored 
for each tumor type accordingly.

In the light of the aforementioned points, feature selection is defined as a multi-objective optimization prob-
lem which can be solved by an evolutionary algorithm. Evolutionary algorithms have strong global optimization 
capabilities and can consider the combination of features in terms of multiple objectives43. An optimization 
model is made up of four main components: the objective functions that we intend to minimize or maximize, 
the problem encoding, the constraints of the problem (if any), and the optimization algorithm.

The fallowing three objectives are defined to select the optimal features in order to decrease the bias resulting 
from acquisition sites:

1.	 Maximization of the image search quality.  Mainly, the evolutionary feature vector is expected to increase 
the efficiency of image retrieval. In order to evaluate the quality of selected features, the most similar slides 
to a query WSI are retrieved. By removing redundant and irrelevant features, the best match of query image 
can be found. Evaluation of the image search is accomplished by calculating the F1-score of k-Nearest 
Neighbor (KNN) method on primary diagnosis labels33. As mentioned previously, one of the prospective 
uses of computational pathology is image search which provides case matching through a WSI database for 
images with equivalent histomorphological characteristics or a specific region-of-interest. We utilized the 
kNN technique to determine the top matched (i.e., the most similar) features when we searched through the 
features. However, to evaluate the performance of search, we have used KNN as a search-based classifier to 
quantify the efficiency of features. The KNN is one of the commonly used methods in this field. Therefore, 
the F1-score of image search is considered as the first objective, f1 , for a set of selected features, S. F1-score 
is a harmonic mean of precision and recall measures defined as the follows44.

Table 1.   The information of TCGA dataset. The tumor type categorization, tumor subtypes (primary 
diagnosis), short ID of each primary diagnosis, the number of test samples for each tumor, and the number of 
site sources for test samples are reported.

Tumor type Subtype ID #Test samples #Site sources

Brain
Brain lower grade glioma LGG 35

19
Glioblastoma multiforme GBM 39

Endocrine

Adrenocortical carcinoma ACC​ 6

22Pheochromocytoma and paraganglioma PCPG 15

Thyroid carcinoma THCA 51

Gastrointestinal

Colon adenocarcinoma COAD 33

22
Rectum adenocarcinoma READ 11

Esophageal carcinoma ESCA 14

Stomach adenocarcinoma STAD 30

Gynecological

Cervical squamous cell carcinoma and endocervical adenocarcinoma CESC 17

11Ovarian serous cystadenocarcinoma OV 10

Uterine carcinosarcoma UCS 3

Liver

Cholangiocarcinoma CHOL 4

17Liver hepatocellular carcinoma LIHC 35

Pancreatic adenocarcinoma PAAD 12

Mesenchymal
Uveal melanoma UVM 4

13
Skin cutaneous melanoma SKCM 24

Prostate/testis
Prostate adenocarcinoma PRAD 40

21
Testicular germ cell tumors TGCT​ 13

Pulmonary

Lung adenocarcinoma LUAD 43

25Lung squamous cell carcinoma LUSC 38

Mesothelioma MESO 5

Urinary tract

Bladder urothelial carcinoma BLCA 34

29
Kidney chromophobe KICH 11

Kidney renal clear cell carcinoma KIRC 50

Kidney renal papillary cell carcinoma KIRP 28
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where Precision can be calculated as

Similarly, Recall can be given as

2.	 Minimization of the number of required features.  When building a classification model on high-dimen-
sional data, the “curse of dimensionality” is a crucial problem, according to45. A shorter code can reduce the 
complexity of memory needs while simultaneously speeding up retrieval in datasets with many gigapixel 
pictures. Even when there are less characteristics, there may still be insufficiently relevant information for 
the learning system to accurately categorize WSIs46. As a result, it is thought that the size of the feature vector 
and classification accuracy are two conflicting objectives. In the optimization phase, a string with a length 
equal to the number of features is used to represent each individual for feature selection. A feature’s status is 
represented by a cell in the vector, where a value of ‘0’ denotes a feature’s rejection and a value of ‘1’ denotes 
a feature’s selection.Therefore, the number of selected features is equivalent to the total number of ‘1’s in the 
vector. Hence, given a set of all features represented by a binary vector, m1,m2, . . . ,mD , the ratio of selected 
features, S, as the second objective, f2 , is calculated as follows:

where D is the total number of features.
3.	 Minimization of the bias of image acquisition source. On the flip side, the bias toward the acquisition 

source can be defined by the accuracy of institute classification. Therefore, the third objective of feature 
selection can be reasonably defined as the minimization of institute classification accuracy over the selected 
features. Ideally, the extracted features should not be the representatives of their source institute. Hence, 
accurate classification of acquisition sites using the features reveals the existence of bias and may inevitably 
lead to considerable drop in accuracy for processing of external data (i.e., images from unseen hospitals). In 
order to avoid the bias, the optimization algorithm explores the search space of features to find the optimal 
set of features with minimum accuracy of institute classification. Similar to what we done for image search 
accuracy, the quality of selected features for constructing a model to accurately classify the institutions is 
assessed. To this effect, each image is labeled with the cooperated institution instead of primary diagnosis. 
The best of features should not represent the information related to institutions, hence, we select a set of fea-
tures with minimum accuracy of institution classification. Hence, the third objective, f3 , for a set of selected 
features, S, is calculated as follows:

(1)f1(S) = F1- score = 2×
Precision× Recall

Precision+ Recall
,

(2)Precision =
True Positive

True Positive+ False Positive
.

(3)Recall =
True Positive

True Positive+ False Negative

(4)f2(S) =
1

D

D∑

i=1

mi ,

Figure 1.   The overall process of the removing the features with carrying highest amount of bias. The green 
block represents the steps of data patch selection and feature extraction whereas the optimization process is 
presented in the blue block. The final output is a set of non-dominated solutions (i.e., feature subsets). D reflects 
the number of extracted features.
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Results on TCGA dateset.  In this section, we explain the conducted experiments in order to assess the 
proposed feature selection for gigapixel pathology images to decrease the bias. The series of experiments inves-
tigate the effectiveness of selected features in terms of the value of objectives. The main goal of experiments is 
to observe whether the optimizer is able to select an optimal set of features with minimum bias toward image 
acquisition source.

In this study, 12 independent tumor-based optimization problems are defined to decrease the number of fea-
tures and to select the optimal subset specialized for each tumor type category by decreasing the bias, increasing 
the image search accuracy, and decreasing the number of selected features, simultaneously.

Following some preliminary trials, the population size and the number of fitness calls were set at 50 and 
512,000, respectively. The validation set images are searched among the training set using the k-nearest neigh-
bour technique47. In order to assess the potential solutions during the optimization process. To get the average 
F1-score across all primary diagnoses, three images that are the most close in terms of Euclidean distance are 
obtained. The second goal is to determine how many features were chosen. In order to classify the images based 
on their institutes of origin, we need to employ one of the state-of-the-art classification algorithms. To this effect, 
a one-versus-all Support Vector Machine (SVM) with linear kernel is trained on the training images. The SVM is 
a machine learning method that has become exceedingly popular for its simplicity, flexibility, and effectiveness 
for addressing a range of classification problems. SVMs stand out for their ability to provide balanced predicted 
performance, even in research with potentially small sample numbers48.

The corresponding subset of features is selected in training set and then the accuracy is obtained on validation 
set as the third objective. Due to the stochasticity of evolutionary algorithms, according to49, the experiments 
are conducted as 31 independent runs resulting in 31 Pareto-fronts. The final feature subsets on Pareto-front 
are evaluated on the test set. Finally, the Wilcoxon statistical test50 is conducted to analyze the significance of 
the generated results.

Figure 2 illustrates the resultant Pareto-fronts (i.e., non-dominated solutions) for two sample tumor sites. 
There are a set of trade-off solutions at the end of the optimization process. For those subsets with more features, 
the image search accuracy is higher and also the hospitals/institutions are classified less accurately. However, the 
range of resultant objective values can be various for different sites. As it can be seen, the optimizer selected the 
subsets with maximum 60 features to distinguish primary diagnoses of gynecological whereas the maximum 
number of features for urinary tract is 20.

In addition, Table 2 represents the results of evolutionary features in terms of F1-score of image search and 
classification accuracy of hospitals/institutions. From all non-dominated candidate solutions, we picked the 
feature subset with maximum F1-score on tumor type search. As previously mentioned, the total number of 
features is 1024 whereas the evolutionary algorithm selected 13 and 15 features on average among the KimiaNet 
and DenseNet features, respectively. This considerable drop may be attributed to two different factors. First, 
because the network is generally trained to identify all sorts of cancers (i.e., 32 classes), only a very limited frac-
tion of features may be chosen for a given tumour category consisting up to four primary diagnosis. Second, 
it’s possible that the trained DNNs’ topology is not optimal, which might cause it to extract a lot of useless 
information during training. The proposed approach therefore selects a subset of evolutionary features for each 

(5)f3(S) = Accuracy =
True Negative+ True Positive

total number of samples
.

Figure 2.   Non-dominated solutions for two samples of primary sites, Gynecological and Urinary Tract. 
Trade-off solutions are presented in terms of the values of three objectives. The minimum number of features, 
maximum image search accuracy, and minimum classification accuracy per institution are desired values for a 
resultant feature subset.
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tumour category in order to address the sub-optimality of retrieved information. This fraction can then more 
successfully and effectively carry out downstream tasks like retrieval and classification. From the table, extracted 
KimiaNet features (i.e., 1024) are able to classify the acquisition institutions with higher accuracy, i.e., 74.91%; 
however, the model is inherently trained for cancer subtype classification. This reveals the high bias of contrib-
uting institutions in the learning process of KimiaNet. The evolutionary algorithm decreased the number of 
required features for image search to 13 features on average whereas the F1-score of tumor search is increased 
to 87.19% as well. Interestingly, the accuracy of institute classification using the selected features is significantly 
reduced which results in 34.87% accuracy (i.e, 40% reduction). It is observed that the proposed evolutionary 
feature selection can eliminate the features leading to high bias of institute classification and selects those which 
augment the tumor search accuracy.

From Table  2, different accuracy values can be seen for various classes. This comes from the nature of the 
cancer types; for some classes such as Brain, the discrimination between the pathological patterns of two can-
cer subtypes (i.e., LGG and GBM) is sufficiently high and consequently, the differentiation is not difficult for 
classification algorithm. While for some organs, such as Gastrointestinal, there are some overlapping patterns 
between the samples of READ and COAD classes which causes the difficulty for algorithms to differentiate them.

Similar results are obtained using DenseNet features. Although DenseNet is a pre-trained network with no 
learning process on histopathology images, the classification accuracy of institutions is still high (i.e., 68.97%); 
just 6% less than the KimiaNet case which was trained with the biased data. This suggests that not only the learn-
ing process of deep networks can be biased by information of acquisition sites but also the TCGA images contain 
the clues of source institutions which are picked up by network during the feature extraction. Surprisingly, the 
accuracy of institution classification indicating the bias is even higher than the average F1-score of tumor subtype 
search. As it can be seen from the Table 2, selected evolutionary features could improve the image search based 
on the cancer type to 66.68% whereas the accuracy of institute classification is decreased to 32.29% (i.e., 36% 
reduction) as a result of conducted features selection.

According to the experimental results, the existence of bias toward the information of tumor site sources is not 
deniable. However, the elimination of such bias in extracted features can be accomplished as a post-processing 

Table 2.   The comparison between the results of all 1024 features extracted by KimiaNet and DenseNet and 
evolutionary features. Significant values are in [bold]. The F1-score of image search by 3-nearest neighbors, the 
classification accuracy of institutions, and the number of selected features are reported.

Tumor type Subtype #WSIs

KimiaNet DenseNet

All features (1024) Feature selection All features (1024) Feature selection

Institute class Tumor search #F Institute class Tumor search Institute class Tumor search #F Institute class Tumor search

Brain
LGG 35

84.5
84.51

10 34.98
86.49

77.87
77.78

14 38.14
83.33

GBM 39 85.71 86.49 78.95 84.21

Endocrine

ACC​ 6

66.53

54.55

14 31.16

100

56.32

18.18

10 39.13

46.15

PCPG 15 83.87 100 57.14 51.85

THCA 51 100 100 89.52 90.38

Gastrointes-
tinal

COAD 33

76.5

76.71

3 32.25

75.36

81.7

53.66

7 30.56

55

READ 11 42.11 22.22 22.22 50

ESCA 14 84.62 46.15 20 38.10

STAD 30 79.31 76.19 64.29 47.27

Gynecologic

CESC 17

58.42

97.14

40 43.66

97.14

54.55

83.33

13 27.97

87.18

OV 10 94.74 94.74 70 75

UCS 3 100 100 0 80

Liver

CHOL 4

83.6

50

2 48.87

85.71

73.5

0

37 49.88

36.36

LIHC 35 95.77 94.59 85.29 89.55

PAAD 12 73.68 85.71 56 75

Mesenchymal
UVM 4

74.67
66.67

19 30.04
85.71

74.1
40

3 30.72
66.67

SKCM 24 96 97.96 94.12 96

Prostrate
PRAD 40

73.72
100

17 48.48
100

75.81
96.39

3 34.69
95.12

TGCT​ 13 100 100 86.96 83.33

Pulmonary

LUAD 43

81.48

81.58

3 17.92

81.58

63.86

67.47

17 7.13

50.63

LUSC 38 86.36 83.72 66.67 53.49

MESO 5 75 100 0 57.14

Urinary tract

BLCA 34

74.81

94.29

10 26.45

97.14

63

82.67

30 32.37

82.05

KICH 11 90 90.91 38.10 33.33

KIRC 50 95.05 94 78.79 70.83

KIRP 28 87.27 85.19 70.59 55.56

Avg. ≈23 74.91 83.65 ≈13 34.87 87.19 68.97 57.62 ≈14 32.29 66.68
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phase applicable on any data-driven features extraction method. The proposed evolutionary algorithm selects 
those features that contain less discriminative patterns of source site institution and instead keep the expressive 
information to distinguish the cancer subtypes. By decreasing the undesirable correlation between the cancer 
type information and their source sites, we expect the selected features to lead to more accurate external valida-
tion, i.e., higher generalization. Therefore, even if models learn transiently useful but histologically irrelevant 
information from the images, the proposed feature selection can be effective to eliminate those features irrelevant 
to primary diagnosis patterns and consequently to prevent their negative impacts on WSI representation. The 
reported results clearly demonstrate that the idea of embedding bias reduction objective in the multi-objective 
feature selection process can promisingly reduce the bias up to 40% and 36% over the considered two state-of-
the-art DNNs as the case studies.

In order to transparently show the performance of selected features, it is essential to evaluate the capability 
of the optimized features to distinguish different tissue types of WSIs. K-means clustering was applied to cluster 
tissue patches of a renal clear cell carcinoma sample, using only the optimized subset of features to represent each 
tissue patch. The k was arbitrarily set to 3. The result is shown in Fig.  3. One can see that each cluster corresponds 
to a specific type of tissue. This visualization suggests that the optimized subset of features is both accurate for 
cancer type classification and retains its capacity to distinguish tissue types within a specimen.

External validation.  As mentioned previously, the destructive effect of existing bias in a dataset utilized for 
training a DNN is mostly on external data, i.e., the unseen samples from an institution that is not participated in 
training or test. We showed that we could reduce the bias on TCGA data by considering it as an objective func-
tion in our optimization. However, the institutions of images in test data had also participated in training and 
optimization phases. In order to investigate the benefits of the proposed method on generalization for the search, 
it is required to conduct external validation. Hence, the performance of the proposed method is validated using 
a set of external Kidney images which have not participated in neither training nor optimization process. The 
dataset consists of 142 samples of Kidney cancer subtypes from the Ohio State University. There exist 50 samples 
from KIRC subtype, 45 from KICH, and 50 from KIRP according to subtypes presented in Table 1. Similar to 
what we did for TCGA images, for each WSI, a set of patches are extracted. The KimiaNet is utilized to generate 
the 1024 features for each patch. The mean of all feature vectors is the representative of each WSI. The compari-
son is required between the accuracy of search of unseen samples using all extracted features (i.e., 1024) and 
selected features using the proposed method. The optimal features are output of the previous experiments (i.e., 
on TCGA images). Then each image of external data is considered as a query to search among the rest of images. 
The average F1-score resulting the search of all images is considered as the evaluation measure. Table 3 presents 

Figure 3.   K-means clustering was applied on the optimized subset of features to cluster tissue patches of a renal 
clear cell carcinoma into 3 classes. It shows that each cluster correlates to a different tissue type. Clusters 1, 2, 
and 3 correspond to fibrous tissue, normal renal tissue, and malignant regions, respectively.

Table 3.   A comparison between the results of external validation using all features and the selected features.

KICH KIRC KIRP Avg.

#WSIs 45 50 50 48.33

All features (1024) 86.05 75 78.43 79.83

Selected features 86.32 84.78 86.60 85.90
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the output of this comparison. As it can be seen, the F1-score values for searching the images among the external 
data are 86.05, 75, and 78.43 for KICH, KIRC, and KIRP, respectively. Whereas the selected features using the 
proposed method could achieve 86.32, 84.78, and 86.6 for KICH, KIRC, and KIRP, respectively, which shows 
6% improvement in average. As indicated in Table 2, the average value of F1-score on test data using all features 
was 90.77 while this number decreases to 79.83 on data from an external institution. This reveals that although 
the test data is necessary for assessing the accuracy of AI models, it is not sufficient to validate their performance 
against the bias. Accordingly, external validation becomes essential to show how the model performs on data 
from an external resource. Feature selection based on the minimization of the accuracy of institution classifica-
tion alleviates the impact of bias as the F1-score drops only 4.87% on the search of external data.

Discussion
In this work, we proposed a novel feature selection framework to reduce the effect of the biased features of DNNs 
when operating on histopathology images. The proposed framework is applied to the extracted features from the 
images as the output of the DNNs after they have been trained. Therefore, the presented bias reduction strategy 
is independent of the utilized dataset and the DNN itself since it operates as a post-processing stage of a learning 
framework. Feature selection aims to eliminate the irrelevant and redundant features that degrade the image 
analysis performance and remove the bias-contaminated features carrying the image acquisition site-specific 
patterns unintentionally present in digital slides. To this effect, three objectives, including maximization of image 
search accuracy, minimization of institution classification accuracy, i.e., defined as the bias indicator, and mini-
mization of the number of features for compactness, are considered. Two sets of experiments were conducted on 
features extracted using a pre-trained network and a DNN trained on histopathology images. The experimental 
results on NIH’s TCGA repository showed that the optimal features result in significantly lower classification 
accuracy of institution labels, alleviating the feature vector’s internal bias. However, the resultant representation 
code is highly compact and accurate for primary diagnosis discrimination. As one of the valuable experiments, 
we conducted external validation to clearly show the performance of selected optimal features on the unseen data 
from an institute that is not contributed to any part of the development of the method. This experiment clearly 
showed that the selected optimal features take advantage of the bias reduction and can search the images more 
accurately than all features. In conclusion, we have demonstrated in this paper that the proposed evolutionary 
framework can be beneficial in improving the generalization capability of feature extractors by alleviating the 
degrading impact of biased data on generalization and medical image analysis. This work demonstrated the 
potential for new complementary post-processing to overcome bias in deep learning.

The only assumption we make is that we can select the optimal features to minimize the accuracy of institute/
source classification. The group structure of genetic data might be useful in finding the relation between the 
genetic information and cancerous patterns but most likely after removing the bias. In this study, we just tried 
to select the best features with focus on alleviating the bias. The proposed method has formulated three objec-
tive functions which can be effective in decreasing bias and increasing the cancer type discrimination at the 
same time. This framework is designed based on the limited information that we could obtain to interpret the 
existence of bias in TCGA dataset. Definitely, as a future perspective and with more discovery on the source of 
bias, the complementary information51,52 will be more beneficial to address this issue. Clearly, in this direction, 
a reduced number of features will make the attempt of explainability more easier.

Methods
Proposed feature selection framework is designed based on a multi-objective optimization process. Accordingly, 
we need to define the objective functions based on which features are selected. The process of evolutionary feature 
selection is explained in the following subsections. By this type of process, a set of random combinations are 
initialized as a population and as the algorithm iterates, optimizer improves the individuals to find an optimal 
set of features considering the objective functions. The improvement of individuals (i.e., feature subsets) can be 
done using a couple of generative operators to create new combinations.

Multi‑objective optimization (MOO).  MOO targets handling two or more conflicting objectives. The 
use of evolutionary algorithms has been very promising for solving such problems53. The population-based 
nature of these algorithms results in generating a set of candidate solutions at each run of the algorithm. Collabo-
ration of individuals to make an optimal “Pareto-front”49 is the core reason for the success of population-based 
algorithms. The mathematical definition of multi-objective optimization problem can be defined as54

subject to

where M is the number of objectives, d is the number of decision variables (i.e., dimension), and the value of 
each variable, xxxi , is in interval [Li ,Ui] (i.e., box-constraints). fi represents the objective function, which should 
be minimized/maximized.

Due to the conflicting of objective functions in a multi-objective optimization problems, the definition of 
the optimality is not as simple as the single-objective case. Therefore, it is required to find a trade-off among 
objective functions. One of the commonly used concepts for comparing candidate solutions in such problems 

(6)Min/Max F(xxx) = [f1(xxx), f2(xxx), . . . , fM(xxx)],

(7)
Li ≤ xi ≤ Ui , i = 1, 2, . . . , d,

gi(xxx) ≤ 0 j = 1, 2, . . . , J ,

hk(xxx) = 0 k = 1, 2, . . . ,K ,
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is the concept of dominance which is defined as follows: If xxx = (x1, x2, . . . , xd) and xxx′ = (x′1, x
′
2, . . . , x

′
d) are two 

vectors in the problem search space, xxx dominates x́xx ( xxx ≻ x́xx ) if and only if

This concept defines the optimality of a solution in a multi-objective space. Candidate solution xxx is better than 
xxx′ if it is not worse than xxx′ in any of the objectives and at least it has a better value in one of the objectives. All 
solutions that are not dominated using any other solution called non-dominated solutions; they create the first 
Pareto-front (Pareto-front) set. Multi-objective algorithms attempt to find these solutions by utilizing generating 
strategies/operators and selection schemes. The non-dominated sorting (NDS) algorithm55 is one of the popular 
selection strategies which works based on the dominance concept. It ranks the solutions of the population in dif-
ferent ranks of optimality, called Pareto. The algorithm starts with determining all non-dominated solutions in the 
first rank. In order to identify the second rank of individuals, the non-dominated vectors are removed from the 
set to process the remaining candidate solutions on the same way. Non-dominated solutions of this step make the 
second level of individuals (second Pareto). Thereafter, the second ranked individuals will be removed to identify 
the third Pareto. This process will continue until the all individuals are grouped into different ranks of Pareto.

Proposed process of evolutionary feature selection.  An optimization model is made up of four main 
components: the objective functions that we intend to minimize or maximize, the problem encoding, the con-
straints of the problem (if any), and the optimization algorithm. In the following, each component for a multi-
objective feature selection problem is defined. In addition to the defined objective functions in the previous 
section, the optimization requires an encoding scheme to be considered as the representation of variables of the 
problem. The encoding can represent each individual in the population, demonstrating a set of features. To this 
end, a binary vector in size of all features indicates the status of a feature, where 0 reflects the absence of a feature 
and 1 is indicative of feature’s presence. Thus, the optimizer explores the search space to find the best value (i.e., 
0/1) for each variable. The overall structure of the proposed framework is illustrated in Fig. 1. The process starts 
with the steps of pre-processing and features extraction using a DNN, then the optimization is conducted. The 
output of the optimization process is a set of trade-off solutions; each of trade-off solutions can be selected by an 
expert decision maker.

We now highlight the steps of the algorithm; similar to all population-based evolutionary algorithms, as it is 
presented in Fig. 1, the optimization process starts with a initial population of random binary individuals. Each 
individual is indicator of a set of selected features as a candidate solution. The evolutionary algorithms try to 
find the optimal solutions by a repetitive process. The algorithm evaluates the initial population based on three 
defined objectives. By considering these objectives, the optimizer removes the redundant and irrelevant features 
gradually and keeps the best combination of features in the population. To calculate the accuracy of image search 
using each subset of features, the training and validation sets of WSIs are adjusted accordingly and the label of 
each image in validation set is predicted. As previously mentioned, each WSI has “two labels” including (1) the 
cancer type, and (2) source institute. Thus, the accuracy of prediction is separately calculated based on both 
labels to declare two objectives.

The next step of the optimization is generating the new individuals in order to explore the search space. One-
point crossover is utilized to combine the two individuals in the population to create a new candidate solution. 
By this operator, a random combination point is selected for both parents individuals. The variables after the 
combination point are swapped with each other. Two new individuals (i.e., offsprings) are generated. Then bit-
wise mutation is utilized in which a number of bits flip at random positions. The new individuals compete with 
the old population while the best solutions (i.e., non-dominated solutions) are selected for the next generation. 
We applied the well-known many-objective optimization algorithm to find a subset of features to alleviate the 
impact of bias. Among these algorithms, the NSGA-III is one of the state-of-the-art algorithms that has been 
proposed to address the shortcomings of its predecessor NSGA-II. In49, the performance of this algorithm has 
been compared with several algorithms to demonstrate the effect of adding the reference points to improve the 
distribution and quality of the resulting Pareto front.

The NSGA-III selection strategy chooses the top ranked feature subsets based on the NDS algorithm and the 
reference lines distributed uniformly in the search space to provide the well-spread out candidate solutions.Those 
subsets of features (i.e., individuals) with maximum accuracy of primary diagnosis classification and minimum 
source institution classification (i.e., bias) are selected among the population. In fact, the elite individuals which 
are the best subsets of features are selected to make the next generation. The evolutionary process leads to opti-
mize the defined objective function for the goal of feature selection. At the end of process, a set of trade-off solu-
tions are obtained. A decision maker can pick one of the solutions according to the desired objective or criterion.

Data availability
The TCGA dataset used and analysed during the current study is publicly available in “https://​portal.​gdc.​cancer.​
gov.”

Received: 21 July 2022; Accepted: 14 November 2022

(8)
∀i ∈ {1, 2, . . . ,M}, fi(xxx) ≤ fi(xxx

′)∧

∃j ∈ {1, 2, . . . ,M} : fj(xxx) < fj(xxx
′)
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